
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ACCELERATE QUANTIZATION AWARE TRAINING FOR
DIFFUSION MODELS WITH DIFFICULTY-AWARE TIME
ALLOCATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models have demonstrated remarkable power in various generation
tasks. Nevertheless, the large computational cost during inference is a trouble-
some issue for diffusion models, especially for large pretrained models such as
Stable Diffusion. Quantization-aware training (QAT) is an effective method to
reduce both memory and time costs for diffusion models while maintaining good
performance. However, QAT methods usually suffer from the high cost of re-
training the large pretrained model, which restricts the efficient deployment of
diffusion models. To alleviate this problem, we propose a framework DFastQ
(Diffusion Fast QAT) to accelerate the training of QAT from a difficulty-aware
perspective in the timestep dimension. Specifically, we first propose to adaptively
identify the difficulties of different timesteps according to the oscillation of their
training loss curves. Then we propose a difficulty-aware time allocation module,
which aims to dynamically allocate more training time to difficult timesteps to
speed up the convergence of QAT. The key component of this is a timestep drop
mechanism consisting of a drop probability predictor and a pair of adversarial
losses. We conduct a series of experiments on different Stable Diffusion models,
quantization settings, and sampling strategies, demonstrating that our method can
effectively accelerate QAT by at least 24% while achieving comparable or even
better performance.

1 INTRODUCTION

Diffusion models have shown great power in a variety of generative tasks (Ho et al., 2020; Song
et al., 2020a; Rombach et al., 2022; Chen et al., 2023b; Ruiz et al., 2023; Song et al., 2020b),
such as text-to-image generation (Rombach et al., 2022; Chen et al., 2023b; Ruiz et al., 2023; Feng
et al., 2024) and text-to-video generation (Chen et al., 2023a; Wu et al., 2023; Bar-Tal et al., 2024).
However, one critical limitation of diffusion models is the high computational cost, which limits the
practical deployment of diffusion models. This issue becomes more serious with the increase in the
model size of advanced pretrained diffusion models, e.g., Stable Diffusion series (Rombach et al.,
2022).

To reduce the computational costs of diffusion model inference, one line of works engaged in ex-
ploring more efficient sampling strategies to reduce sampling steps (Lu et al., 2022; Liu et al., 2021;
Song et al., 2020a). Recently, from an orthogonal perspective, i.e., directly compressing the network
of diffusion models, quantization methods (Shang et al., 2023; Li et al., 2023; He et al., 2023b; Tang
et al., 2024) have been employed.

Quantization methods can be categorized into two groups, i.e., post-training quantization (PTQ)
and quantization-aware training (QAT). PTQ methods (Nagel et al., 2020) do not require an expen-
sive training or finetuning process, so they are usually resource-friendly. Nevertheless, PTQ always
causes significant performance degradation on diffusion models (Shang et al., 2023; Tang et al.,
2024), especially in low-bit settings. In contrast, QAT methods (Esser et al., 2019) possess a strong
ability to recover performance by training/finetuning network weights and quantization parameters
together, but cost a large number of computational resources, especially for large pretrained mod-
els such as Stable Diffusion. To reduce the training costs of QAT on diffusion models, previous

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

literature has investigated from the architecture perspective. Specifically, He et al. (2023a) propose
EfficientDM that incorporates the parameter-efficient finetuning method LoRA (Hu et al., 2021)
into the QAT framework. However, they allocate identical importance to each timestep with uni-
form sampling, ignoring difficulty discrepancy across timesteps, which we find a critical factor to
diffusion optimization and convergence in this paper.

Therefore, to further reduce the time costs of QAT on diffusion models from the timestep per-
spective, we propose a framework named DFastQ (Diffusion Fast QAT). Specifically, we discover
that there exists a pattern of difficulty discrepancy across different timesteps by observing task loss
curves of the QAT for diffusion models as presented in Fig. 1. The oscillation level of the train-
ing loss curve is adopted to estimate the difficulty. We define difficult timesteps as those that are
oscillatory and difficult to converge, while easy timesteps are smooth and easy to converge. Natu-
rally, difficult timesteps require more training time compared to easy ones. Therefore, to obtain a
better overall convergence speed, we propose to dynamically allocate more training time to diffi-
cult timesteps and less to easy ones, because it can avoid wasting training time on easy timesteps
that don’t need so much time to reach convergence. We adaptively identify the difficulty of each
timestep during the QAT training process, and employ a timestep drop mechanism to dynamically
control the time allocation. The timestep drop mechanism consists of a predictor that produces a
drop probability for each timestep, and a pair of adversarial losses that adjust the probability based
on difficulty level. It will make difficult timesteps obtain smaller drop probabilities and thus possess
more training time, and vice versa.

To summarize, our contributions are listed as follows:

1. We introduce a framework dubbed DFastQ which is the first to accelerate QAT for diffusion
models from the timestep perspective, identifying and leveraging the difficult discrepancy
across timesteps.

2. We propose to adaptively identify the difficulty based on the oscillation level. We propose
to allocate more training time to difficult timesteps to achieve the convergence acceleration.
To control the time allocation, we propose a timestep drop mechanism consisting of a drop
predictor and a pair of adversarial losses.

3. Extensive experiments on various Stable Diffusion models, quantization settings and sam-
pling strategies demonstrate that DFastQ has a generalizable ability to accelerate QAT by
at least 24% while achieving comparable or even better quality.

