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ABSTRACT

Diffusion models have demonstrated remarkable power in various generation
tasks. Nevertheless, the large computational cost during inference is a trouble-
some issue for diffusion models, especially for large pretrained models such as
Stable Diffusion. Quantization-aware training (QAT) is an effective method to
reduce both memory and time costs for diffusion models while maintaining good
performance. However, QAT methods usually suffer from the high cost of re-
training the large pretrained model, which restricts the efficient deployment of
diffusion models. To alleviate this problem, we propose a framework DFastQ
(Diffusion Fast QAT) to accelerate the training of QAT from a difficulty-aware
perspective in the timestep dimension. Specifically, we first propose to adaptively
identify the difficulties of different timesteps according to the oscillation of their
training loss curves. Then we propose a difficulty-aware time allocation module,
which aims to dynamically allocate more training time to difficult timesteps to
speed up the convergence of QAT. The key component of this is a timestep drop
mechanism consisting of a drop probability predictor and a pair of adversarial
losses. We conduct a series of experiments on different Stable Diffusion models,
quantization settings, and sampling strategies, demonstrating that our method can
effectively accelerate QAT by at least 24% while achieving comparable or even
better performance.

1 INTRODUCTION

Diffusion models have shown great power in a variety of generative tasks (Ho et al., 2020; Song
et al., 2020a; Rombach et al., 2022; Chen et al., 2023b; Ruiz et al., 2023; Song et al., 2020b),
such as text-to-image generation (Rombach et al., 2022; Chen et al., 2023b; Ruiz et al., 2023; Feng
et al., 2024) and text-to-video generation (Chen et al., 2023a; Wu et al., 2023; Bar-Tal et al., 2024).
However, one critical limitation of diffusion models is the high computational cost, which limits the
practical deployment of diffusion models. This issue becomes more serious with the increase in the
model size of advanced pretrained diffusion models, e.g., Stable Diffusion series (Rombach et al.,
2022).

To reduce the computational costs of diffusion model inference, one line of works engaged in ex-
ploring more efficient sampling strategies to reduce sampling steps (Lu et al., 2022; Liu et al., 2021;
Song et al., 2020a). Recently, from an orthogonal perspective, i.e., directly compressing the network
of diffusion models, quantization methods (Shang et al., 2023; Li et al., 2023; He et al., 2023b; Tang
et al., 2024) have been employed.

Quantization methods can be categorized into two groups, i.e., post-training quantization (PTQ)
and quantization-aware training (QAT). PTQ methods (Nagel et al., 2020) do not require an expen-
sive training or finetuning process, so they are usually resource-friendly. Nevertheless, PTQ always
causes significant performance degradation on diffusion models (Shang et al., 2023; Tang et al.,
2024), especially in low-bit settings. In contrast, QAT methods (Esser et al., 2019) possess a strong
ability to recover performance by training/finetuning network weights and quantization parameters
together, but cost a large number of computational resources, especially for large pretrained mod-
els such as Stable Diffusion. To reduce the training costs of QAT on diffusion models, previous
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literature has investigated from the architecture perspective. Specifically, He et al. (2023a) propose
EfficientDM that incorporates the parameter-efficient finetuning method LoRA (Hu et al., 2021)
into the QAT framework. However, they allocate identical importance to each timestep with uni-
form sampling, ignoring difficulty discrepancy across timesteps, which we find a critical factor to
diffusion optimization and convergence in this paper.

Therefore, to further reduce the time costs of QAT on diffusion models from the timestep per-
spective, we propose a framework named DFastQ (Diffusion Fast QAT). Specifically, we discover
that there exists a pattern of difficulty discrepancy across different timesteps by observing task loss
curves of the QAT for diffusion models as presented in Fig. 1. The oscillation level of the train-
ing loss curve is adopted to estimate the difficulty. We define difficult timesteps as those that are
oscillatory and difficult to converge, while easy timesteps are smooth and easy to converge. Natu-
rally, difficult timesteps require more training time compared to easy ones. Therefore, to obtain a
better overall convergence speed, we propose to dynamically allocate more training time to diffi-
cult timesteps and less to easy ones, because it can avoid wasting training time on easy timesteps
that don’t need so much time to reach convergence. We adaptively identify the difficulty of each
timestep during the QAT training process, and employ a timestep drop mechanism to dynamically
control the time allocation. The timestep drop mechanism consists of a predictor that produces a
drop probability for each timestep, and a pair of adversarial losses that adjust the probability based
on difficulty level. It will make difficult timesteps obtain smaller drop probabilities and thus possess
more training time, and vice versa.

