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ABSTRACT

Denoising diffusion probabilistic models have achieved significant success in point
cloud generation, enabling numerous downstream applications, such as generative
data augmentation and 3D model editing. However, little attention has been given
to generating point clouds with point-wise segmentation labels, as well as to devel-
oping evaluation metrics for this task. Therefore, in this paper, we present SeaLion,
a novel diffusion model designed to generate high-quality and diverse point cloud
with fine-grained segmentation labels. Specifically, we introduce the semantic part-
aware latent point diffusion technique, which leverages the intermediate features
of the generative models to jointly predict the noise for perturbed latent points and
associated part segmentation labels during the denoising process, and subsequently
decodes the latent points to point clouds conditioned on part segmentation labels.
To effectively evaluate the quality of generated point clouds, we introduce a novel
point cloud pairwise distance calculation method named part-aware Chamfer dis-
tance (p-CD). This method enables existing metrics, such as 1-NNA, to measure
both the local structural quality and inter-part coherence of generated point clouds.
Experiments on the large-scale synthetic dataset ShapeNet and real-world medi-
cal dataset IntrA, demonstrate that SeaLion achieves remarkable performance in
generation quality and diversity, outperforming the existing state-of-the-art model,
DiffFacto, by 13.33% and 6.52% on 1-NNA (p-CD) across the two datasets. Ex-
perimental analysis shows that SeaLion can be trained semi-supervised, thereby
reducing the demand for labeling efforts. Lastly, we validate the applicability of
SeaLion in generative data augmentation for training segmentation models and the
capability of SeaLion to serve as a tool for part-aware 3D shape editing.

1 INTRODUCTION

In the past few years, 3D point cloud generation based on deep neural networks has attracted
significant interest and achieved remarkable success in downstream tasks, such as 2D image to point
cloud generation (Fan et al., 2017; Jiang et al., 2018) and point cloud completion (Yu et al., 2021;
Huang et al., 2020). However, little effort has been devoted to the generative models capable of
generating 3D point clouds with semantic segmentation labels. Exiting works (Gal et al., 2021; Li
et al., 2022; Shu et al., 2019; Zhang et al., 2024) can generate point clouds composed of detachable
sub-parts. Nevertheless, these sub-parts lack clear semantic meaning, hindering the application of
generated point clouds in domains such as generative data augmentation for training segmentation
models and semantic part-aware 3D shape editing.

Attributed to the effective approximation to the real data distribution, denoising diffusion probabilistic
models (DDPMs) (Ho et al., 2020) outperform many other generative models such as variational au-
toencoders (VAEs) (Kingma & Welling, 2013) and generative adversarial networks (GANs) (Creswell
et al., 2018) in generation quality and diversity. Current state-of-the-art diffusion-based point cloud
generative models (Zeng et al., 2022; Luo & Hu, 2021; Zhou et al., 2021) have achieved impressive
performance. However, they still lack the ability to generate semantic labels. To the best of our
knowledge, DiffFacto (Nakayama et al., 2023) is the only recent work capable of generating point
clouds with segmentation labels by utilizing multiple DDPMs to generate each part individually and
predicting the pose of each part to assemble the entire point clouds. However, due to the part-wise
generation factorization, DiffFacto exhibits limited part-to-part coherence within the generated shape.
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Figure 1: Leveraging the proposed semantic part-aware latent point diffusion technique, SeaLion
generates high-quality point clouds with high inter-part coherence and accurate point-wise segmenta-
tion labels. The generated data has significant application potential, including enlarging the training
sets for data-driven 3D segmentation models, particularly in medical examination domains where
labeled data is scarce (①). Moreover, SeaLion can serve as a tool for part-aware 3D shape editing. ②
shows examples of generated cars with varying shapes (green) and a fixed-shape hood (gray).

Inspired by (Baranchuk et al., 2021), which demonstrates that the intermediate hidden features learned
by DDPMs can serve as representations capturing high-level semantic information for downstream
vision tasks, we propose a novel approach that extends the generative model to not only predict noise
for perturbed data but also point-wise part segmentation labels during the generation process. Our
diffusion model learns the data distribution of regularized latent feature spaces, rather than directly
approximating the distribution of point clouds in Euclidean space, since this latent diffusion strategy is
proved to be more effective for complex point cloud generation (Zeng et al., 2022). Thereby, we train
a VAE, conditioned by the segmentation labels, to map point clouds to latent points with point-wise
segmentation awareness. During inference, the diffusion model simultaneously generates both latent
points and their associated segmentation labels. The latter serves as conditional information for the
VAE decoder, leading to generated point clouds with consistent segmentation labels. We refer this
approach as semantic part-aware latent point diffusion technique. Based on it, we propose a generative
model named SeaLion. Notably, the point-wise diffusion module in SeaLion utilizes a down-sampling
data path to extract the common representations for both noise prediction and segmentation tasks,
alongside two parallel up-sampling data paths to respectively extract task-specific features. SeaLion
can generate high-quality point clouds with accurate segmentation labels. Besides, SeaLion diffuses
on the latent points of all parts simultaneously, ensuring higher part-to-part coherence within a shape.

