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A. Face and Pose Preprocessing from Video001

Given a video, we use Multi-Task Cascaded CNNs [7] to002
extract the 3D face landmarks. Since the faces can be arbi-003
trarily oriented w.r.t. the camera, we rigidly transform the004
face landmarks per frame to a reference frame in the nor-005
malized view, where the face looks towards the camera. For006
each frame in the input video, we use the rotation and the007
translation given by the Umeyama method [5] to map the008
face landmarks in that frame to the face landmarks in the009
reference frame. We also use similarly view-normalized 3D010
poses. View normalization is useful for two key reasons.011
First, it eliminates relative camera movements across the012
frames in the videos and prevents a learning-based method013
from confusing camera movements with changes in the face014
and pose expressions. Second, a frontal view offers maxi-015
mal visibility of the faces and the poses, and minimizes er-016
rors in detecting the 3D face landmarks and body joints.017

B. Phoneme Predictor018

We train a separate network to learn the positions of the019
lip landmarks for the different phonemes in the audio. Our020
synthesis network separately learns the motions of the lip021
corners denoting the different facial expressions, and we su-022
perpose them to the phoneme-based lip shapes to complete023
the lip motions. Our phoneme predictor predicts the 3D po-024
sitions of all the landmarks on the inner and the boundaries025
of the lips over all the T prediction time steps, which we de-026
note as p1:T inRT×Llip×3. Following prior approaches [4],027
we design a CNN backbone connected to fully-connected028
blocks to predict the lip landmarks from the spectrograms029
of the speech inputs. Specifically, given the speech audio030
waveform a, we compute031

p1:T = PhonemePred (a; θPhonemePred) , (B.1)032

where θPhonemePred represents the trainable parameters.033

C. Training Details 034

We train our phoneme predictor network using reconstruc- 035
tion losses for the lip shapes. We train our synthesis net- 036
work using a combination of reconstruction losses for the 037
face and the pose motions, the cross-speaker diversity loss 038
to enforce visual differences in expressions across speakers, 039
and the generative adversarial loss for added regularization. 040
We describe these loss functions, and our training and test- 041
ing procedures. 042

C.1. Phoneme Predictor Losses 043

We represent our phoneme predictor loss as the robust ℓ1- 044
norm reconstruction loss between the ground-truth and the 045
synthesized lip landmark positions and velocities over the 046
prediction time steps T , as 047

Lph =

T∑
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(C.1) 048
where the superscripts (GT) and (sn), respectively, denote 049
the ground-truth and the synthesized data. ∆t denotes the 050
discrete forward difference between adjacent time steps t 051
and t− 1. 052

C.2. Synchronous Synthesis Network Losses 053

We use reconstruction losses to robustly align the outputs 054
of our generator with the corresponding ground-truth face 055
and pose motions. We use the generative adversarial loss 056
to ensure that the synthesized motions are plausible, the af- 057
fective expressions match the corresponding ground-truths, 058
and prevent the mode collapse of only synthesizing singular 059
expressions. 060

C.2.1 Reconstruction Losses 061

We write our reconstruction losses as the ℓ1-norm differ- 062
ence between the ground-truth and the synthesized face and 063
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pose positions and motions over the T prediction time steps,064
as065
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(C.2)

068

where λvel and λacc are the relative weighting factors.069
We use the velocity and the acceleration losses to enforce070
smoothness in the synthesized motions by reducing jitters.071

C.2.2 Cross-Speaker Diversity Loss072

Our cross-speaker diversity loss LCSD follows that of Yoon073
et al. [6], consisting of a ranking loss between the ground-074
truth face and pose motions, and the synthesized face and075
pose motions using the same speaker as the ground-truth076
(positive example) and a randomly chosen different speaker077
(negative example).078

C.2.3 Generative Adversarial Loss079

The generative adversarial loss consists of opposing losses080
LGen for the generator and LDis for the discriminator, fol-081
lowing a min-max optimization strategy [2]. We write these082
losses as083

LGen = −E
[
log

(
cGT

disc

)]
, (C.3)084

LDis = −E
[
log

(
cGT

disc

)]
− E [log (1− csn

disc)] , (C.4)085

where cdisc denotes the output of our discriminator network086
(Eq. 15). This loss adds plausibility to our synthesized sam-087
ples by enforcing them to have similar affective expressions088
as the corresponding ground-truth samples.089