To summarize, our contributions are listed as follows:

1. We introduce a framework dubbed DFastQ which is the first to accelerate QAT for diffusion
models from the timestep perspective, identifying and leveraging the difficult discrepancy
across timesteps.

2. We propose to adaptively identify the difficulty based on the oscillation level. We propose
to allocate more training time to difficult timesteps to achieve the convergence acceleration.
To control the time allocation, we propose a timestep drop mechanism consisting of a drop
predictor and a pair of adversarial losses.

3. Extensive experiments on various Stable Diffusion models, quantization settings and sam-
pling strategies demonstrate that DFastQ has a generalizable ability to accelerate QAT by
at least 24% while achieving comparable or even better quality.

2 RELATED WORK

2.1 MODEL QUANTIZATION

Definition of model quantization. Model quantization, as a crucial technique of model compres-
sion, aims to compress deep neural networks by converting model weights and activations from
32/16 bit float-point format into lower-bit formats such as INT4/INT8. Benefiting from low-bit for-
mats, model quantization can significantly reduce both the time and memory costs of the model.
The process of model quantization can be mathematically represented as follows:

wq = clip
(
round

(w
s

)
+ z, qmin, qmax

)
,

where s is the scaling factor and z is the zero-point. w denotes the float-point weights/activations,
while wq denotes their integer representations after quantization.

2.2 EXISTING QUANTIZATION METHODS FOR DIFFUSION MODELS

Recently, quantization methods have been widely adopted to compress diffusion models (Shang
et al., 2023; Li et al., 2023; He et al., 2023b; Wang et al., 2023; So et al., 2023; Tang et al., 2024;
He et al., 2023a). They tailor the design for the characteristics of diffusion models. For example,
PTQ4DM (Shang et al., 2023) proposes to collect calibration data from a skew-normal distribution
in the denoising process rather than the forward process. Q-diffusion (Li et al., 2023) proposes to
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collect calibration data at certain timestep intervals and split quantization for the sensitive shortcut
layers of the U-Net. Most of these methods belong to PTQ, causing obvious performance degra-
dation on diffusion models (Li et al., 2021; Tang et al., 2024). To better maintain performance,
EfficientDM (He et al., 2023a) proposes a distillation-based QAT framework for diffusion models,
and also leverages LoRA (Hu et al., 2021) to mitigate the significant computational costs of fully
QAT. In this work, we further reduce the time costs of QAT on diffusion models from the timestep
perspective.

2.3 RELATION WITH LOSS WEIGHTING METHODS

Some works (Choi et al., 2022; Go et al., 2024) propose loss weighting to refine the diffusion train-
ing, i.e., assigning different weights of loss to different timesteps. Go et al. (2024) use the scheme
of uncertainty weighting. Choi et al. (2022) propose P2-weighting based on the signal-noise ratio.
Both the loss weighting and our method prioritize a subset of timesteps. We also compare to loss
weighting methods to show the superiority of our method.

3 METHOD

In this section, we present our method DFastQ that accelerates the convergence of QAT for diffu-
sion models by dynamically allocating training time for different timesteps according to difficulty.
Firstly, we introduce preliminaries in Sec. 3.1, regarding diffusion models and QAT for diffusion
models. Then, we demonstrate our observations about difficulty discrepancy. Finally, we introduce
our framework DFastQ in detail.