Currently, widely-used metrics for evaluating the quality of generated point clouds, such as 1-nearest
neighbor accuracy (1-NNA) (Yang et al., 2019) and coverage (COV) (Achlioptas et al., 2018), fail
to reflect the quality of segmentation-labeled point clouds. These metrics utilize Chamfer distance
(CD) or earth mover’s distance (EMD) (Rubner et al., 2000) to compute the pairwise point cloud
distance, but neither of which considers the segmentation of point clouds. DiffFacto (Nakayama et al.,
2023) uses the aforementioned metrics, but it assesses each part individually and then averages the
results across all parts. However, this method still fails to measure the part-to-part coherence within a
shape. We propose a novel evaluation metric named part-aware Chamfer distance (p-CD) to address
these limitations and to quantify the pairwise distance between two segmentation-labeled point
clouds. Using p-CD, evaluation metrics such as 1-NNA can effectively measure shape plausibility
and part-to-part coherence of the generated point clouds.

We conduct extensive experiments on a large-scale synthetic dataset, ShapeNet (Yi et al., 2016), and a
real-world 3D intracranial aneurysm dataset, IntrA (Yang et al., 2020). The results show that SeaLion
achieves state-of-the-art performance in generating segmentation-labeled point clouds. Considering
that labeling 3D point clouds is tedious, we evaluate SeaLion in a semi-supervised training setting,
where only a small portion of the training data is labeled. Experimental results on ShapeNet validate
that SeaLion can leverage additional unlabeled data, highlighting its potential to reduce labeling
efforts. Ablation studies validate the feasibility of generative data augmentation using point clouds
generated by SeaLion and the capability of SeaLion as a tool for part-aware 3D shape editing.

In summary, the contributions of this work are the following:
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• We propose a novel generative model named SeaLion, capable of generating high-quality
and diverse point clouds with accurate semantic segmentation labels.

• We propose a novel distance calculation method named part-aware Chamfer distance (p-CD),
enabling widely-used metrics such as 1-NNA, COV, MMD to effectively evaluate the quality
and diversity of segmentation-labeled point clouds.

• We demonstrate that SeaLion achieves state-of-the-art performance on a large synthesis
dataset, ShapeNet, and a real-world medical dataset, IntrA. Furthermore, we show that
SeaLion can be trained in a semi-supervised manner, reducing the need for labeling efforts.

• We confirm the feasibility of generative data augmentation using the point clouds generated
by SeaLion and showcase SeaLion’s function as a tool for part-aware 3D shape editing.

2 RELATED WORKS

Detachable point cloud generation. TreeGAN (Shu et al., 2019) conceptualizes point cloud genera-
tion as a tree growth process, where the final generated point cloud integrates various parts at the leaf
nodes. SP-GAN (Li et al., 2021) maps a sphere in 3D space into a point cloud like FoldingNet (Yang
et al., 2018), where different sphere regions correspond to other parts of the generated point cloud.
MRGAN (Gal et al., 2021) achieves explicit part disentanglement by employing multiple branches
of tree-structured graph convolution layers. EditVAE (Li et al., 2022) learns a disentangled latent
representation for each part from point clouds in an unsupervised manner. Yet, the parts in these
methods mentioned above do not necessarily possess clear semantic meaning. These methods are
designed to facilitate the replacement of specific sub-parts for subsequent point cloud editing.

Diffusion-based point cloud generation. Point-Voxel Diffusion (Zhou et al., 2021) and DPM (Luo
& Hu, 2021) train a diffusion model to generate point clouds directly. Instead, Lion (Zeng et al.,
2022) utilizes a hierarchical VAE to map the point clouds to the global and point-level latent features
and then trains latent diffusion models on them. Experimental results show that the latent diffusion
model with a hierarchical encoding method can achieve better generation quality.

Representations from generative models for discriminative tasks. Some recent works explore
using generative models as representation learners for discriminative tasks. (Donahue et al., 2016;
Donahue & Simonyan, 2019; Chen et al., 2020) use the representations learned by GAN encoders
and masked pixel predictors for 2D image classification. Without any additional training, (Li et al.,
2023) chooses the category conditioning that best predicts the noise added to the input image as the
classification prediction. (Zhang et al., 2021; Tritrong et al., 2021; Xu & Zheng, 2021; Xu et al.,
2021; Baranchuk et al., 2021) investigate the usage of generative models on the segmentation tasks.
(Baranchuk et al., 2021) shows that intermediate activations capture the semantic information from
the input images and appear to be useful representations for the segmentation problem.

