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A. Face and Pose Preprocessing from Video

Given a video, we use Multi-Task Cascaded CNNs [7] to
extract the 3D face landmarks. Since the faces can be arbi-
trarily oriented w.r.t. the camera, we rigidly transform the
face landmarks per frame to a reference frame in the nor-
malized view, where the face looks towards the camera. For
each frame in the input video, we use the rotation and the
translation given by the Umeyama method [5] to map the
face landmarks in that frame to the face landmarks in the
reference frame. We also use similarly view-normalized 3D
poses. View normalization is useful for two key reasons.
First, it eliminates relative camera movements across the
frames in the videos and prevents a learning-based method
from confusing camera movements with changes in the face
and pose expressions. Second, a frontal view offers maxi-
mal visibility of the faces and the poses, and minimizes er-
rors in detecting the 3D face landmarks and body joints.

B. Phoneme Predictor

We train a separate network to learn the positions of the
lip landmarks for the different phonemes in the audio. Our
synthesis network separately learns the motions of the lip
corners denoting the different facial expressions, and we su-
perpose them to the phoneme-based lip shapes to complete
the lip motions. Our phoneme predictor predicts the 3D po-
sitions of all the landmarks on the inner and the boundaries
of the lips over all the 7" prediction time steps, which we de-
note as py.7 inRT>*Lw*3  Following prior approaches [4],
we design a CNN backbone connected to fully-connected
blocks to predict the lip landmarks from the spectrograms
of the speech inputs. Specifically, given the speech audio
waveform a, we compute

p1.T = PhonemePred (a; ePhonemePred) 5 (Bl)

where Opponemepred T€presents the trainable parameters.

C. Training Details

We train our phoneme predictor network using reconstruc-
tion losses for the lip shapes. We train our synthesis net-
work using a combination of reconstruction losses for the
face and the pose motions, the cross-speaker diversity loss
to enforce visual differences in expressions across speakers,
and the generative adversarial loss for added regularization.
We describe these loss functions, and our training and test-
ing procedures.

C.1. Phoneme Predictor Losses

We represent our phoneme predictor loss as the robust ¢;-
norm reconstruction loss between the ground-truth and the
synthesized lip landmark positions and velocities over the
prediction time steps 7T', as
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where the superscripts (GT) and (sn), respectively, denote
the ground-truth and the synthesized data. A; denotes the
discrete forward difference between adjacent time steps ¢
and ¢t — 1.
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C.2. Synchronous Synthesis Network Losses

We use reconstruction losses to robustly align the outputs
of our generator with the corresponding ground-truth face
and pose motions. We use the generative adversarial loss
to ensure that the synthesized motions are plausible, the af-
fective expressions match the corresponding ground-truths,
and prevent the mode collapse of only synthesizing singular
expressions.

C.2.1 Reconstruction Losses

We write our reconstruction losses as the ¢;-norm differ-
ence between the ground-truth and the synthesized face and
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pose positions and motions over the 7" prediction time steps,
as

T
L= Y | - 7
t=1
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(C.2)

where Ay and A\, are the relative weighting factors.
We use the velocity and the acceleration losses to enforce
smoothness in the synthesized motions by reducing jitters.

C.2.2 Cross-Speaker Diversity Loss

Our cross-speaker diversity loss Lcsp follows that of Yoon
et al. [6], consisting of a ranking loss between the ground-
truth face and pose motions, and the synthesized face and
pose motions using the same speaker as the ground-truth
(positive example) and a randomly chosen different speaker
(negative example).

C.2.3 Generative Adversarial Loss

The generative adversarial loss consists of opposing losses
Lgen for the generator and Lp; for the discriminator, fol-
lowing a min-max optimization strategy [2]. We write these
losses as

Lgen = —E [log (c§L)], (C.3)
Lpis = —E [log (cgzc)] —Eflog(1-c}.)], (C4

where cgisc denotes the output of our discriminator network
(Eq. 15). This loss adds plausibility to our synthesized sam-
ples by enforcing them to have similar affective expressions
as the corresponding ground-truth samples.