2 RELATED WORK

2.1 MODEL QUANTIZATION

Definition of model quantization. Model quantization, as a crucial technique of model compres-
sion, aims to compress deep neural networks by converting model weights and activations from
32/16 bit float-point format into lower-bit formats such as INT4/INT8. Benefiting from low-bit for-
mats, model quantization can significantly reduce both the time and memory costs of the model.
The process of model quantization can be mathematically represented as follows:

wq = clip
(
round

(w
s

)
+ z, qmin, qmax

)
,

where s is the scaling factor and z is the zero-point. w denotes the float-point weights/activations,
while wq denotes their integer representations after quantization.

2.2 EXISTING QUANTIZATION METHODS FOR DIFFUSION MODELS

Recently, quantization methods have been widely adopted to compress diffusion models (Shang
et al., 2023; Li et al., 2023; He et al., 2023b; Wang et al., 2023; So et al., 2023; Tang et al., 2024;
He et al., 2023a). They tailor the design for the characteristics of diffusion models. For example,
PTQ4DM (Shang et al., 2023) proposes to collect calibration data from a skew-normal distribution
in the denoising process rather than the forward process. Q-diffusion (Li et al., 2023) proposes to

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

collect calibration data at certain timestep intervals and split quantization for the sensitive shortcut
layers of the U-Net. Most of these methods belong to PTQ, causing obvious performance degra-
dation on diffusion models (Li et al., 2021; Tang et al., 2024). To better maintain performance,
EfficientDM (He et al., 2023a) proposes a distillation-based QAT framework for diffusion models,
and also leverages LoRA (Hu et al., 2021) to mitigate the significant computational costs of fully
QAT. In this work, we further reduce the time costs of QAT on diffusion models from the timestep
perspective.

2.3 RELATION WITH LOSS WEIGHTING METHODS

Some works (Choi et al., 2022; Go et al., 2024) propose loss weighting to refine the diffusion train-
ing, i.e., assigning different weights of loss to different timesteps. Go et al. (2024) use the scheme
of uncertainty weighting. Choi et al. (2022) propose P2-weighting based on the signal-noise ratio.
Both the loss weighting and our method prioritize a subset of timesteps. We also compare to loss
weighting methods to show the superiority of our method.

3 METHOD

In this section, we present our method DFastQ that accelerates the convergence of QAT for diffu-
sion models by dynamically allocating training time for different timesteps according to difficulty.
Firstly, we introduce preliminaries in Sec. 3.1, regarding diffusion models and QAT for diffusion
models. Then, we demonstrate our observations about difficulty discrepancy. Finally, we introduce
our framework DFastQ in detail.

3.1 PRELIMINARIES

Diffusion models. Diffusion models define a forward process (a Markov chain) that gradually adds
the noise to the real data x0:

q (xt | xt−1) = N
(
xt;
√

1− βtxt−1, βtI
)
, t = 1, 2, .., T, (1)

where βt ∈ (0, 1) are a series of constants that control the variance schedule. Further, this forward
process can derive the nice property that xt =

√
ᾱtx0 +

√
1− ᾱtϵ, where ᾱt =

∏t
s=1 αs, αt =

1 − βt, and ϵ ∼ N (0, I). Diffusion models train a neural network ϵθ to predict the noise of the
noisy variable xt, whose training objective is:

Ex0,ϵ,t

[∥∥ϵθ (√ᾱtx0 +
√
1− ᾱtϵ, t

)
− ϵ
∥∥2
2

]
. (2)

In the denoising process, diffusion models generate samples by gradually denoising from a Gaussian
noise xT ∼ N (0, I) to x0, along certain trajectories pθ(xt−1|xt) determined by sampling strate-
gies (Ho et al., 2020; Liu et al., 2021; Lu et al., 2022). Different sampling strategies impact the
quality and style of the generated samples.

Quantization-aware training for diffusion models. He et al. (2023a) propose a QAT framework
for diffusion models called EfficientDM, which introduces step-wise noise distillation. Specifi-
cally, the step-wise distillation aims to minimize the MSE loss between predicted noises of the
full-precision model ϵθ and the quantized model ϵ̂θ at each denoising timestep t, which can be
formulated as:

L = Et∼Uniform({1,...,T})

[
∥ϵθ (xt, t)− ϵ̂θ (xt, t)∥22

]
. (3)

Note that xt in Eq. 3 is obtained from the denoising process pθ(xt−1|xt) with the full-precision
model, rather than the forward process in Eq. 1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Eq. 3 is employed to train the network weights and quantization parameters jointly, conforming to
the paradigm of LSQ (Esser et al., 2019). Moreover, they also incorporate LoRA (Hu et al., 2021)
into the framework to reduce computational costs. In this paper, we follow the QAT design of
EfficientDM. However, we do not adopt LoRA because we found it would bring extra time costs in
the single GPU training of QAT.

3.2 DIFFICULTY DISCREPANCY ACROSS TIMESTEPS

Previous study (He et al., 2023a) (EfficientDM) treats each denoising step as equally important, and
trains them uniformly as presented in Eq. 3. It means that in the denoising process, each xt will be
taken as the input for QAT training, which allocates identical importance and training time to each
timestep.

However, we discover that there exists a pattern of difficulty discrepancy across different timesteps
by observing task loss curves of the QAT for diffusion models, as shown in Fig. 1. We can draw the
following observations:

i) The loss value tends to decrease with respect to timestep t. Timestep t near T (the starting point
of the denoising process) tends to have a smaller loss value than the one near 0 (the endpoint).

ii) The degree of oscillation tends to decrease with respect to timestep t. Timestep t near T tends to
be more oscillatory than the one near 0.