3 METHODOLOGY

In this section, we first give preliminaries on the diffusion models (Ho et al., 2020) and propose
the semantic part-aware latent points technique. Next, we introduce the architecture of a novel
generative model, SeaLion, and illustrate its usage as a part-aware 3D edition tool. Finally, we discuss
the limitation of current metrics for evaluating generated labeled point clouds and propose novel
metrics based on part-aware Chamfer distance (p-CD) that effectively measure shape plausibility
and part-to-part coherence of the generated point clouds.

3.1 SEMANTIC PART-AWARE LATENT POINT DIFFUSION

The diffusion model (Ho et al., 2020) generates data by simulating a stochastic T -step process.
During training, the diffusion model ϵθ with parameters θ is trained to predict the noise ϵ to denoise
the perturbed sample xt at step t. The training loss function is:

L(ϵθ) = Et,x0,ϵ[||ϵθ(xt, t, a)− ϵ||22], (1)
where t ∼ Uniform{1, 2, ..., T} is the diffusion time step, ϵ ∼ N (0, I) is the noise for diffusing x0

to xt, and a is the conditional information, such as category encoding. During inference, the diffusion
model starts from a random sample xT ∼ N (0, I) and denoises it iteratively until t = 0.
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Figure 2: (a) Training: The point cloud x is mapped to a global latent z0 and semantic part-aware
latent points h0, with the segmentation encoding y serving as the conditional information for ϕh and
ξh. The diffusion ϵh is trained to denoise the perturbed latent points and predict the corresponding
segmentation labels ŷ. (b) Inference: Starting from Gaussian noise, the diffusion modules generate
z0, h0, and ŷ. Conditioning on z0 and ŷ, the decoder ξh produces a novel point cloud x̂.

As a state-of-the-art model, Lion (Zeng et al., 2022) shows that mapping point clouds into regularized
latent spaces and training DDPMs to learn the smoothed distributions is more effective than training
DDPMs directly on complex point clouds. Given a point cloud x ∈ Rn×3 consisting of n points,
Lion maps it to a global latent z0 ∈ Rdz and latent points h0 ∈ Rn×dh , and diffuses on these two
latent features respectively. The dz-dimensional vector z0 encodes the global shape of the point cloud
and serves as conditional information for point-level modules, while latent points h0 encode the
point-wise features and preserve the point cloud structure. However, the lack of semantic awareness
of latent points hinders the generation of segmentation-labeled point clouds. Although the pseudo
labels can be obtained by running a pre-trained segmentation model on the generated point clouds,
this step-by-step method is vulnerable since it relies on an accurate segmentation model.

In 2D image domain, (Baranchuk et al., 2021) shows that intermediate latent features of DDPMs are
informative for various computer vision tasks, thereby DDPMs can serve as powerful representation
learners for tasks like image segmentation. Inspired by this insight, we propose semantic part-
aware latent point diffusion technique for generating labeled point cloud. This technique builds on
the hierarchical latent diffusion paradigm used in Lion but incorporates point-wise segmentation
encodings y as conditional information for the point-level encoder ϕh : Rn×3×Rn×c×Rdz → Rn×dh

and decoder ξh : Rn×dh × Rn×c × Rdz → Rn×3, to obtain latent points h0 with semantic part-
awareness, as illustrated in Figure 2 (a). Given a point cloud x and its associated segmentation
encoding y ∈ Rn×c, the encoding and decoding process in the conditional VAE are as follows:

h0 ← ϕh(x, y, z0), x̂← ξh(h0, y, z0), (2)
where c is the number of segmentation parts, and x̂ denotes the reconstructed point cloud that aligns
with segmentation encoding y. This technique leverage the intermediate features of point-level
diffusion model ϵh : Rn×dh × R× Rdz → Rn×dh × Rn×c to predict the noise ϵ̂t for perturbed latent
points ht and segmentation labels ŷt at diffusion step t:

ϵ̂t, ŷt ← ϵh(ht, t, z0). (3)
Over the denosing process, ŷt is progressively smoothed to ŷ, which serves as conditional information
for generating novel point clouds during inference, as illustrated in Figure 2 (b). To capture the
features at different scales, we utilize a U-Net architecture in ϵh. Notably, we use a down-sampling
data path to extract common representations for both prediction tasks, alongside with two parallel
up-sampling data paths for extracting task-specific features, as illustrated in Figure 3. Let rc, rϵ, and
ry represent the intermediate features of representation learning, noise prediction, and segmentation
prediction, respectively. Given the input ht, the data flow in the down-sampling path is as follows:

ric =

{
ht, i = 0,

f i
c(r

i−1
c ), i ∈ {1, ..., U}, (4)

where f i
c denotes the learnable encoding function at the i-th layer of down-sampling path, and U

represents the number of layers. For the noise prediction branch,

riϵ =

{
f i
ϵ(r

i
c), i = U,

f i
ϵ(r

i+1
ϵ ⊕ ric), i ∈ {U−1, ..., 0}, (5)
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Figure 3: Data flow in the point-level diffusion mod-
ule ϵh. The input, perturbed latent points ht at step
t, is down-sampled and transformed to representa-
tions rc (yellow). Two parallel up-sampling paths
concatenate rc with task-specific features, rϵ (green)
and ry (red), to separately predict the noise ϵ̂t and
the segmentation encoding ŷt.

Figure 4: Limitations of the intra-part and
inter-part scores. By combining parts from
the real dataset R and maintaining the con-
nection tightness, we can generate a set of
implausible samples that still achieves high
scores on both metrics.

where f i
ϵ denotes the learnable encoding function at the i-th layer of noise prediction branch, and⊕ is

the concatenation operation. The same paradigm applies to the segmentation prediction branch. The
final output of ϵh are the predicted noise and segmentation labels, i.e. ϵ̂t ← r0ϵ and ŷt ← r0y . Besides,
this technique involves a global encoder ϕz : Rn×3 → Rdz and a diffusion module ϵz : Rdz×R→ Rdz

for the global latent z0, which encodes the overall information of the point cloud.

Training. Using this technique, the training consists of two stages. In the first stage, we train the
components of hierarchical VAE, including ϕz , ϕh, and ξh, to maximize a variational lower bound
on the data log-likelihood (ELBO):

L(ϕz, ϕh, ξh) = Ep(x),qϕz (z0|x),qϕh
(h0|x,y,z0){log pξh(x|h0, y, z0)

−λzDKL[qϕz
(z0|x)|N (0, I)]− λhDKL[qϕh

(h0|x, y, z0)|N (0, I)]},
(6)

where qϕz and qϕh
are the posterior distribution for sampling z0 and h0, pξh is the prior for recon-

struction prediction, and λz and λh are the hyperparameters for balancing reconstruction accuracy
and Kullback-Leibler regularization. In the second stage, we train two diffusion modules ϵz and ϵh.
The objectives for ϵz and ϵh are as follows:

L(ϵz) = Et,z0,ϵ[||ϵz(zt, t)− ϵ||22], (7)

L(ϵh) = Et,h0,ϵ[||ϵ̂t − ϵ||22 + λsegH(y, ŷt)], (8)
where ϵ ∼ N (0, I) denotes the added noise, H(·) is cross entropy, and λseg is the hyperparameter
for balancing two prediction tasks.

Inference. As illustrated in Figure 2 (b), the inference process consists of three steps. The global
diffusion ϵz firstly generates a global latent z0. Conditioning on z0, the point-level diffusion ϵh then
generates the latent points h0 and the associated segmentation prediction ŷ. Since SeaLion predicts
segmentation ŷt at each denoising step, we apply an exponential moving average (EMA) to smooth
the prediction results. This process is repeated for each backward diffusion step t, from T to 0,

yt =

{
ŷt, t = T,

α ŷt + (1− α) yt+1, t < T,
(9)

where yt is the smoothed segmentation prediction result at step t, and α is the smoothing factor of
EMA. We take y0 as the final prediction result ŷ. Lastly, conditioning on ŷ and z0, the point-level
decoder ξh transforms h0 to the generated point cloud x̂.

3.2 MODEL ARCHITECTURE OF SEALION

Based on the semantic part-aware latent point diffusion technique, we introduce a novel point cloud
generative model named SeaLion. The architecture of SeaLion is illustrated as follows:
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Point-level encoder ϕh and decoder ξh. In SeaLion, ϕh and ξh adopt a similar 4-layer Point-Voxel
CNN (PVCNN) (Liu et al., 2019) as their backbones. PVCNN, a U-Net style architecture for point
cloud data, uses set abstraction layer (Qi et al., 2017) and feature propagation layer (Qi et al., 2017)
for down-sampling and up-sampling the points. Point-voxel convolutions (PVConv) blocks (Liu et al.,
2019), which merge the advantages of point-based and voxel-based methods, are utilized to extract
neighboring features at each layer. To incorporate the conditional information, the global latent z0
is integrated through the adaptive Group Normalization (Zeng et al., 2022) in PVConv, while the
segmentation encoding y is concatenated with the intermediate features at each layer.