C.3. Training Procedure

We train our phoneme predictor network using the Adam
optimizer [3] with 5; = 0.5, B2 = 0.999, a batch size of
1024, and a learning rate of 10~ for 500 epochs. We train
our synthesis network using the Adam optimizer [3] with
B1 = 0.5, B = 0.999, a batch size of 256, and learning
rates of 10™* for our generator and 5 x 10~° for our dis-
criminator, both decayed by a factor of 0.999 per epoch,
for 1000 epochs. We train both our phoneme detector net-
work and our synthesis network on an NVIDIA GeForce
RTX 2080 Ti GPU, which takes 3 seconds and 7 seconds
per epoch respectively.

D. Testing and Rendering

We provide the details of the testing procedure of our net-
work and the rendering of our synthesized outputs in a 3D
environment.

D.1. Testing Procedure and Mapping to Digital
Characters

Each test sample for our network consists of a speech audio
waveform, the corresponding text transcript, a speaker ID,
and the speaker’s seed face and pose motions. Our phoneme
predictor network provides the lip sync for the given speech
audio and the generator of our synthesis network provides
the required face and pose motions. We superpose the lip
landmarks given by our phoneme predictor network with
the lip corner landmarks given by our generator at each
prediction time step to obtain the complete lip motions of
the speaker. We map these motions to a rigged 3D human
upper-body mesh in Blender. For mapping the face motions,
we set a one-to-one mapping between our face landmarks
and the landmarks on the face of the human mesh, and use
them as control points for the facial motions of the mesh.
For mapping the pose motions, we use FABRIK [1] to ob-
tain the joint rotations given our predicted joint positions
and use those rotations to animate the rigged human mesh.

D.2. Rendering and Visualization

Given an input speech audio, we can synthesize the motions
for our pre-rigged digital characters at an interactive rate
of about 250 frames per second on an NVIDIA GeForce
RTX 2080 Ti GPU. We design our digital environment us-
ing Blender. For each of our digital characters, we place
them on a stage and position the camera such that it looks
front and center at the agent. As the character narrates the
input speech audio using our synthesized face and upper-
body expressions, we slowly pan the camera in to get a more
focused view of those expressions. Since we do not syn-
thesize any lower-body motions, our digital characters stay
standing at their initial positions during the entire narration.
The full video demos are available with our supplementary
material.

E. User Study

We provide all the details of our user study, including setup,
evaluation process, and results.

E.1. Setup

A total of 90 participants participated in our user study. All
participants were aged 18 years or older, and had normal
or corrected to normal vision and hearing. Each partici-
pant observed two sets of character motions. There were
eight groups of motions in each set, each group having a
unique input speech. In the first set, there were four types
of motions in each group corresponding to the same speech:
the original speaker motions rendered using their face land-
marks and the poses extracted from the video, and motions
rendered using the face landmarks and poses synthesized
by our network and two of its ablated versions. One ab-
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(a) Set 1: Motion plausibility. Compared to the ablated versions, we ob-
serve a higher distribution of “OK” or better for the motions of the original
speakers and our synthesized agents. The modes of all the distributions
are on “OK”, implying that the corresponding participants found the visual
qualities of all the motions to be reasonable.
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(c) Set 2: Motion plausibility. Compared to the ablated version without
synchronous synthesis, we observe a higher distribution of “OK” or better
for the motions of the original speakers and our synthesized agents. Similar
to the motion plausibility in set 1, we observe modes of all the distributions
on “OK”.
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(b) Set 1: Synchronization between the face and the pose expressions
given the speech. Compared to the ablated versions, we obverse clear
preferences for the motions of the original speakers and our synthesized
agents. The modes of the distributions for these two types of motions are
on “somewhat expressive”” while the modes of the two ablated versions are
on “no/arbitrary movements”.
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(d) Set 2: Synchronization between the face and the pose expressions
given the speech. We again obverse clear preferences for the motions of
the original speakers and our synthesized agents compared to the ablated
version without synchronous synthesis. However, in contrast to the same
study in set 1, we notice the modes of the distributions for the first two types
of motions are one point lower on the Likert scale, whereas the mode for
the ablated version remains on “no/arbitrary movements”. We hypothesize
this to be the consequence of removing the other ablated versions from
the participants’ cognitive window: in the absence of other variants, the
participants focused more closely on the relative qualities of asynchronous
vs. synchronous motions and assessed them more critically.

