
Boarder Impact469

Mirror Diffusion Models (MDMs) advance the recent development of diffusion models to complex470

domains subjected to convex constrained sets. This opens up new possibilities for MDMs to serve as471

preferred models for generating samples that live in e.g., simplices and balls. Additionally, MDMs472

introduce an innovative application of constrained sets as a watermarking technique. This has the473

potential to address concerns related to unethical usage and safeguard the copyright of generative474

models. By incorporating constrained sets into the generating process, MDMs offer a means to475

prevent unauthorized usage and ensure the integrity of generated content.476

A Derivation of Mirror Mappings477

Here, we provide addition derivation of∇φ∗. Computation of∇φ(x) and∇2φ∗(y) follow straight-478

forwardly by differentiating φ(x) and ∇φ∗(y) w.r.t. x and y, respectively.479

`2-Ball Since the gradient map also reverses the mirror map, we aim to rewrite y = 2γ
R−‖x‖22

x as480

x = f(y) = ∇φ∗ball(y). Solving the second-order polynomial,481

‖y‖22 =

(
2γ

R− ‖x‖22

)2

‖x‖22, (19)

yields482

‖x‖22 = R+
2γ

‖y‖22

(
γ −

√
R‖y‖22 + γ2

)
. (20)

With that, we can rewrite Equation (11) by483

x =
R− ‖x‖22

2γ
y

(20)
=

√
R‖y‖22 + γ2 − γ
‖y‖22

y =
R√

R‖y‖22 + γ2 + γ
y.

Simplex Standard calculations in convex analysis [28] shows484

φ∗simplex(y) = log

(
1 +

d∑
i

eyi

)
. (21)

Differentiating Equation (21) w.r.t. y yields∇φ∗simplex in Equation (13).485

Polytope Since the gradient map also reverses the mirror map, we aim to inverse486

y =

m∑
i=1

si(〈ai, x〉)ai +

d∑
j=m+1

〈aj , x〉aj . (22)

When all d constraints are orthonormal, taking inner product between y and each a yields487

〈ai, y〉 = si(〈ai, x〉), 〈aj , y〉 = 〈aj , x〉. (23)
Therefore, we can reconstruct x from y via488

x =

m∑
i=1

〈ai, x〉ai +

d∑
j=m+1

〈aj , x〉aj

(23)
=

m∑
i=1

s−1i (〈ai, y〉)ai +

d∑
j=m+1

〈aj , y〉aj ,

which defines x = ∇φ∗polytope(y). For completeness, the Hessian can be presented compactly as489

∇2φ∗polytope(y) = I + AΣA>, (24)

where I is the identity matrix, A := [a1, · · · , am] is a d-by-m matrix whose column vector ai490

corresponds to each constraint, and Σ ∈ Rm×m is a diagonal matrix with leading entries491

[Σ]ii =
∂s−1i (z)

∂z
|z=〈ai,y〉 − 1

(18)
=

bi − ci
2

(
1− tanh2(〈ai, y〉)

)
− 1.

14

B Additional Remarks on Polytope492

Derivation of Equation (17) Since the subspaces spanned by {ai} and {aj} are orthogonal to each493

other, we can rewrite (15) as494

∇φpolytope(x) =

m∑
i=1

si(〈ai, x〉)ai +

(
x−

m∑
i=1

〈ai, x〉ai

)
= x+

m∑
i=1

(si(〈ai, x〉)− 〈ai, x〉) ai.

∇φ∗polytope(y) follows similar derivation.495

Generalization to non-orthonormal constraints The mirror maps of a polytope, as described in496

Equations (15) to (17), can be seen as operations that manipulate the coefficients associated with497

the bases defined by the constraints. This understanding allows us to extend the computation to498

non-orthonormal constraints by identifying the corresponding “coefficients” through a change of499

bases, utilizing the reproducing formula:500

x =

d∑
i=1

〈ãi, x〉ai, where ãi is the i-th row of (A>A)−1A>,

and A := [a1, · · · , am]. Similarly, we have y =
∑d
i=1〈ãi, y〉ai. Applying similar derivation leads to501

∇φpoly(x) = x+

m∑
i=1

(si(〈ãi, x〉)− 〈ãi, x〉) ai, ∇φ∗poly(y) = y +

m∑
i=1

(
s−1i (〈ãi, y〉)− 〈ãi, y〉

)
ai.