3.1 PRELIMINARIES

Diffusion models. Diffusion models define a forward process (a Markov chain) that gradually adds
the noise to the real data x0:

q (xt | xt−1) = N
(
xt;
√

1− βtxt−1, βtI
)
, t = 1, 2, .., T, (1)

where βt ∈ (0, 1) are a series of constants that control the variance schedule. Further, this forward
process can derive the nice property that xt =

√
ᾱtx0 +

√
1− ᾱtϵ, where ᾱt =

∏t
s=1 αs, αt =

1 − βt, and ϵ ∼ N (0, I). Diffusion models train a neural network ϵθ to predict the noise of the
noisy variable xt, whose training objective is:

Ex0,ϵ,t

[∥∥ϵθ (√ᾱtx0 +
√
1− ᾱtϵ, t

)
− ϵ
∥∥2
2

]
. (2)

In the denoising process, diffusion models generate samples by gradually denoising from a Gaussian
noise xT ∼ N (0, I) to x0, along certain trajectories pθ(xt−1|xt) determined by sampling strate-
gies (Ho et al., 2020; Liu et al., 2021; Lu et al., 2022). Different sampling strategies impact the
quality and style of the generated samples.

Quantization-aware training for diffusion models. He et al. (2023a) propose a QAT framework
for diffusion models called EfficientDM, which introduces step-wise noise distillation. Specifi-
cally, the step-wise distillation aims to minimize the MSE loss between predicted noises of the
full-precision model ϵθ and the quantized model ϵ̂θ at each denoising timestep t, which can be
formulated as:

L = Et∼Uniform({1,...,T})

[
∥ϵθ (xt, t)− ϵ̂θ (xt, t)∥22

]
. (3)

Note that xt in Eq. 3 is obtained from the denoising process pθ(xt−1|xt) with the full-precision
model, rather than the forward process in Eq. 1.
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Eq. 3 is employed to train the network weights and quantization parameters jointly, conforming to
the paradigm of LSQ (Esser et al., 2019). Moreover, they also incorporate LoRA (Hu et al., 2021)
into the framework to reduce computational costs. In this paper, we follow the QAT design of
EfficientDM. However, we do not adopt LoRA because we found it would bring extra time costs in
the single GPU training of QAT.

3.2 DIFFICULTY DISCREPANCY ACROSS TIMESTEPS

Previous study (He et al., 2023a) (EfficientDM) treats each denoising step as equally important, and
trains them uniformly as presented in Eq. 3. It means that in the denoising process, each xt will be
taken as the input for QAT training, which allocates identical importance and training time to each
timestep.

However, we discover that there exists a pattern of difficulty discrepancy across different timesteps
by observing task loss curves of the QAT for diffusion models, as shown in Fig. 1. We can draw the
following observations:

i) The loss value tends to decrease with respect to timestep t. Timestep t near T (the starting point
of the denoising process) tends to have a smaller loss value than the one near 0 (the endpoint).

ii) The degree of oscillation tends to decrease with respect to timestep t. Timestep t near T tends to
be more oscillatory than the one near 0.
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Figure 1: Task loss curves of the QAT for diffusion models, obtained with SD-2.1. T = 1000.

The loss value at each timestep cannot be used as an indicator to reflect the difficulty, because
there is a natural difference in the order of magnitude of loss values among these timesteps. In
contrast, we find that the oscillation level is a good metric to estimate the difficulty and can be
easily calculated, i.e., the difficulty is positively correlated with the oscillation level. We define
difficult timesteps as those that are oscillatory, while easy timesteps are smooth. The principle is that
oscillatory timesteps are more difficult to converge and consequently entail more training iterations
than smooth timesteps.

Therefore, there is room to improve the speed of convergence by reallocating training time (train-
ing iterations) for different timesteps according to the difficulty discrepancy. Naturally, difficult
timesteps require more training time compared to easy ones. To obtain a better convergence speed,
we propose to allocate more training time to difficult timesteps. Note that the difficulty level is dy-
namic during the training process, which means we need to dynamically adjust the training time for
each timestep.