0 2000 4000 6000 8000
iteration

0.000

0.001

0.002

0.003

0.004

0.005

ta
sk

 lo
ss

timestep=999

0 2000 4000 6000 8000
iteration

0.001

0.002

0.003

0.004

0.005

0.006

ta
sk

 lo
ss

timestep=894

0 2000 4000 6000 8000
iteration

0.002

0.004

0.006

ta
sk

 lo
ss

timestep=736

0 2000 4000 6000 8000
iteration

0.000

0.005

0.010

0.015

0.020

0.025

ta
sk

 lo
ss

timestep=578

0 2000 4000 6000 8000
iteration

0.005

0.010

0.015

0.020

ta
sk

 lo
ss

timestep=421

0 2000 4000 6000 8000
iteration

0.01

0.02

0.03

0.04

0.05

ta
sk

 lo
ss

timestep=263

0 2000 4000 6000 8000
iteration

0.02

0.04

0.06

0.08

ta
sk

 lo
ss

timestep=105

0 2000 4000 6000 8000
iteration

0.01

0.02

0.03

0.04

0.05

0.06
ta

sk
 lo

ss
timestep=0

Figure 1: Task loss curves of the QAT for diffusion models, obtained with SD-2.1. T = 1000.

The loss value at each timestep cannot be used as an indicator to reflect the difficulty, because
there is a natural difference in the order of magnitude of loss values among these timesteps. In
contrast, we find that the oscillation level is a good metric to estimate the difficulty and can be
easily calculated, i.e., the difficulty is positively correlated with the oscillation level. We define
difficult timesteps as those that are oscillatory, while easy timesteps are smooth. The principle is that
oscillatory timesteps are more difficult to converge and consequently entail more training iterations
than smooth timesteps.

Therefore, there is room to improve the speed of convergence by reallocating training time (train-
ing iterations) for different timesteps according to the difficulty discrepancy. Naturally, difficult
timesteps require more training time compared to easy ones. To obtain a better convergence speed,
we propose to allocate more training time to difficult timesteps. Note that the difficulty level is dy-
namic during the training process, which means we need to dynamically adjust the training time for
each timestep.

3.3 DIFFICULTY-AWARE TIME ALLOCATION WITH TIMESTEP DROP

In this section, we elaborate on our proposed framework DFastQ, which accelerates QAT for diffu-
sion models through dynamic training time allocation according to the difficulty discrepancy. The
overall framework is presented in Fig. 2. To control the time allocation, we propose a timestep

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

drop mechanism whose key components are a predictor for drop probability and a pair of adversar-
ial losses conditioned on difficulty level. The predictor outputs drop probability for each timestep,
while the adversarial losses train the predictor on the basis of difficulty. We demonstrate each design
in detail as follows.Method

timesteps

predictor

1

2
…

T-1

T

𝑝!
𝑝"

𝑝!"#
𝑝!

…
drop

probability

Drop predictor (a)

𝜖# x$, t

̂𝜖#(x$, t)

❄

🔥

x!, t
Random
drop 𝑝%

✅

❌

Drop

QAT with timestep drop (b)

𝐿$%&' =
||𝜖(x(, t 	− ̂𝜖$(x(, t)||))

Provide 𝑝%

𝐿*+,& = (.𝑝$ −𝑀))

𝐿%-./&$ =.𝑤$ 𝑝$ Adversarial

FP

Quant Difficulty coefficients
estimation (c)

𝑤% =
𝑠𝑡𝑑{𝑙&%}
𝑚𝑒𝑎𝑛{𝑙&%}

, 𝑖 ∈ [𝑐 − 𝑤, 𝑐]

Figure 2: The overall structure of the proposed DFastQ, which consists of a predictor to output drop
probability pt for each t, and a pair of adversarial losses Lcons and Ladjust to train the predictor
according to the difficulty level. The QAT training progresses with the timestep drop mechanism,
aiming to control the time allocation among timesteps, as more difficult timesteps tend to be assigned
a lower pt. We leverage the Coefficient of Variation of task loss values in the current window to
estimate the difficulty level.

Overview of the timestep drop mechanism. The timestep drop mechanism aims to control the
training time allocation for different timesteps. As stated in Sec. 3.2, ideally, the more difficult
the timestep is, the more training time is allocated to it. To achieve this goal, we propose to drop
timestep at random with a certain probability. Our drop mechanism ensures that difficult timesteps
obtain lower probabilities than easy ones, naturally possessing more training time, and vice versa.
Therefore, our method can avoid wasting training time on easy timesteps that don’t need so much
time to reach convergence. Consequently, the overall convergence will be faster.

Drop predictor design. To achieve the training time allocation for different timesteps, we need to
adjust their drop probabilities dynamically. As demonstrated in recent literature (So et al., 2023;
Li et al., 2023), the activation distributions between adjacent timesteps are similar. It indicates that
adjacent timesteps have a similar difficulty level, which is also consistent with our observations in
Sec. 3.2. Hence, inspired by So et al. (So et al., 2023), we propose to predict drop probabilities based
on the timestep to better capture the relations among timesteps. Specifically, the drop predictor fθ is
employed to predict the drop probability pt for each timestep t. It takes the embedding of t as the
input and outputs a scalar pt ∈ [0, 1], which can be easily implemented by a simple MLP network.
The process can be formulated as follows:

pt = fθ(temd), temd = hθ(t), (4)

where hθ is the time embedding module. Here, we reuse the frozen time embedding layers in the
pretrained full-precision diffusion model as hθ.