Point-level diffusion ϵh. As discussed in 3.1, point-level diffusion ϵh contains a down-sampling path
to learn the shared representations for both prediction task and two parallel up-sampling paths to
extract the task-specific features. Accordingly, we adopt a modified PVCNN architecture with one
down-sampling path and two up-sampling branches.

Global encoder ϕz and diffusion ϵz . We adopt the same architectures as Lion for the two global-level
modules. The global encoder ϕz consists of PVConv blocks, set abstraction layers, a max pooling
layer, and a multi-layer perceptron. The global diffusion ϵz comprises stacked ResNet (He et al.,
2016). More details regarding the model architecture can be found in the supplementary materials.

3.3 PART-AWARE 3D SHAPE EDITION TOOL

Since the latent points are semantic part-aware, SeaLion can be used as a part-aware 3D shape edition
tool. Given a point cloud x consisting of |P | parts, where we aim to preserve part p ∈ P while
introducing variations to the remaining parts. After transforming the point cloud to the latent points
h, we can freeze the latent points belonging to part p and apply the diffusion-denoise process (Zeng
et al., 2022; Meng et al., 2022) on the unfrozen latent points. During this process, the unfrozen latent
points are perturbed for τ steps (τ < T ) and then denoised recursively for the same number of steps.
Due to the stochasticity of the denoising process, the unfrozen latent points will differ after denosing,
leading to deformations in the corresponding parts when decoded by ξh. The pseudo code of using
SeaLion as an editing tool is provided in the supplementary materials.

3.4 EVALUATION METRICS

Notions. Given a generated dataset G = {xg|xg ∈ Rn×3} and a real datasetR = {xr|xr ∈ Rn×3},
both consist of point clouds with n points. Suppose each point cloud x ∈ Rn×3 consists of |P | parts,
i.e. x = {xp|p ∈ P, xp ∈ Rnp×3}, where np is the number of points in part p. For example, if x
represents a car from ShapeNet (Yi et al., 2016), P = {roof, hood, wheels, body}.
Existing metrics. The essential of evaluating point cloud generation is to assess both the quality and
diversity of the generated data. Most existing works (Zeng et al., 2022; Zhou et al., 2021; Yang et al.,
2019) use metrics such as 1-nearest neighbor accuracy (1-NNA) (Yang et al., 2019), coverage (COV),
and minimum matching distance (MMD) (Achlioptas et al., 2018) for evaluation. The formulas for
these metrics are provided in the supplementary materials. As discussed in (Yang et al., 2019; Zeng
et al., 2022), COV quantifies generation diversity and is sensitive to mode collapse, but it fails to
evaluate the quality of G. MMD, on the other hand, only assess the best quality point clouds in G and
is not a reliable metric to measure overall generation quality and diversity. 1-NNA (Yang et al., 2019)
measures both generation quality and diversity by quantifying the distribution similarity between
R and G. The aforementioned metrics rely on Chamfer distance (CD) or earth mover’s distance
(EMD) (Rubner et al., 2000) to measure the distance between two point clouds. However, neither
CD nor EMD considers the semantic segmentation of the points, making these metrics ineffective to
evaluate the generated point clouds with point-wise segmentation labels.

DiffFacto (Nakayama et al., 2023) introduces intra-part and inter-part scores to evaluate the quality
of segmentation-labeled point clouds. The intra-part score measures the quality of the independently
generated parts and the overall point cloud by averaging the results across all parts. For example,
1-NNA-P (Nakayama et al., 2023) is the average of 1-NNA score for all parts, computed as follows:

1-NNA-P(R,G) = 1

|P |
∑
p∈P

∑
xr
p∈Rp

1[Nxr
p
∈ Rp] +

∑
xg
p∈Gp

1[Nxg
p
∈ Gp]

|Rp|+ |Gp|
, (10)
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where Gp := {xg
p} andRp := {xr

p} represent the generated and real sets of part p, respectively, and
1[·] is the indicator function. Nxr

p
is the nearest neighbor of xr

p in the setRp ∪ Gp \ {xr
p}, with the

same applying to Nxg
p
. The nearest neighbor is determined according to the Chamfer distance. Given

two parts x1
p and x2

p, the Chamfer distance between them is computed by:

Chamfer(x1
p, x

2
p) =

1

|x1
p|

∑
q1∈x1

p

min
q2∈x2

p

||q1 − q2||22 +
1

|x2
p|

∑
q2∈x2

p

min
q1∈x1

p

||q1 − q2||22, (11)

where q1, q2 ∈ R3 represent points belonging to parts x1
p, x

2
p. The inter-part score, the snapping

metric (SNAP) (Nakayama et al., 2023), measures the connection tightness between two contacting
parts in a object. The formula for SNAP is provided in the supplementary materials. However, both
intra-part and inter-part scores have limitations in evaluating the generation of segmentation-labeled
point clouds. Specially, averaging the score among all parts or measuring the connection tightness
does not effectively measures the coherence among the parts within an object. An extreme case is
illustrated in Figure 4. By recombining parts from different shapes in the real dataset and maintaining
connection tightness, we can create a generated set of implausible samples that still archives high
score on the aforementioned metrics.