3.3 DIFFICULTY-AWARE TIME ALLOCATION WITH TIMESTEP DROP

In this section, we elaborate on our proposed framework DFastQ, which accelerates QAT for diffu-
sion models through dynamic training time allocation according to the difficulty discrepancy. The
overall framework is presented in Fig. 2. To control the time allocation, we propose a timestep
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drop mechanism whose key components are a predictor for drop probability and a pair of adversar-
ial losses conditioned on difficulty level. The predictor outputs drop probability for each timestep,
while the adversarial losses train the predictor on the basis of difficulty. We demonstrate each design
in detail as follows.Method

timesteps

predictor
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2
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T
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𝑝!"#
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Figure 2: The overall structure of the proposed DFastQ, which consists of a predictor to output drop
probability pt for each t, and a pair of adversarial losses Lcons and Ladjust to train the predictor
according to the difficulty level. The QAT training progresses with the timestep drop mechanism,
aiming to control the time allocation among timesteps, as more difficult timesteps tend to be assigned
a lower pt. We leverage the Coefficient of Variation of task loss values in the current window to
estimate the difficulty level.

Overview of the timestep drop mechanism. The timestep drop mechanism aims to control the
training time allocation for different timesteps. As stated in Sec. 3.2, ideally, the more difficult
the timestep is, the more training time is allocated to it. To achieve this goal, we propose to drop
timestep at random with a certain probability. Our drop mechanism ensures that difficult timesteps
obtain lower probabilities than easy ones, naturally possessing more training time, and vice versa.
Therefore, our method can avoid wasting training time on easy timesteps that don’t need so much
time to reach convergence. Consequently, the overall convergence will be faster.

Drop predictor design. To achieve the training time allocation for different timesteps, we need to
adjust their drop probabilities dynamically. As demonstrated in recent literature (So et al., 2023;
Li et al., 2023), the activation distributions between adjacent timesteps are similar. It indicates that
adjacent timesteps have a similar difficulty level, which is also consistent with our observations in
Sec. 3.2. Hence, inspired by So et al. (So et al., 2023), we propose to predict drop probabilities based
on the timestep to better capture the relations among timesteps. Specifically, the drop predictor fθ is
employed to predict the drop probability pt for each timestep t. It takes the embedding of t as the
input and outputs a scalar pt ∈ [0, 1], which can be easily implemented by a simple MLP network.
The process can be formulated as follows:

pt = fθ(temd), temd = hθ(t), (4)

where hθ is the time embedding module. Here, we reuse the frozen time embedding layers in the
pretrained full-precision diffusion model as hθ.

QAT with timestep drop. The underlying design of our DFastQ conforms to the paradigm of the
well-known QAT framework LSQ (Esser et al., 2019), i.e., jointly training network weights and
quantization parameters. Following EfficientDM (He et al., 2023a), before each training iteration of
QAT, we first collect input data xt at each t through the denoising process with the full-precision
model ϵθ. Then we adopt the MSE loss as our task loss to train QAT, i.e., minimizing the distance
between the full-precision model ϵθ and the quantized model ϵ̂θ in terms of predicted noises at each
denoising step t. This task loss can be written as follows:
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Ltask = Et∼q(t)

[
∥ϵθ (xt, t)− ϵ̂θ (xt, t)∥22

]
,

s.t. q(t) =
1− pt∑T

i=1(1− pi)
. (5)

Note that different from Eq. 3 of EfficientDM, q(t) is no longer a uniform distribution but a distribu-
tion determined by the timestep drop mechanism. Specifically, each data point xt, t will be dropped
at random with the probability pt, which can be formulated as follows:

(xt, t) ⇒
{

train ϵ̂θ, with prob. 1− pt
drop, with prob. pt .

(6)

From Eq. 6, q(t) can be easily derived. Overall, timestep t with a lower drop probability pt will be
allocated more training time.