QAT with timestep drop. The underlying design of our DFastQ conforms to the paradigm of the
well-known QAT framework LSQ (Esser et al., 2019), i.e., jointly training network weights and
quantization parameters. Following EfficientDM (He et al., 2023a), before each training iteration of
QAT, we first collect input data xt at each t through the denoising process with the full-precision
model ϵθ. Then we adopt the MSE loss as our task loss to train QAT, i.e., minimizing the distance
between the full-precision model ϵθ and the quantized model ϵ̂θ in terms of predicted noises at each
denoising step t. This task loss can be written as follows:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Ltask = Et∼q(t)

[
∥ϵθ (xt, t)− ϵ̂θ (xt, t)∥22

]
,

s.t. q(t) =
1− pt∑T

i=1(1− pi)
. (5)

Note that different from Eq. 3 of EfficientDM, q(t) is no longer a uniform distribution but a distribu-
tion determined by the timestep drop mechanism. Specifically, each data point xt, t will be dropped
at random with the probability pt, which can be formulated as follows:

(xt, t) ⇒
{

train ϵ̂θ, with prob. 1− pt
drop, with prob. pt .

(6)

From Eq. 6, q(t) can be easily derived. Overall, timestep t with a lower drop probability pt will be
allocated more training time.

Train the drop predictor based on difficulty level. To ensure that difficult timesteps obtain lower
drop probabilities than easy ones, we must train the drop predictor based on the difficulty level.
As demonstrated in Sec. 3.2, the difficulty is positively correlated with the oscillation level of the
task loss curve. Therefore, we use the oscillation level in the latest window to estimate the diffi-
culty level. To quantitatively calculate the difficulty based on the oscillation, we propose a metric
named difficulty coefficient based on Coefficient of Variation (CV) (Abdi, 2010), which measures
the variability of the task loss value in the latest window, independently of the unit and the order of
magnitude. We update the difficulty coefficient wt of timestep t after every back-propagation. After
c-th back-propagation, wt is updated as:

wt =
std {lti}
mean {lti}

, i ∈ [c− w, c] , (7)

where lti denotes the task loss at i-th back-propagation for denoising timestep t, and w is the length
of the latest window from which we estimate the current difficulty.

Then, we design a pair of adversarial losses to train the predictor, dynamically adjusting drop prob-
abilities to the current difficulty coefficient. It consists of a constraint loss Lcons and an adjustment
loss Ladjust, which are formulated as follows:

Lcons =

(
T∑

t=1

pt −M

)2

, (8)

Ladjust =
∑

wtpt , (9)

These two losses constitute an adversarial situation. Ladjust tries to minimize the weighted sum of
pt, with the difficulty coefficient wt as the weight. Ladjust tends to make every pt close to 0, but
Lcons forces their sum to be a fixed hyper-parameter M greater than 0. Therefore, to minimize these
two losses simultaneously, Ladjust will choose to decrease the pt of the timestep t that has a larger
wt and increase the pt of the timestep with a smaller wt. Finally, difficult timesteps (with larger wt)
will be assigned smaller drop probabilities, while easy timesteps (with smaller wt) will be assigned
higher drop probabilities. Then, the dynamic time allocation based on difficulty level through the
drop mechanism is achieved. Difficult timesteps obtain smaller drop probabilities than easy ones,
thus possessing more training time.

In conclusion, we alternatively train the predictor and the QAT process. The total objectives are
summarized as follows:

Lstage1 = min
Netθ

(Ltask) , (10)

Lstage2 = min
fθ

(Lcons + Ladjust) , (11)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where Lstage1 optimizes quantization parameters and network weights of the diffusion model, i.e.,
Netθ. Lstage2 optimizes the drop predictor fθ.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Models and datasets. We use the Stable Diffusion v1-4 (SD-1.4) and the Stable Diffusion 2.1-base
(SD-2.1) checkpoints provided by hugging face (hug). Following previous works (Li et al., 2023;
Tang et al., 2024), we use COCO train2017 and val2017 (Lin et al., 2014) as the training and the test
dataset respectively.

Metrics. Following Tang et al. (Tang et al., 2024), we adopt FID-to-FP32 to evaluate the quality
of quantized models. FID to FP32 calculates the FID distance (Heusel et al., 2017) between the
generated images of full-precision models and quantized models, which can effectively measure
both the image fidelity and the prompt-image matching. We do not use CLIP score (Hessel et al.,
2021) because it has been shown to be poor at distinguishing the quality of quantized diffusion
models (Tang et al., 2024). We generate 5,000 images using prompts from COCO val2017, and
calculate the FID-to-FP32 score. We calculate the BOPs(Yu et al., 2020) metric to measure the
theoretical computation amount of the model.

Hyper-parameters. In all the experiments, we maintain the same hyperparameters for our proposed
modules. The learning rate of the drop predictor fθ is set to 1e-6, which is a common practice and
performs well in our task. M is set to 0.6T . The window length c is 5.

The rule of determining convergence iteration. For both baseline and our method, we test the
model for every 100 iterations. We train the model until the performance deteriorates twice in a row.
For example, if the FID scores of three consecutive evaluations are 10.91, 10.92 and 11.00, we will
stop training, and choose the best iteration so far as the convergence iteration.