C Experiment Details & Additional Results502

Table 7: The concentration parameter α of each Dirichlet distribution in simplices constrained sets.

d 3 3 7 9 20

α [2, 4, 8] [1, 0.1, 5] [1, 2, 2, 4, 4, 8, 8] [1, 0.5, 2, 0.3, 0.6, 4, 8, 8, 2] [0.2, 0.4, · · · , 4, 4.2]

Table 8: Hyperparameters of the polytopeM := {x ∈ Rd : ci < a>i x < bi} for
each dataset and watermark precision. Note that we fix b = bi = −ci in practice.

FFHQ 64×64 (uncon) AFHQv2 64×64 (uncon)
Precision 59.3% 71.8% 93.3% 56.9% 75.0% 92.7%

Number of constraints m 7 20 100 4 20 100
Constraint range b 1.05 1.05 1.05 0.9 0.9 0.9

Dataset & constrained sets503

• `2-balls constrained sets: For d = 2, we consider the Gaussian Mixture Model (with variance504

0.05) and the Spiral shown respectively in Figures 1 and 3. For d = {6, 8, 20}, we place d505

isotropic Gaussians, each with variance 0.05, at the corner of each dimension, and reject samples506

outside the constrained sets.507

• Simplices constrained sets: We consider Dirichlet distributions [48], Dir(α), with various con-508

centration parameters α detailed in Table 7.509

• Hypercube constrained sets: For all dimensions d = {2, 3, 6, 8, 20}, we place d isotropic510

Gaussians, each with variance 0.2, at the corner of each dimension, and either reject (d =511

{2, 3, 6, 8}) or reflect (d = 20) samples outside the constrained sets.512

• Watermarked datasets and polytope constrained sets: We follow the same data preprocessing from513

EDM3 [38] and rescale both FFHQ and AFHQv2 to 64×64 image resolution. For the polytop514

constrained setsM := {x ∈ Rd : ci < a>i x < bi,∀i}, we construct ai from orthonormalized515

Gaussian random vectors and detail other hyperparameters in Table 8.516

3https://github.com/NVlabs/edm, released under Nvidia Source Code License.

15

https://github.com/NVlabs/edm

Implementation All methods are implemented in PyTorch [72]. We adopt ADM4 and EDM3 [38]517

respectively as the MDM’s diffusion backbones for constrained and watermarked generation. We518

implemented Reflected Diffusion [18] by ourselves as their codes have not yet been made available,519

and used the official implementation5 of Reflected Diffusion [25] in Table 11. We also implemented520

Simplex Diffusion [60], but as observed in previous works [25], it encountered computational521

instability especially when computing the modified Bessel functions.522

Training For constrained generation, all methods are trained with AdamW [73] and an exponential523

moving average with the decay rate of 0.99. As standard practices, we decay the learning rate by the524

decay rate 0.99 every 1000 steps. For watermarked generation, we follow the default hyperparameters525

from EDM3 [38]. All experiments are conducted on two TITAN RTXs and one RTX 2080.526

Network For constrained generation, all networks take (y, t) as inputs and follow527

out = out_mod(norm(y_mod(y) + t_mod(timestep_embedding(t)))),

where timestep_embedding(·) is the standard sinusoidal embedding. t_mod and out_mod consist528

of 2 fully-connected layers (Linear) activated by the Sigmoid Linear Unit (SiLU) [74]:529

t_mod = out_mod = Linear→ SiLU→ Linear

and y_mod consists of 3 residual blocks, i.e., y_mod(y) = y + res_mod(norm(y)), where530

res_mod = Linear→ SiLU→ Linear→ SiLU→ Linear→ SiLU→ Linear

All Linear’s have 128 hidden dimension. We use group normalization [75] for all norm. For531

watermarked generation, we use EDM parameterization3 [38].532

Evaluation We compute the Wasserstein and Sliced Wasserstein distances using the geomloss6533

and ot7 packages, respectively. The Maximum Mean Discrepancy (MMD) is based on the popular534

package https://github.com/ZongxianLee/MMD_Loss.Pytorch, which is unlicensed. For535

watermarked generation, we follow the same evaluation pipeline from EDM3 [38] by first generating536

50,000 watermarked samples and computing the FID w.r.t. the training statistics.537

C.1 Additional Results538

Groundtruth MDM NLL

Figure 9: Tractable variational
bound by our MDM.