Train the drop predictor based on difficulty level. To ensure that difficult timesteps obtain lower
drop probabilities than easy ones, we must train the drop predictor based on the difficulty level.
As demonstrated in Sec. 3.2, the difficulty is positively correlated with the oscillation level of the
task loss curve. Therefore, we use the oscillation level in the latest window to estimate the diffi-
culty level. To quantitatively calculate the difficulty based on the oscillation, we propose a metric
named difficulty coefficient based on Coefficient of Variation (CV) (Abdi, 2010), which measures
the variability of the task loss value in the latest window, independently of the unit and the order of
magnitude. We update the difficulty coefficient wt of timestep t after every back-propagation. After
c-th back-propagation, wt is updated as:

wt =
std {lti}
mean {lti}

, i ∈ [c− w, c] , (7)

where lti denotes the task loss at i-th back-propagation for denoising timestep t, and w is the length
of the latest window from which we estimate the current difficulty.

Then, we design a pair of adversarial losses to train the predictor, dynamically adjusting drop prob-
abilities to the current difficulty coefficient. It consists of a constraint loss Lcons and an adjustment
loss Ladjust, which are formulated as follows:

Lcons =

(
T∑

t=1

pt −M

)2

, (8)

Ladjust =
∑

wtpt , (9)

These two losses constitute an adversarial situation. Ladjust tries to minimize the weighted sum of
pt, with the difficulty coefficient wt as the weight. Ladjust tends to make every pt close to 0, but
Lcons forces their sum to be a fixed hyper-parameter M greater than 0. Therefore, to minimize these
two losses simultaneously, Ladjust will choose to decrease the pt of the timestep t that has a larger
wt and increase the pt of the timestep with a smaller wt. Finally, difficult timesteps (with larger wt)
will be assigned smaller drop probabilities, while easy timesteps (with smaller wt) will be assigned
higher drop probabilities. Then, the dynamic time allocation based on difficulty level through the
drop mechanism is achieved. Difficult timesteps obtain smaller drop probabilities than easy ones,
thus possessing more training time.

In conclusion, we alternatively train the predictor and the QAT process. The total objectives are
summarized as follows:

Lstage1 = min
Netθ

(Ltask) , (10)

Lstage2 = min
fθ

(Lcons + Ladjust) , (11)
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where Lstage1 optimizes quantization parameters and network weights of the diffusion model, i.e.,
Netθ. Lstage2 optimizes the drop predictor fθ.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Models and datasets. We use the Stable Diffusion v1-4 (SD-1.4) and the Stable Diffusion 2.1-base
(SD-2.1) checkpoints provided by hugging face (hug). Following previous works (Li et al., 2023;
Tang et al., 2024), we use COCO train2017 and val2017 (Lin et al., 2014) as the training and the test
dataset respectively.

Metrics. Following Tang et al. (Tang et al., 2024), we adopt FID-to-FP32 to evaluate the quality
of quantized models. FID to FP32 calculates the FID distance (Heusel et al., 2017) between the
generated images of full-precision models and quantized models, which can effectively measure
both the image fidelity and the prompt-image matching. We do not use CLIP score (Hessel et al.,
2021) because it has been shown to be poor at distinguishing the quality of quantized diffusion
models (Tang et al., 2024). We generate 5,000 images using prompts from COCO val2017, and
calculate the FID-to-FP32 score. We calculate the BOPs(Yu et al., 2020) metric to measure the
theoretical computation amount of the model.

Hyper-parameters. In all the experiments, we maintain the same hyperparameters for our proposed
modules. The learning rate of the drop predictor fθ is set to 1e-6, which is a common practice and
performs well in our task. M is set to 0.6T . The window length c is 5.

The rule of determining convergence iteration. For both baseline and our method, we test the
model for every 100 iterations. We train the model until the performance deteriorates twice in a row.
For example, if the FID scores of three consecutive evaluations are 10.91, 10.92 and 11.00, we will
stop training, and choose the best iteration so far as the convergence iteration.

4.2 MAIN RESULTS

We compare our method with the QAT baseline (EfficientDM without LoRA). To validate the gen-
eralization of our method, we experiment on the settings of different model types, samplers, and
quantization bit-widths. We also compare our method with state-of-the-art PTQ-based methods to
demonstrate the superiority of QAT. Our metrics are all computed on the test dataset.

