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1. Problem definition

> Role of teleoperation modality in shaping demonstration quality and downstream robot imitation
learning performance is still poorly understood

2. Contributions

> Comparative dataset of assistive task demonstrations (VR controller and haptic pen) paired with
NASA-TLX subjective workload measures

> Analysis on the impact of teleoperation modality on demonstration quality and imitation learning
model (Octo) finetuning performance

> Exploration on effects of data-related fine-tuning design choices (robot states and action horizon)
on real world robot performance

3. Methodology
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> NASA-TLX survey: subjective metrics affecting teleoperation usabllity
> Data quality analysis metrics: measure smoothness and control precision with end-effector
trajectories, action variance, and jerkiness
> Finetuned Octo policy to assess how different input modalities influence learning performance

4. Results
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> NASA-TLX: VR supports scalable data collection and
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5. Finetuning Design Discussion

Ackowledgement

i Lamp > Finetuned highest success rate: mixed, no This work Is supported by the Aging in
Success Pose Err | Success  Pose Err ] ] ] ] Place Challenge Progl’am at the
®  Cm | B e robot proprioception, action horizon = 10 National Research Council of Canada.

Mixed, AH 10 73 34 80 2.0 . .

47 s > Excluding robot state input may enhance

HE?.[JIIC, AH 10 40 4.7 53 3.2

orow il ISV performance |

Mo APl 2 7 1 B 3 > Action horizon has an optimal value (e.g. 10)

Fig. 4. Success rate (%) and pose : :

alignment error (cm). AH = action > Camera setup and lighting affect performance
horizon, P = proprioception included. significantly

i+l

I*I National Research  Conseil national de Canada
Council Canada recherches Canada