Tractable variational bound in Equation (8) Figure 9 demon-539

strates how MDM faithfully captures the variational bound to the540

negative log-likelihood (NLL) of 2-dimensional GMM.541

More constrained sets, distributional metrics, & baseline Ta-542

bles 9 and 10 expand the analysis in Tables 3 and 4 with additional543

distributional metrics such as Wasserstein-1 (W1) and Maximum544

Mean Discrepancy (MMD). Additionally, Table 11 reports the545

results of hypercube [0, 1]d constrained set, a special instance546

of polytopes, and includes additional baseline from Lou and Ermon [25], which approximate the547

intractable scores in Reflected Diffusion using eigenfunctions toilered specifically to hypercubes,548

rather than implicit score matching as in Fishman et al. [18]. Consistently, our findings conclude549

that the MDM is the only constrained-based diffusion model that achieves comparable or better550

performance to DDPM. These results affirm the effectiveness of MDM in generating high-quality551

samples within constrained settings, making it a reliable choice for constrained generative modeling.552

More watermarked samples Figures 10 and 11 provide additional qualitative results on the553

watermarked samples generated by MDMs.554

4https://github.com/openai/guided-diffusion, released under MIT License.
5https://github.com/louaaron/Reflected-Diffusion, latest commit (65d05c6) at submission, un-

licensed.
6https://github.com/jeanfeydy/geomloss, released under MIT License.
7https://pythonot.github.io/gen_modules/ot.sliced.html#ot.sliced.sliced_

wasserstein_distance, released under MIT License.

16

https://github.com/ZongxianLee/MMD_Loss.Pytorch
https://github.com/openai/guided-diffusion
https://github.com/louaaron/Reflected-Diffusion
https://github.com/jeanfeydy/geomloss
https://pythonot.github.io/gen_modules/ot.sliced.html#ot.sliced.sliced_wasserstein_distance
https://pythonot.github.io/gen_modules/ot.sliced.html#ot.sliced.sliced_wasserstein_distance

Table 9: Expanded results of `2-ball constrained sets, where we include additional distributional
metrics such asW1 and Maximum Mean Discrepancy (MMD), all computed with 1000 samples and
averaged over three trials. Consistently, our findings conclude that the MDM is the only constrained-
based diffusion model that achieves comparable or better performance to DDPM.

d = 2 d = 2 d = 6 d = 8 d=20

W1 ↓ (unit: 10−2)
DDPM [2] 0.66 ± 0.15 0.14 ± 0.03 0.52 ± 0.09 0.58 ± 0.10 3.45 ± 0.50

Reflected [18] 0.55 ± 0.29 0.46 ± 0.17 3.11 ± 0.40 10.13 ± 0.21 19.42 ± 0.13

MDM (ours) 0.46 ± 0.07 0.12 ± 0.04 0.72 ± 0.39 1.05 ± 0.26 2.63 ± 0.31

MMD ↓ (unit: 10−2)
DDPM [2] 0.67 ± 0.23 0.23 ± 0.07 0.37 ± 0.19 0.75 ± 0.24 0.98 ± 0.42

Reflected [18] 0.58 ± 0.46 5.03 ± 1.17 2.34 ± 0.14 28.82 ± 0.66 14.83 ± 0.62

MDM (ours) 0.52 ± 0.36 0.27 ± 0.19 0.54 ± 0.12 0.35 ± 0.23 0.50 ± 0.17

Constraint violation (%) ↓
DDPM [2] 0.00 ± 0.00 0.00 ± 0.00 8.67 ± 0.87 13.60 ± 0.62 19.33 ± 1.29

Table 10: Expanded results of simplices constrained sets.

d = 3 d = 3 d = 7 d = 9 d=20

W1 ↓ (unit: 10−2)
DDPM [2] 0.01 ± 0.00 0.02 ± 0.01 0.03 ± 0.00 0.05 ± 0.00 0.11 ± 0.00