To begin with, we summarize the model quality at the convergence point and the total time cost by
Tab. 1, where “Conv. iter.” denotes the number of the convergence iterations. For baselines, an iter-
ation means training the QAT with S intermediate inputs (xt, t) in a single denoising process, where
S denotes the number of sampling steps. For our method, intermediate inputs in a single denoising
process go through a random drop mechanism, so training with S consecutive intermediate inputs
is counted as an iteration. We experiment on the popular pretrained text-to-image diffusion model
SD-1.4 with the default 50-step PNDM sampler (Liu et al., 2021). Besides, we also test another
text-to-image diffusion model, i.e., SD-2.1, with the advanced Euler (Karras et al., 2022) sampler
that can generate high-quality images in 20 steps. We test three different settings of quantization
bitwidth, i.e., W4/A8, W5/A5, and W6/A6, where the notation ”Wx/Ay” represents the bit-width
of weights (W) and activations (A) respectively. The results in Tab. 1 show that our method can
accelerate QAT by at least 24% while achieving comparable or even better performance. For in-
stance, in the setting of SD-2.1 with W6/A6 bitwidth (the last row), we save the training time from
26.4h to 18.6h with the FID improvement from 15.42 to 15.08. Detailed analysis of time costs and
experiments on DiT (Peebles & Xie, 2023) can be found in the Appendix.

Moreover, we plot FID-Iteration curves of the QAT training process to show the pattern of model
quality change. Fig. 3 shows the results of SD-1.4, while Fig. 4 shows the results of SD-2.1. We use
the stars to mark convergence points. For SD-1.4 with W4/A8 (Fig. 3a), we use the iteration 350
as the convergence point because its score (10.75) is already better than the baseline (10.91). These
results show our method can not only obtain better performance at the convergence point, but also
generally improve the quality during the QAT process.
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Table 1: Model quality at the convergence point and the total time cost. Conv. iter. denotes the
number of the convergence iteration. The training time is obtained on a single A100 GPU.

Model type Bits(W/A) Method Size (GB) BOPs (T) Conv. iter. Training time FID-to-FP32↓

SD-1.4 (50-step PNDM)

32/32 FP32 3.44 693 - - 0.00

4/8 baseline 0.44 21.66 500 8.7h 10.91
ours 0.44 21.66 350 6.5h(-25%) 10.75

5/5 baseline 0.54 16.92 1600 27.2h 35.19
ours 0.54 16.92 1100 20.5h(-25%) 36.11

SD-2.1 (20-step Euler)

32/32 FP32 3.44 693 - - 0.00

4/8 baseline 0.44 21.66 2200 14.8h 11.50
ours 0.44 21.36 1600 11.3h(-24%) 11.53

6/6 baseline 0.65 24.36 4000 26.4h 15.42
ours 0.65 24.36 2600 18.6h(-30%) 15.08
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Figure 3: FID-Iteration curves of QAT with SD-1.4 (50-step PNDM) and various bit-width settings.
A lower FID-to-FP32 score indicates better quality.
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Figure 4: FID-Iteration curves of QAT with SD-2.1 (20-step Euler) and various bit-width settings.
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Finally, Tab. 2 compares our method with state-of-the-art PTQ-based methods, regarding the per-
formance at the convergence point and the total time cost. Our method achieves a FID-to-FP32
score of 10.75, which is a remarkable improvement compared to PTQ-based methods. Meanwhile,
our method saves the training time from 8.7h to 6.5h, which is less than 7.8h of Q-diffusion and
PTQ4DM, achieving a better balance between training resources and model quality.

Table 2: Comparison to PTQ-based methods. Results of SD-1.4 with 50-step PNDM sampler. The
training iterations of the QAT baseline and ours are 500 and 350 respectively.