4.2 MAIN RESULTS

We compare our method with the QAT baseline (EfficientDM without LoRA). To validate the gen-
eralization of our method, we experiment on the settings of different model types, samplers, and
quantization bit-widths. We also compare our method with state-of-the-art PTQ-based methods to
demonstrate the superiority of QAT. Our metrics are all computed on the test dataset.

To begin with, we summarize the model quality at the convergence point and the total time cost by
Tab. 1, where “Conv. iter.” denotes the number of the convergence iterations. For baselines, an iter-
ation means training the QAT with S intermediate inputs (xt, t) in a single denoising process, where
S denotes the number of sampling steps. For our method, intermediate inputs in a single denoising
process go through a random drop mechanism, so training with S consecutive intermediate inputs
is counted as an iteration. We experiment on the popular pretrained text-to-image diffusion model
SD-1.4 with the default 50-step PNDM sampler (Liu et al., 2021). Besides, we also test another
text-to-image diffusion model, i.e., SD-2.1, with the advanced Euler (Karras et al., 2022) sampler
that can generate high-quality images in 20 steps. We test three different settings of quantization
bitwidth, i.e., W4/A8, W5/A5, and W6/A6, where the notation ”Wx/Ay” represents the bit-width
of weights (W) and activations (A) respectively. The results in Tab. 1 show that our method can
accelerate QAT by at least 24% while achieving comparable or even better performance. For in-
stance, in the setting of SD-2.1 with W6/A6 bitwidth (the last row), we save the training time from
26.4h to 18.6h with the FID improvement from 15.42 to 15.08. Detailed analysis of time costs and
experiments on DiT (Peebles & Xie, 2023) can be found in the Appendix.

Moreover, we plot FID-Iteration curves of the QAT training process to show the pattern of model
quality change. Fig. 3 shows the results of SD-1.4, while Fig. 4 shows the results of SD-2.1. We use
the stars to mark convergence points. For SD-1.4 with W4/A8 (Fig. 3a), we use the iteration 350
as the convergence point because its score (10.75) is already better than the baseline (10.91). These
results show our method can not only obtain better performance at the convergence point, but also
generally improve the quality during the QAT process.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Model quality at the convergence point and the total time cost. Conv. iter. denotes the
number of the convergence iteration. The training time is obtained on a single A100 GPU.

Model type Bits(W/A) Method Size (GB) BOPs (T) Conv. iter. Training time FID-to-FP32↓

SD-1.4 (50-step PNDM)

32/32 FP32 3.44 693 - - 0.00

4/8 baseline 0.44 21.66 500 8.7h 10.91
ours 0.44 21.66 350 6.5h(-25%) 10.75

5/5 baseline 0.54 16.92 1600 27.2h 35.19
ours 0.54 16.92 1100 20.5h(-25%) 36.11

SD-2.1 (20-step Euler)

32/32 FP32 3.44 693 - - 0.00

4/8 baseline 0.44 21.66 2200 14.8h 11.50
ours 0.44 21.36 1600 11.3h(-24%) 11.53

6/6 baseline 0.65 24.36 4000 26.4h 15.42
ours 0.65 24.36 2600 18.6h(-30%) 15.08

100 200 300 400 500 600 700
Iterations

10.50

10.75

11.00

11.25

11.50

11.75

12.00

12.25

FI
D

to
 F

P3
2

base
ours

(a) W4/A8

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800
Iterations

34

36

38

40

42

44

46

48

50

52
FI

D
to

 F
P3

2

base
ours

(b) W5/A5

Figure 3: FID-Iteration curves of QAT with SD-1.4 (50-step PNDM) and various bit-width settings.
A lower FID-to-FP32 score indicates better quality.

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Iterations

11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5

15.0

FI
D

to
 F

P3
2

base
ours

(a) W4/A8

600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400
Iterations

14

16

18

20

22

24

26

28

30

32

FI
D

to
 F

P3
2

base
ours

(b) W6/A6

Figure 4: FID-Iteration curves of QAT with SD-2.1 (20-step Euler) and various bit-width settings.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Finally, Tab. 2 compares our method with state-of-the-art PTQ-based methods, regarding the per-
formance at the convergence point and the total time cost. Our method achieves a FID-to-FP32
score of 10.75, which is a remarkable improvement compared to PTQ-based methods. Meanwhile,
our method saves the training time from 8.7h to 6.5h, which is less than 7.8h of Q-diffusion and
PTQ4DM, achieving a better balance between training resources and model quality.

Table 2: Comparison to PTQ-based methods. Results of SD-1.4 with 50-step PNDM sampler. The
training iterations of the QAT baseline and ours are 500 and 350 respectively.

Type Method Bits(W/A) Size (GB) BOPs (T) Training time FID-to-FP32↓ CLIP score↑
- Pretrained FP32 32/32 3.44 693 - 0.00 26.46

PTQ
Q-diffusion (Li et al., 2023) 4/8 0.44 21.66 7.8h 20.42 26.15

PTQ4DM (Shang et al., 2023) 4/8 0.44 21.66 7.8h 17.73 26.25
PCR (Tang et al., 2024) 4/8 0.44 22.74 12.0h 14.25 26.48

QAT QAT baseline 4/8 0.44 21.66 8.7h 10.91 26.46
DFastQ(ours) 4/8 0.44 21.66 6.5h(-25%) 10.75 26.46

4.3 ABLATION STUDY

Compare to uniform drop. We compare our method to the uniform drop where each timestep has
the identical drop probability, i.e., pt = r, ∀t. To maintain the consistency of the sum of pt, we set
r = 0.6 as M is set to 0.6T .

