

Design Decisions that Matter: Modality, State, and Action Horizon in Imitation Learning

Brendan Chharawala, Joshua Li, Stephie Liu, Shawn Yang, Colin Bellinger, David Liu, Chang Shu, Yue Hu, Pengcheng Xi

1. Problem definition

> Role of **teleoperation modality** in shaping *demonstration quality* and *downstream robot imitation learning performance* is still poorly understood

2. Contributions

- > Comparative dataset of assistive task demonstrations (VR controller and haptic pen) paired with NASA-TLX subjective workload measures
- Analysis on the impact of teleoperation modality on demonstration quality and imitation learning model (Octo) finetuning performance
- > Exploration on effects of data-related **fine-tuning design choices** (robot states and action horizon) on real world robot performance

3. Methodology

- ➤ Tasks on an UR10e robotic arm: (i) wipe table surface and (ii) turn desk lamp on/off
 - Teleoperation modalities per task:
 (i) VR controller and (ii) haptic 3D pen input
- ➤ 5 participants (20 episodes per modality per task, total 400 episodes)

Fig. 1. Overview of data collection and learning pipeline.

> NASA-TLX survey: subjective metrics affecting teleoperation usability

 0.12 ± 0.14

- ➤ Data quality analysis metrics: measure smoothness and control precision with *end-effector* trajectories, action variance, and jerkiness
- > Finetuned Octo policy to assess how different input modalities influence learning performance

4. Results

mp	0.00015	0.00006	Lamp	0.12 ± 0.17	0.08 ± 0.08
	Fig. 2. To	p: end-effe	ctor traje	ctories. Middl	'e left:

action variance. Middle right: jerkiness (mean ± std).

0.00016

0.00057

Wipe

- Data quality: VR provides higher quality data for broad task actions, haptic is better for precise tasks
 - Generally, VR has higher action variance and jerkiness (less stability compared to haptic)
- ➤ NASA-TLX: VR supports scalable data collection and ease of use, haptics for high-fidelity data and better performance

 | Task | Mental Dem. | Physical Dem. | Temporal Dem. | Perf. | Effort | Fruster | Fruster | Physical Dem. | Perf. | Effort | Fruster | Perf. | Effort | Perf. | Effort | Perf. | Per

Fig. 3. Top: NASA-TLX results per task (lower = better). Bottom: NASA-TLX results per modality (lower = better)

	Task	Mer	ital Dem.	Phy	ysical Dem.	Ie	mporal D	em.	Perf.	Effort	Frustr.
	Wipe		10.2		8.4			8.6	10.0	9.6	6.3
_	Lamp		8.7		8.2			8.1	7.4	8.7	7.5
(
	Col. Me	thod	Mental De	em.	Physical De	em.	Temporal	Dem.	Perf.	Effort	Frustr.
	Haptics		1	0.0	1	0.0		9.0	7.8	9.2	6.2
	VR			8.9		6.6		7.7	9.6	9.1	7.6
								•	•	•	

5. Finetuning Design Discussion

Wipe $| 0.23 \pm 0.33 |$

Configuration	W	ipe	Lamp		
Configuration	Success	Pose Err	Success	Pose Err	
	(%)	(cm)	(%)	(cm)	
Mixed, AH 10	73	3.4	80	2.0	
VR, AH 10	47	4.7	53	3.4	
Haptic, AH 10	40	4.7	53	3.2	
Mixed, AH 15	27	4.6	47	4.6	
Mixed, AH 5	20	10.5	33	5.3	
Mixed, AH 10, P	20	9.7	13	3.7^{\dagger}	

Fig. 4. Success rate (%) and pose alignment error (cm). AH = action horizon, P = proprioception included.

- ➤ Finetuned highest success rate: mixed, no robot proprioception, action horizon = 10
- Excluding robot state input may enhance performance
- > Action horizon has an optimal value (e.g. 10)
- ➤ Camera setup and lighting affect performance significantly

Ackowledgement

This work is supported by the Aging in Place Challenge Program at the National Research Council of Canada.