Type Method Bits(W/A) Size (GB) BOPs (T) Training time FID-to-FP32↓ CLIP score↑
- Pretrained FP32 32/32 3.44 693 - 0.00 26.46

PTQ
Q-diffusion (Li et al., 2023) 4/8 0.44 21.66 7.8h 20.42 26.15

PTQ4DM (Shang et al., 2023) 4/8 0.44 21.66 7.8h 17.73 26.25
PCR (Tang et al., 2024) 4/8 0.44 22.74 12.0h 14.25 26.48

QAT QAT baseline 4/8 0.44 21.66 8.7h 10.91 26.46
DFastQ(ours) 4/8 0.44 21.66 6.5h(-25%) 10.75 26.46

4.3 ABLATION STUDY

Compare to uniform drop. We compare our method to the uniform drop where each timestep has
the identical drop probability, i.e., pt = r, ∀t. To maintain the consistency of the sum of pt, we set
r = 0.6 as M is set to 0.6T .

Compare to heuristic drop. To further emphasize the significance of adaptively predicting pt based
on difficulty, we compare to a stronger baseline which heuristically sets pt. According to observation
ii) in Sec. 3.2, the degree of difficulty (estimated by oscillation ) decreases with respect to timestep
t. Therefore, we linearly increase pt from 0.4 to 0.8 with respect to t, which ensures the training
time strictly decreases.

Fig. 5 shows the comparison of FID-iteration curves. Our method outperforms both the uniform and
the heuristic methods. The curve of our method is always under others, and obtains the best FID-
to-FP32 score of 10.49. The results prove the necessity of adaptively predicting drop probabilities
according to difficulty level for different timesteps.
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Figure 5: Ablation study. The comparison of FID-iteration curves to the uniform and heuristic
methods. The experiment is conducted on SD-1.4 with 50-step PNDM sampler.

The influence of M . Tab. 3 shows the influence of the hyperparameter M . The results show that our
method is not sensitive to M and can consistently gain faster convergence compared to the baseline.

Table 3: The ablation study of M on SD 1.4 with bitwidth W4/A8

M 0.4T 0.5T 0.6T 0.7T 0.8T N/A (baseline)

Conv. iter. 350 300 350 400 300 500

FID-to-FP32↓ 10.90 10.92 10.75 10.88 10.83 10.91

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4.4 COMPARISION TO LOSS WEIGHTING METHODS

We also adapt loss weighting methods to our QAT setting, and compare our method to them, as
presented in Tab. 4. Loss weight methods fail to accelerate convergence and also obtain poor quality.
The reason is that they try to prioritize higher steps (steps near T ) which are generally easy steps
and only require less emphasis.

Table 4: Comparison to loss weighting methods.

Method Conv. Iter. FID-to-FP32↓
baseline 500 10.91

P2 weighting (Choi et al., 2022) 700 11.50

ANT-UW (Go et al., 2024) 700 11.41

Our 350 10.75

4.5 VISUAL COMPARISON

We visually compare generated images of the full-precision model, the QAT baseline, and our
method. Fig. 6 shows the results of SD-1.4 and SD-2.1, which qualitatively proves that our method
saves time costs without quality degradation compared to the QAT baseline.

FP32 Ours-W4A8, time cost=6.5h QAT base-W4A8, time cost=8.7h

SD-1.4

SD-2.1

FP32 Ours-W4A8, time cost=11.3h QAT base-W4A8, time cost=14.8h

Figure 6: The visual comparison of SD-1.4 and SD-2.1.

5 CONCLUSION

In this paper, we propose a framework dubbed DFastQ to accelerate the Quantization-aware Training
(QAT) for diffusion models. From the timestep perspective, we identify the difficulty discrepancy
across different denoising timesteps, and propose to accelerate the convergence of QAT by allocating
more training time to difficulty timesteps. To dynamically control the time allocation, we propose
the timestep drop mechanism consisting of a drop probability predictor and a pair of adversarial
losses conditioned on difficulty level. We conduct experiments on a variety of Stable Diffusion
models, quantization settings, and sampling strategies, which proves that our method can accelerate
QAT by at least 24% while maintaining the model quality.
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A APPENDIX

A.1 TASK LOSS CURVES OF THE QAT.