Part-aware Chamfer distance. To address this issue, we propose part-aware Chamfer Distance
(p-CD). Given point clouds x1 and x2 consisting of P parts, the pairwise distance is calculated by:

p-CD(x1, x2) =
∑
p∈P

{
1

|x1
p|

∑
q1∈x1

p

min
q2∈x2

p

||q1 − q2||22 +
1

|x2
p|

∑
q2∈x2

p

min
q1∈x1

p

||q1 − q2||22
}
. (12)

In p-CD, all parts of the point clouds are taken into account. Therefore, if a generated point cloud has
a small p-CD to a real point cloud, it indicates that not only are all parts of the generated point cloud
of high quality, but they also form a coherent and reasonable assembly as a whole. Consequently, the
randomly assembled sample in Figure 4 will have a large p-CD to the real samples, indicating the
anomaly of the generated sample. Based on p-CD, we can compute the 1-NNA (p-CD), COV (p-CD),
and MMD (p-CD) to measure the part-aware proximity of a generated set to a real set.

4 EXPERIMENTS

In this section, we first describe the experimental setup, including the datasets, training details
and evaluation metrics. Next, we present the evaluation results and the generated point clouds of
SeaLion on ShapeNet (Yi et al., 2016) and IntrA (Yang et al., 2020). In the experimental analysis,
we demonstrate that SeaLion can be trained in a semi-supervised manner, reducing the reliance on
labeled data. Furthermore, we showcase the applicability of SeaLion for generative data augmentation
in the point cloud segmentation task and SeaLion’s function as a tool for part-aware shape editing.

4.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on two public datasets, ShapeNet (Yi et al., 2016) and IntrA (Yang
et al., 2020). ShapeNet (Yi et al., 2016) is a large-scale synthetic dataset of 3D shapes with semantic
segmentation labels. We use six categories from this dataset: airplane, car, chair, guitar, lamp, and
table. SeaLion is trained and tested for each category using the official split. IntrA (Yang et al., 2020)
is a real-world dataset containing 3D intracranial aneurysm point clouds reconstructed from MRI. The
dataset contains 116 aneurysm segments manually annotated by medical experts. We randomly select
93 segments for training and use the remaining 23 segments for testing. Each aneurysm segment
includes the healthy vessel part and the aneurysm part.

Training Details. As discussed in 3.1, the training of SeaLion includes two stages. In this work, we
train the VAE model for 8k epochs in the first stage and the latent diffusion model for 24k epochs in
the second stage. For these two stages, we use an Adam optimizer with a learning rate of 1e-3.

Metrics. We use the part-aware Chamfer distance (p-CD) proposed in 3.4 to quantify the pairwise
point cloud distance. As discussed in (Yang et al., 2019), 1-NNA can measure both generation quality
and diversity by computing the distribution similarity between R and G, while COV and MMD
have limitations in measuring the overall generation quality. Therefore we compute 1-NNA (p-CD)
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Metric Model Airplane Car Chair Guitar Lamp Table

1-NNA (p-CD) ↓ (%)
Lion & PointNet++ 68.48 79.11 65.42 - - -

DiffFacto 81.67 90.51 77.34 - 67.13 -
SeaLion 65.40 73.10 63.14 62.59 61.71 63.56

COV (p-CD) ↑ (%)
Lion & PointNet++ 39.00 33.54 43.75 - - -

DiffFacto 32.26 26.58 35.37 - 46.95 -
SeaLion 47.51 44.94 46.88 46.85 48.25 41.04

MMD (p-CD) ↓
(×10−3)

Lion & PointNet++ 5.91 8.18 17.13 - - -
DiffFacto 7.15 9.03 20.30 - 29.47 -
SeaLion 6.38 7.95 16.25 2.11 28.38 14.56

Table 1: Evaluation on ShapeNet (Yi et al., 2016). Note that certain data is missing because
DiffFacto (Nakayama et al., 2023) only provides pretrained models for airplane, car, chair, and lamp
categories, while Lion (Zeng et al., 2022) only releases generated point clouds for airplane, car, and
chair categories.

as the primary evaluation metric in this work, but we still report COV (p-CD), and MMD (p-CD)
for convenience of other researchers. Additionally, we report the results of 1-NNA-P, COV-P, and
MMD-P (Nakayama et al., 2023) for the airplane and chair categories in ShapeNet for a comparison
to DiffFacto, despite the limitation of these metrics has been discussed in 3.4.