Reflected [18] 0.06 ± 0.01 0.12 ± 0.00 0.62 ± 0.08 3.57 ± 0.05 0.98 ± 0.02

MDM (ours) 0.01 ± 0.00 0.01 ± 0.01 0.03 ± 0.00 0.05 ± 0.00 0.13 ± 0.00

MMD ↓ (unit: 10−2)
DDPM [2] 0.72 ± 0.07 0.72 ± 0.30 0.74 ± 0.10 0.97 ± 0.22 1.12 ± 0.07

Reflected [18] 3.91 ± 0.95 15.12 ± 1.36 16.48 ± 1.04 131.44 ± 2.65 57.90 ± 2.07

MDM (ours) 0.44 ± 0.16 0.50 ± 0.26 0.42 ± 0.08 0.55 ± 0.13 0.61 ± 0.03

Constraint violation (%) ↓
DDPM [2] 0.73 ± 0.12 14.40 ± 1.39 11.63 ± 0.90 27.53 ± 0.57 68.83 ± 1.66

Table 11: Results of hypercube [0, 1]d constrained sets.

d = 2 d = 3 d = 6 d = 8 d=20

Sliced Wasserstein ↓ (unit: 10−2)
DDPM [2] 2.24 ± 1.22 2.17 ± 0.65 2.05 ± 0.41 2.01 ± 0.16 1.54 ± 0.01

Reflected [25] 3.75 ± 1.20 6.58 ± 1.18 2.77 ± 0.06 3.50 ± 0.69 3.37 ± 0.46

Reflected [18] 19.05 ± 1.51 17.16 ± 0.88 11.90 ± 0.43 7.49 ± 0.13 4.32 ± 0.23

MDM (ours) 3.00 ± 0.72 1.92 ± 0.81 1.75 ± 0.17 1.85 ± 0.34 3.35 ± 0.64

W1 ↓ (unit: 10−2)
DDPM [2] 0.07 ± 0.05 0.22 ± 0.07 1.65 ± 0.14 3.30 ± 0.16 16.74 ± 0.12

Reflected [25] 0.20 ± 0.12 1.21 ± 0.39 2.53 ± 0.04 4.82 ± 0.42 25.47 ± 0.20

Reflected [18] 4.40 ± 0.57 6.01 ± 0.97 9.34 ± 0.56 9.84 ± 0.24 25.27 ± 0.36

MDM (ours) 0.08 ± 0.03 0.20 ± 0.07 1.57 ± 0.08 3.34 ± 0.23 20.59 ± 1.19

MMD ↓ (unit: 10−2)
DDPM [2] 0.27 ± 0.26 0.32 ± 0.14 0.69 ± 0.21 0.81 ± 0.23 0.73 ± 0.07

Reflected [25] 0.92 ± 0.53 3.56 ± 1.31 1.16 ± 0.04 2.09 ± 0.70 2.83 ± 0.58

Reflected [18] 32.26 ± 3.19 26.64 ± 5.07 29.83 ± 1.42 15.84 ± 0.89 7.21 ± 0.68

MDM (ours) 0.27 ± 0.09 0.29 ± 0.17 0.39 ± 0.14 0.61 ± 0.23 0.62 ± 0.05

Constraint violation (%) ↓
DDPM [2] 9.37 ± 0.12 17.57 ± 1.27 41.70 ± 1.30 59.30 ± 1.39 94.47 ± 0.64

17

Figure 10: FFHQ 64×64 unconditional watermarked samples generated by (left) MDM-proj and
(right) MDM-dual from the same set of random seeds. Despite the fact that some images, such
as the one in the first row and sixth column, were altered possibly due to the change of dual-space
distribution (see Figure 7), they look realistic and remain close to the data distribution.

Figure 11: AFHQv2 64×64 unconditional watermarked samples generated by (left) MDM-proj and
(right) MDM-dual from the same set of random seeds. Despite the fact that some images, such
as the one in the fifth row and first column, were altered possibly due to the change of dual-space
distribution (see Figure 7), they all look realistic and remain close to the data distribution.

18