Figure E.1. Distributions of the user study responses. Likert-scale response distributions to the two sets of motions rendered using the
five different types of face landmark and pose data (Sec. E). We show the distributions of each of the five Likert-scale points for each type
of motion as a percentage of the total responses across all the groups in each set.

Table E.1. Likert-scale score statistics. We compute the mean
and the standard deviation of the Likert-scale scores across all the
motions. For the mean scores, higher values are better, bold indi-
cates best, and underline indicates second-best.

Synthesis type Plausibility Synchronization

Mean St. Dev. Mean St Dev.

Original Speaker 3.25 090  3.10 1.34

Set 1 Ours 3.27 086  3.15 1.32
w/o AC Graphs 2.61 1.14 248 1.38

wi/o Disc. 2.79 .02 2.02 1.30
Original Speaker 2.99 0.80  2.79 1.08

Set2  Ours 3.01 082 279 1.07
w/o Synchronous Synthesis ~ 2.41 0.78 1.79 0.88

lated version was without using the face and pose anatom-
ical component (AC) graphs for training, and one without
our discriminator. In the second set, there were three types
of motions in each group corresponding to the same speech:
the original speaker motions, motions rendered using the
face landmarks and poses synthesized by our network, and
the ablated version using asynchronously synthesized faces
and poses. Our motivation to separately compare with the
asynchronously synthesized motions was to eliminate dis-
tractors from other motions and enable our participants to

focus more closely on the synchronization between the face
and the pose expressions. We randomized the order of these
motions in each group in each set and kept the order un-
known to the participants. We did not present our other
ablated versions to the participants as they did not have suf-
ficient motion and were visually inferior in obvious ways.

E.2. Evaluation Process

Our aim in the user study is to evaluate our synthesized mo-
tions on two key aspects: (i) how plausible they appear to
human observers compared to the motions of the original
speakers and the ablated versions, and (ii) whether syn-
chronous synthesis of face and pose expressions produces
perceptible improvements over asynchronous synthesis. To
evaluate plausibility, we ask the participants to rate each
motion in each group in each set on “how natural the mo-
tion looks” on a five-point Likert scale, with the options
“very unnatural” (worst), “not realistic”, “looks OK” (av-
erage), “looks good”, and “looks great” (best). To evaluate
the effect of synchronous synthesis, we ask the participants
to observe the face and the pose movements in each motion
in each group in each set and rate them on “how the face
and the pose sync with the speech” on a five-point Likert
scale, with the options ‘“no/arbitrary movements” (worst),
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“slight movements”, “has movements, but are not expres-
sive” (average), “somewhat expressive movements”, and
“have movements with appropriate expressions” (best).

E.3. Results

Since we randomly select the speech for each of the eight
groups of motions each participant watched, and we also
randomized the order of the motions in each group in each
set, we can consider the participants’ responses in each
group to be independent of all the other groups. Thus, we
aggregate their responses to each type of motion across all
the groups within a set to obtain the overall distributions
of the Likert-scale scores of the motions for that set. We
show these distributions for each of the two questions on
plausibility and synchronization in each set in Fig. E.1. We
also report the Likert-scale score statistics for each type of
motion on the two questions in each set in Table E.1. Over-
all, in the two sets, 88.89% and 80.00% participants respec-
tively marked our synchronously synthesized motions 3 or
above on the first question, and 65.46% and 62.87% partic-
ipants respectively marked 3 or above on the second ques-
tion. This indicates that the majority of participants found
the motions satisfactory.
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