4.2 EXPERIMENTAL RESULTS

Evaluation on ShapeNet. The experiment results of SeaLion on the six classes in ShapeNet
are presented in Table 1. DiffFacto (Nakayama et al., 2023) provides pretrained weights for four
categories in ShapeNet: airplane, car, chair, and lamp. We use these released weights to generate
point clouds and evaluate them using our proposed metrics. Additionally, we use a pretrained
PointNet++ (Qi et al., 2017) to generate segmentation labels for the officially released point clouds
generated from Lion (Zeng et al., 2022). The results show that SeaLion outperforms DiffFacto and
the hybrid generation method combining Lion and PointNet++. For the airplane, car, chair, and lamp
categories, SeaLion outperforms DiffFacto by an average of 13.33% on 1-NNA (p-CD), 11.61%
on COV (p-CD), and 10.60% on MMD (p-CD), indicating that SeaLion generates higher-quality
and more diverse data. Some of the generated point clouds are demonstrated in Figure 5, showing
not only plausible shape and part-to-part coherence but also high variety among the shapes. More
generated point clouds are provided in the supplementary materials. Besides, we report the evaluation
of SeaLion according to 1-NNA-P, COV-P, and MMD-P (Nakayama et al., 2023) in Table 2. The
results show that SeaLion outperforms DiffFacto on the primary metric 1-NNA-P and achieves
competitive performance on the other metrics. By comparing the results of DiffFacto (Nakayama
et al., 2023) in Table 1 and Table 2, we can observe a notable drop from 1-NNA-P to 1-NNA (p-CD),
indicating that 1-NNA-P does not effectively capture the part-to-part coherence in the generated
shapes, whereas 1-NNA (p-CD) provides a more reliable evaluation of shape consistency.

Figure 5: Generated point clouds of airplanes, cars, chairs, guitars, lamps and tables from SeaLion.
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Metric Model Airplane Chair

1-NNA-P ↓ (%)
Lion & PointNet++ 68.73 69.25

DiffFacto 68.72 65.23
SeaLion 68.39 63.24

COV-P ↑ (%)
Lion & PointNet++ 38.8 35.1

DiffFacto 46.2 42.5
SeaLion 44.9 46.5

MMD-P ↓
(×10−2)

Lion & PointNet++ 3.68 3.99
DiffFacto 3.20 3.27
SeaLion 3.45 2.73

Table 2: Evaluation on airplane and chair classes in
ShapeNet (Yi et al., 2016) according to the metrics
proposed in DiffFacto (Nakayama et al., 2023).

Figure 6: Evolution of predictive perfor-
mance measured by mIOU for different
diffusion steps on airplane class.

In SeaLion, the diffusion ϵh predicts both noise and segmentation during the generation process. We
demonstrate the evolution of predictive performance, measured by mIoU, across different diffusion
steps t for the airplane category in Figure 6. As t decreases from T to 0 during the denosing process,
the perturbed latent points ht become increasingly informative for segmentation prediction. This
trend aligns with the findings in (Baranchuk et al., 2021).

Evaluation on IntrA. In this experiment, we train both SeaLion and DiffFacto (Nakayama et al.,
2023) on on the IntrA dataset (Yang et al., 2020) for comparison. The experimental results presented
in Table 3 demonstrate that SeaLion outperforms DiffFacto by 6.52% on 1-NNA (p-CD), 21.74%
on COV (p-CD), and 8.45% on MMD (p-CD). Some of the generated intracranial aneurysm point
clouds from SeaLion are presented in Figure 7.

4.3 EXPERIMENTAL ANALYSIS

Compared with collecting 3D data, which can be automated using tools like web crawlers, manually
labeling segmentation is tedious and time-consuming. Therefore, method for extracting the infor-
mation from the unlabeled data attracts lots of attention in recent years. Typically, semi-supervised
learning effectively reduces the need for extensive data labeling by training models with a combina-
tion of a small amount of labeled samples and a larger set of unlabeled samples. The training process
of DiffFacto (Nakayama et al., 2023) involves separate training for each semantic part, which limits
its ability to leverage the unsegmented data. In contrast, SeaLion generates the points for all parts
jointly, making it adaptable to the semi-supervised training approach. Given an unlabeled sample,
we can replace the segmentation encoding y in equation 6 with zero padding of the same shape,
thereby transforming the corresponding modules to be unconditioned by y. Additionally, we omit the
second term H(y, ŷt) in equation 8 to skip the training of segmentation prediction on unsegmented
samples. Consequently, SeaLion can be trained on unlabeled samples using this approach, while
labeled samples can still be processed using the objective functions in 3.1.