Compare to heuristic drop. To further emphasize the significance of adaptively predicting pt based
on difficulty, we compare to a stronger baseline which heuristically sets pt. According to observation
ii) in Sec. 3.2, the degree of difficulty (estimated by oscillation) decreases with respect to timestep
t. Therefore, we linearly increase pt from 0.4 to 0.8 with respect to t, which ensures the training
time strictly decreases.

Fig. 5 shows the comparison of FID-iteration curves. Our method outperforms both the uniform and
the heuristic methods. The curve of our method is always under others, and obtains the best FID-
to-FP32 score of 10.49. The results prove the necessity of adaptively predicting drop probabilities
according to difficulty level for different timesteps.

100 200 300 400 500 600 700
Iterations

10.50

10.75

11.00

11.25

11.50

11.75

12.00

12.25

FI
D

to
 F

P3
2

base
ours
uniform
heuristic

Figure 5: Ablation study. The comparison of FID-iteration curves to the uniform and heuristic
methods. The experiment is conducted on SD-1.4 with 50-step PNDM sampler.

The influence of M . Tab. 3 shows the influence of the hyperparameter M . The results show that our
method is not sensitive to M and can consistently gain faster convergence compared to the baseline.

Table 3: The ablation study of M on SD 1.4 with bitwidth W4/A8

M 0.4T 0.5T 0.6T 0.7T 0.8T N/A (baseline)

Conv. iter. 350 300 350 400 300 500

FID-to-FP32↓ 10.90 10.92 10.75 10.88 10.83 10.91

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4.4 COMPARISION TO LOSS WEIGHTING METHODS

We also adapt loss weighting methods to our QAT setting, and compare our method to them, as
presented in Tab. 4. Loss weight methods fail to accelerate convergence and also obtain poor quality.
The reason is that they try to prioritize higher steps (steps near T) which are generally easy steps
and only require less emphasis.

Table 4: Comparison to loss weighting methods.

Method Conv. Iter. FID-to-FP32↓
baseline 500 10.91

P2 weighting (Choi et al., 2022) 700 11.50

ANT-UW (Go et al., 2024) 700 11.41

Our 350 10.75

4.5 VISUAL COMPARISON

We visually compare generated images of the full-precision model, the QAT baseline, and our
method. Fig. 6 shows the results of SD-1.4 and SD-2.1, which qualitatively proves that our method
saves time costs without quality degradation compared to the QAT baseline.

FP32 Ours-W4A8, time cost=6.5h QAT base-W4A8, time cost=8.7h

SD-1.4

SD-2.1

FP32 Ours-W4A8, time cost=11.3h QAT base-W4A8, time cost=14.8h

Figure 6: The visual comparison of SD-1.4 and SD-2.1.

5 CONCLUSION

In this paper, we propose a framework dubbed DFastQ to accelerate the Quantization-aware Training
(QAT) for diffusion models. From the timestep perspective, we identify the difficulty discrepancy
across different denoising timesteps, and propose to accelerate the convergence of QAT by allocating
more training time to difficulty timesteps. To dynamically control the time allocation, we propose
the timestep drop mechanism consisting of a drop probability predictor and a pair of adversarial
losses conditioned on difficulty level. We conduct experiments on a variety of Stable Diffusion
models, quantization settings, and sampling strategies, which proves that our method can accelerate
QAT by at least 24% while maintaining the model quality.

REFERENCES

https://huggingface.co/.

Hervé Abdi. Coefficient of variation. Encyclopedia of research design, 1(5), 2010.

10

https://huggingface.co/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Omer Bar-Tal, Hila Chefer, Omer Tov, Charles Herrmann, Roni Paiss, Shiran Zada, Ariel Ephrat,
Junhwa Hur, Yuanzhen Li, Tomer Michaeli, et al. Lumiere: A space-time diffusion model for
video generation. arXiv preprint arXiv:2401.12945, 2024.

Hong Chen, Xin Wang, Guanning Zeng, Yipeng Zhang, Yuwei Zhou, Feilin Han, and Wenwu
Zhu. Videodreamer: Customized multi-subject text-to-video generation with disen-mix finetun-
ing. arXiv preprint arXiv:2311.00990, 2023a.

Hong Chen, Yipeng Zhang, Xin Wang, Xuguang Duan, Yuwei Zhou, and Wenwu Zhu. Disen-
booth: Disentangled parameter-efficient tuning for subject-driven text-to-image generation. arXiv
preprint arXiv:2305.03374, 2023b.

Jooyoung Choi, Jungbeom Lee, Chaehun Shin, Sungwon Kim, Hyunwoo Kim, and Sungroh Yoon.
Perception prioritized training of diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 11472–11481, 2022.

Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmen-
dra S Modha. Learned step size quantization. In International Conference on Learning Repre-
sentations, 2019.

Weixi Feng, Wanrong Zhu, Tsu-jui Fu, Varun Jampani, Arjun Akula, Xuehai He, Sugato Basu,
Xin Eric Wang, and William Yang Wang. Layoutgpt: Compositional visual planning and gen-
eration with large language models. Advances in Neural Information Processing Systems, 36,
2024.

Hyojun Go, Yunsung Lee, Seunghyun Lee, Shinhyeok Oh, Hyeongdon Moon, and Seungtaek Choi.
Addressing negative transfer in diffusion models. Advances in Neural Information Processing
Systems, 36, 2024.

Yefei He, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. Efficientdm: Efficient quantization-
aware fine-tuning of low-bit diffusion models, 2023a.