Fig. 1 has shown the task loss curves of SD-2.1 with the 20-step Euler sampler. Here, we add the
curves of SD-1.4 with the 50-step PNDM sampler, presented in Fig. A1, which also conform with
the observations proposed in Sec. 3.2.
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Figure A1: Task loss curves of the QAT for diffusion models, obtained with SD-1.4. T = 1000.

A.2 PLOTS OF DROP PROBABILITIES AND DIFFICULTY COEFFICIENTS

Fig. A2 illustrates the curves of the drop probability pt in the training process of our framework. The
results show that difficult timesteps (e.g., timestep=1) are assigned lower drop probabilities, while
easy timesteps (e.g., timestep=981) are assigned higher ones.
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Figure A2: Drop probability curves of SD-1.4.

Fig. A3 illustrates the curves of the difficulty coefficient wt. The results show that difficult timesteps
(e.g., timestep=1) have a larger wt, while easy timesteps (e.g., timestep=981) have a smaller one. It
proves that the proposed difficulty coefficient is a good metric to estimate the difficulty.

A.3 MORE IMPLEMENTATION DETAILS

We provide more implementation details of the experiments to ensure reproducibility. The learning
rate of the drop predictor fθ is set to 1e-6. M is set to 0.6T . The window length c is 5. Our underlying
codes for QAT are built on the LSQ-Net repository. The batch size is set to 1 and AdamW optimizer
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Figure A3: Difficulty coefficient curves of SD-1.4.

is employed. We use the diffusers package to access diffusion models and perform inference. We
use the torch-fidelity package for fast and precise FID calculation.

A.4 ADDITIONAL VISUAL COMPARISON

Fig. A4 provides an extra comparison to the full-precision model and the QAT baseline. The conclu-
sion accords with Fig. 6, i.e., our method can save time costs without quality degradation compared
to the QAT baseline.

FP32 Ours-W6A6, time cost=18.6h QAT base-W6A6, time cost=26.4h

Figure A4: Additional visual comparison of SD-2.1.

A.5 ANALYSIS OF TIME COSTS

As shown in Tab. 1, the reduction ratio of actual GPU hours is slightly less than the reduction ratio
of convergence iteration, for example, 30% (from 26.4h to 18.6h) vs. 35% (from 4000 to 2600). It
results from the slight extra cost of collecting more intermediate data (xt, t) through the denoising
process. This extra cost is minor as the inference latency of the denoising process is much less than
the QAT training time. Besides, the extra cost can be reduced by parallel inference.

A.6 RESULTS ON DIT

The experimental results of DiT-XL/2 on ImageNet with bitwidth W4/A8 are presented in Tab. A1.
We also report Inception Score following previous literature. It shows our method can save 18%
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time without quality degradation. The reduction ratio is slightly lower than the SD because the DiT
model is relatively smaller, which means the costs of the proposed optimization process account for
more.

Table A1: The results on DiT-XL/2 with bitwidth W4/A8

Method Conv. Iter. Training time FID-to-FP32 ↓ Inception score↑
baseline 2400 12.9h 4.38 287.86

Ours 1800 10.6h (-18%) 4.59 290.73

A.7 VISUALIZE THE TRAINING TIME ALLOCATION
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Figure A5: The comparison of training time allocation between our method and the baseline. The
Y-axis shows training iterations of different timesteps. The dotted line indicates the average itera-
tion. Compared to the baseline, which allocates the same time to each step, our method adaptively
allocates training based on difficulty level. The data is collected on SD-1.4 with bitwidth W4/A8.
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Figure A6: The training time allocation of DiT-XL/2 with bitwidth W4/A8.

A.8

A.9 LIMITATIONS

Our experiments are on the Stable Diffusion v1-4 and v2-1 with the resolution of 512x512. It
is meaningful to scale our method to larger models with larger image resolutions such as Stable
Diffusion XL and Stable Diffusion 3 with the resolution of 1024x1024. QAT for these larger models
naturally requires more training time, which would better emphasize the significance of our method.
We consider this as our future work since our current computational resources cannot support larger
experiments.
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