To validate the applicability of SeaLion trained using a semi-supervised approach, we conduct an
experiment on the car class in ShapeNet (Yi et al., 2016). We randomly select 10% of the samples in

Metric Model Aneurysm

1-NNA (p-CD) ↓ (%) DiffFacto 71.74
SeaLion 65.22

COV (p-CD) ↑ (%) DiffFacto 39.13
SeaLion 60.87

MMD (p-CD) ↓
(×10−2)

DiffFacto 8.05
SeaLion 7.37

Table 3: Evaluation on IntrA (Yang et al., 2020).
Figure 7: Generated aneurysm segments from
SeaLion (red: vessels, blue: aneurysm).
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Metric Model Training Set Car

1-NNA (p-CD) ↓
(%)

DiffFacto L 90.82
SeaLion L 87.34
SeaLion L+ U 83.23

COV (p-CD) ↑
(%)

DiffFacto L 23.42
SeaLion L 37.34
SeaLion L+ U 41.77

MMD (p-CD) ↓
(×10−3)

DiffFacto L 9.37
SeaLion L 8.76
SeaLion L+ U 8.33

Table 4: Evaluation of the semi-supervised train-
ing on SeaLion. In the training set column, L
refers to the use of 10% data with segmentation
labels, while U refers to the remaining data with-
out segmentation labels.

Figure 8: (a) Original point clouds and (b) novel
generated point clouds after part-aware editing
(gray: fix-shape parts, green: novel generated
parts with deformations).

the training set as labeled data, while the remaining 90% are treated as unsegmented. For comparison,
we train three models as follows: (1) DiffFacto trained with 10% labeled data using the official default
settings, (2) SeaLion trained with 10% labeled data, and (3) SeaLion trained in a semi-supervised
approach with 10% labeled data and 90% unlabeled data. The experimental results presented in
Table 4 demonstrate that SeaLion outperforms DiffFacto when trained with 10% labeled data, and its
performance further improves after incorporating unlabeled data into the training set.

4.4 APPLICATIONS

Generative data augmentation. In this experiment, we use the point clouds generated by SeaLion
to enlarge the dataset for training the data-driven segmentation model. We use SPoTr (Park et al.,
2023), a state-of-the-art and open source model on ShapeNet segmentation benchmark, to predict the
part segmentation across six categories in ShapeNet. We evaluate the performance of SPoTr using
the mIoU metric. The results, presented in Table 5, demonstrate that the incorporation of generative
data steadily enhances the performance of SPoTr across all categories.

Part-aware 3D shape edition. As discussed in 3.3, SeaLion can serve as a tool for part-aware point
cloud edition tool by running the diffusion-denoise process on the latent points associated with the
parts the user wishes to modify. We conduct experiments on car and airplane point clouds, where
the hood of cars and the body of airplanes are set as the fixed-shape parts. The experimental results
illustrated in Figure 8 shows that novel generated cars and airplanes keep the chosen parts (hoods and
airplane cabins) unchanged while exhibiting diverse deformation in the remaining parts.

Model Training Set Airplane Car Chair Guitar Lamp Table
SPoTr real labeled data 82.28 76.98 90.31 90.97 82.50 82.77
SPoTr real & generated labeled data 83.81 79.43 90.88 91.56 84.54 83.44

Table 5: Generative data augmentation for training SPoTr (Park et al., 2023).

5 CONCLUSION

In this paper, we introduce the semantic part-aware latent point diffusion technique for generating
point clouds with segmentation labels. Using this technique, our novel generative model, SeaLion,
achieves state-of-the-art performance on ShapeNet and IntrA datasets. Additionally, we discuss the
limitations of the existing metrics for evaluating the generated labeled point clouds and propose
better metrics based on a novel point cloud pairwise distance calculation method named part-aware
Chamfer distance. Further experiments validate the feasibility of generative data augmentation using
the point clouds generated by SeaLion and the utility of SeaLion as a tool for part-aware 3D shape
editing, highlighting the broad applicability of SeaLion in various downstream tasks.
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REPRODUCIBILITY STATEMENT

The hyper-parameters for implementing SeaLion are provided in Tables 1-5 of the supplementary
materials. The mathematical formulas for the metrics used in this paper are provided in Section 3.4
of the main paper and Section 2 of the supplementary materials. The pseudo code for using SeaLion
as a part-aware 3D shape editing tool is provided in Section 1 of the supplementary materials.
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