Yefei He, Luping Liu, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. Ptqd: Accurate post-
training quantization for diffusion models. arXiv preprint arXiv:2305.10657, 2023b.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pp. 7514–7528, 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2021.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang,
and Kurt Keutzer. Q-diffusion: Quantizing diffusion models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 17535–17545, 2023.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and
Shi Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. arXiv
preprint arXiv:2102.05426, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740–755. Springer, 2014.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on
manifolds. In International Conference on Learning Representations, 2021.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In International Conference on Machine
Learning, pp. 7197–7206. PMLR, 2020.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22500–
22510, 2023.

Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization on
diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1972–1981, 2023.

Junhyuk So, Jungwon Lee, Daehyun Ahn, Hyungjun Kim, and Eunhyeok Park. Temporal dynamic
quantization for diffusion models. arXiv preprint arXiv:2306.02316, 2023.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2020b.

Siao Tang, Xin Wang, Hong Chen, Chaoyu Guan, Zewen Wu, Yansong Tang, and Wenwu Zhu.
Post-training quantization with progressive calibration and activation relaxing for text-to-image
diffusion models. arXiv preprint arXiv:2311.06322, 2024.

Changyuan Wang, Ziwei Wang, Xiuwei Xu, Yansong Tang, Jie Zhou, and Jiwen Lu. Towards
accurate data-free quantization for diffusion models. arXiv preprint arXiv:2305.18723, 2023.

Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu,
Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning of image diffusion
models for text-to-video generation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 7623–7633, 2023.

Haibao Yu, Qi Han, Jianbo Li, Jianping Shi, Guangliang Cheng, and Bin Fan. Search what you
want: Barrier panelty nas for mixed precision quantization. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IX 16, pp.
1–16. Springer, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 TASK LOSS CURVES OF THE QAT.

Fig. 1 has shown the task loss curves of SD-2.1 with the 20-step Euler sampler. Here, we add the
curves of SD-1.4 with the 50-step PNDM sampler, presented in Fig. A1, which also conform with
the observations proposed in Sec. 3.2.

0 2000 4000 6000 8000 10000
iteration

0.0002

0.0004

0.0006

0.0008

0.0010

ta
sk

 lo
ss

timestep=981

0 2000 4000 6000 8000 10000
iteration

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

ta
sk

 lo
ss

timestep=901

0 2000 4000 6000 8000 10000
iteration

0.00025

0.00050

0.00075

0.00100

0.00125

ta
sk

 lo
ss

timestep=801

0 2000 4000 6000 8000 10000
iteration

0.0005

0.0010

0.0015

0.0020

0.0025

ta
sk

 lo
ss

timestep=601

0 2000 4000 6000 8000 10000
iteration

0.001

0.002

0.003

0.004

0.005

0.006

ta
sk

 lo
ss

timestep=401

0 2000 4000 6000 8000 10000
iteration

0.002

0.004

0.006

0.008

ta
sk

 lo
ss

timestep=201

0 2000 4000 6000 8000 10000
iteration

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

ta
sk

 lo
ss

timestep=101

0 2000 4000 6000 8000 10000
iteration

0.005

0.010

0.015

0.020

ta
sk

 lo
ss

timestep=1

Figure A1: Task loss curves of the QAT for diffusion models, obtained with SD-1.4. T = 1000.

A.2 PLOTS OF DROP PROBABILITIES AND DIFFICULTY COEFFICIENTS

Fig. A2 illustrates the curves of the drop probability pt in the training process of our framework. The
results show that difficult timesteps (e.g., timestep=1) are assigned lower drop probabilities, while
easy timesteps (e.g., timestep=981) are assigned higher ones.

0 500 1000 1500
iteration

0.650

0.675

0.700

0.725

0.750

0.775

dr
op

 p
ro

ba
bi

lit
y

timestep=981

0 500 1000 1500
iteration

0.64

0.66

0.68

0.70

0.72

0.74

dr
op

 p
ro

ba
bi

lit
y

timestep=901

0 500 1000 1500
iteration

0.62

0.64

0.66

0.68

0.70

0.72

dr
op

 p
ro

ba
bi

lit
y

timestep=801

0 500 1000 1500
iteration

0.55

0.60

0.65

dr
op

 p
ro

ba
bi

lit
y

timestep=601

0 500 1000 1500
iteration

0.55

0.60

0.65

0.70

dr
op

 p
ro

ba
bi

lit
y

timestep=401

0 500 1000 1500
iteration

0.56

0.58

0.60

0.62

0.64

0.66

dr
op

 p
ro

ba
bi

lit
y

timestep=201

0 500 1000 1500
iteration

0.46

0.48

0.50

0.52

0.54

0.56

dr
op

 p
ro

ba
bi

lit
y

timestep=101

0 500 1000 1500
iteration

0.60

0.62

0.64

0.66

0.68

dr
op

 p
ro

ba
bi

lit
y

timestep=1

Figure A2: Drop probability curves of SD-1.4.

Fig. A3 illustrates the curves of the difficulty coefficient wt. The results show that difficult timesteps
(e.g., timestep=1) have a larger wt, while easy timesteps (e.g., timestep=981) have a smaller one. It
proves that the proposed difficulty coefficient is a good metric to estimate the difficulty.

A.3 MORE IMPLEMENTATION DETAILS

We provide more implementation details of the experiments to ensure reproducibility. The learning
rate of the drop predictor fθ is set to 1e-6. M is set to 0.6T . The window length c is 5. Our underlying
codes for QAT are built on the LSQ-Net repository. The batch size is set to 1 and AdamW optimizer

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

0 500 1000 1500
iteration

0.00

0.02

0.04

0.06

0.08

di
ffi

cu
lty

 c
oe

ffi
cie

nt

timestep=981

0 500 1000 1500
iteration

0.00

0.05

0.10

0.15

0.20

di
ffi

cu
lty

 c
oe

ffi
cie

nt

timestep=901

0 500 1000 1500
iteration

0.1

0.2

0.3

0.4

di
ffi

cu
lty

 c
oe

ffi
cie

nt

timestep=801

0 500 1000 1500
iteration

0.1

0.2

0.3

0.4

0.5

di
ffi

cu
lty

 c
oe

ffi
cie

nt

timestep=601

0 500 1000 1500
iteration

0.1

0.2

0.3

0.4

0.5

di
ffi

cu
lty

 c
oe

ffi
cie

nt

timestep=401

0 500 1000 1500
iteration

0.15

0.20

0.25

0.30

0.35

0.40

di
ffi

cu
lty

 c
oe

ffi
cie

nt

timestep=201

0 500 1000 1500
iteration

0.15

0.20

0.25

0.30

di
ffi

cu
lty

 c
oe

ffi
cie

nt

timestep=101

0 500 1000 1500
iteration

0.0

0.1

0.2

0.3

0.4

0.5

di
ffi

cu
lty

 c
oe

ffi
cie

nt

timestep=1

Figure A3: Difficulty coefficient curves of SD-1.4.

is employed. We use the diffusers package to access diffusion models and perform inference. We
use the torch-fidelity package for fast and precise FID calculation.

A.4 ADDITIONAL VISUAL COMPARISON

Fig. A4 provides an extra comparison to the full-precision model and the QAT baseline. The conclu-
sion accords with Fig. 6, i.e., our method can save time costs without quality degradation compared
to the QAT baseline.

FP32 Ours-W6A6, time cost=18.6h QAT base-W6A6, time cost=26.4h

Figure A4: Additional visual comparison of SD-2.1.

A.5 ANALYSIS OF TIME COSTS

As shown in Tab. 1, the reduction ratio of actual GPU hours is slightly less than the reduction ratio
of convergence iteration, for example, 30% (from 26.4h to 18.6h) vs. 35% (from 4000 to 2600). It
results from the slight extra cost of collecting more intermediate data (xt, t) through the denoising
process. This extra cost is minor as the inference latency of the denoising process is much less than
the QAT training time. Besides, the extra cost can be reduced by parallel inference.

A.6 RESULTS ON DIT

The experimental results of DiT-XL/2 on ImageNet with bitwidth W4/A8 are presented in Tab. A1.
We also report Inception Score following previous literature. It shows our method can save 18%

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

time without quality degradation. The reduction ratio is slightly lower than the SD because the DiT
model is relatively smaller, which means the costs of the proposed optimization process account for
more.

Table A1: The results on DiT-XL/2 with bitwidth W4/A8

Method Conv. Iter. Training time FID-to-FP32 ↓ Inception score↑
baseline 2400 12.9h 4.38 287.86

Ours 1800 10.6h (-18%) 4.59 290.73

A.7 VISUALIZE THE TRAINING TIME ALLOCATION

981 801 601 401 201 1
Timestep

0

100

200

300
350
400

500

600

Ite
ra

tio
ns

Training iterations of different timesteps

(a) Ours

981 801 601 401 201 1
Timestep

0

100

200

300

400

500

600

Ite
ra

tio
ns

Training iterations of different timesteps

(b) Baseline

Figure A5: The comparison of training time allocation between our method and the baseline. The
Y-axis shows training iterations of different timesteps. The dotted line indicates the average itera-
tion. Compared to the baseline, which allocates the same time to each step, our method adaptively
allocates training based on difficulty level. The data is collected on SD-1.4 with bitwidth W4/A8.

999 799 599 400 200
Timestep

0

500

1000

1500

1800
2000

2500

3000

Ite
ra

tio
ns

Training iterations of different timesteps

(a) Ours

999 799 599 400 200
Timestep

0

500

1000

1500

2000

2400

3000

Ite
ra

tio
ns

Training iterations of different timesteps

(b) Baseline

Figure A6: The training time allocation of DiT-XL/2 with bitwidth W4/A8.

A.8

A.9 LIMITATIONS

Our experiments are on the Stable Diffusion v1-4 and v2-1 with the resolution of 512x512. It
is meaningful to scale our method to larger models with larger image resolutions such as Stable
Diffusion XL and Stable Diffusion 3 with the resolution of 1024x1024. QAT for these larger models
naturally requires more training time, which would better emphasize the significance of our method.
We consider this as our future work since our current computational resources cannot support larger
experiments.

15

	Introduction
	Related work
	Model quantization
	Existing quantization methods for diffusion models
	Relation with loss weighting methods

	Method
	Preliminaries
	Difficulty discrepancy across timesteps
	Difficulty-aware time allocation with timestep drop

	Experiments
	Experimental settings
	Main results
	Ablation study
	Comparision to loss weighting methods
	Visual comparison

	Conclusion
	Appendix
	Task loss curves of the QAT.
	Plots of drop probabilities and difficulty coefficients
	More implementation details
	Additional visual comparison
	Analysis of time costs
	Results on DiT
	Visualize the training time allocation
	
	Limitations