C.3. Training Procedure090

We train our phoneme predictor network using the Adam091
optimizer [3] with β1 = 0.5, β2 = 0.999, a batch size of092
1024, and a learning rate of 10−3 for 500 epochs. We train093
our synthesis network using the Adam optimizer [3] with094
β1 = 0.5, β2 = 0.999, a batch size of 256, and learning095
rates of 10−4 for our generator and 5 × 10−5 for our dis-096
criminator, both decayed by a factor of 0.999 per epoch,097
for 1000 epochs. We train both our phoneme detector net-098
work and our synthesis network on an NVIDIA GeForce099
RTX 2080 Ti GPU, which takes 3 seconds and 7 seconds100
per epoch respectively.101

D. Testing and Rendering102

We provide the details of the testing procedure of our net-103
work and the rendering of our synthesized outputs in a 3D104
environment.105

D.1. Testing Procedure and Mapping to Digital 106
Characters 107

Each test sample for our network consists of a speech audio 108
waveform, the corresponding text transcript, a speaker ID, 109
and the speaker’s seed face and pose motions. Our phoneme 110
predictor network provides the lip sync for the given speech 111
audio and the generator of our synthesis network provides 112
the required face and pose motions. We superpose the lip 113
landmarks given by our phoneme predictor network with 114
the lip corner landmarks given by our generator at each 115
prediction time step to obtain the complete lip motions of 116
the speaker. We map these motions to a rigged 3D human 117
upper-body mesh in Blender. For mapping the face motions, 118
we set a one-to-one mapping between our face landmarks 119
and the landmarks on the face of the human mesh, and use 120
them as control points for the facial motions of the mesh. 121
For mapping the pose motions, we use FABRIK [1] to ob- 122
tain the joint rotations given our predicted joint positions 123
and use those rotations to animate the rigged human mesh. 124

D.2. Rendering and Visualization 125

Given an input speech audio, we can synthesize the motions 126
for our pre-rigged digital characters at an interactive rate 127
of about 250 frames per second on an NVIDIA GeForce 128
RTX 2080 Ti GPU. We design our digital environment us- 129
ing Blender. For each of our digital characters, we place 130
them on a stage and position the camera such that it looks 131
front and center at the agent. As the character narrates the 132
input speech audio using our synthesized face and upper- 133
body expressions, we slowly pan the camera in to get a more 134
focused view of those expressions. Since we do not syn- 135
thesize any lower-body motions, our digital characters stay 136
standing at their initial positions during the entire narration. 137
The full video demos are available with our supplementary 138
material. 139

E. User Study 140

We provide all the details of our user study, including setup, 141
evaluation process, and results. 142

E.1. Setup 143

A total of 90 participants participated in our user study. All 144
participants were aged 18 years or older, and had normal 145
or corrected to normal vision and hearing. Each partici- 146
pant observed two sets of character motions. There were 147
eight groups of motions in each set, each group having a 148
unique input speech. In the first set, there were four types 149
of motions in each group corresponding to the same speech: 150
the original speaker motions rendered using their face land- 151
marks and the poses extracted from the video, and motions 152
rendered using the face landmarks and poses synthesized 153
by our network and two of its ablated versions. One ab- 154
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(a) Set 1: Motion plausibility. Compared to the ablated versions, we ob-
serve a higher distribution of “OK” or better for the motions of the original
speakers and our synthesized agents. The modes of all the distributions
are on “OK”, implying that the corresponding participants found the visual
qualities of all the motions to be reasonable.

(b) Set 1: Synchronization between the face and the pose expressions
given the speech. Compared to the ablated versions, we obverse clear
preferences for the motions of the original speakers and our synthesized
agents. The modes of the distributions for these two types of motions are
on “somewhat expressive” while the modes of the two ablated versions are
on “no/arbitrary movements”.

(c) Set 2: Motion plausibility. Compared to the ablated version without
synchronous synthesis, we observe a higher distribution of “OK” or better
for the motions of the original speakers and our synthesized agents. Similar
to the motion plausibility in set 1, we observe modes of all the distributions
on “OK”.

(d) Set 2: Synchronization between the face and the pose expressions
given the speech. We again obverse clear preferences for the motions of
the original speakers and our synthesized agents compared to the ablated
version without synchronous synthesis. However, in contrast to the same
study in set 1, we notice the modes of the distributions for the first two types
of motions are one point lower on the Likert scale, whereas the mode for
the ablated version remains on “no/arbitrary movements”. We hypothesize
this to be the consequence of removing the other ablated versions from
the participants’ cognitive window: in the absence of other variants, the
participants focused more closely on the relative qualities of asynchronous
vs. synchronous motions and assessed them more critically.

Figure E.1. Distributions of the user study responses. Likert-scale response distributions to the two sets of motions rendered using the
five different types of face landmark and pose data (Sec. E). We show the distributions of each of the five Likert-scale points for each type
of motion as a percentage of the total responses across all the groups in each set.

Table E.1. Likert-scale score statistics. We compute the mean
and the standard deviation of the Likert-scale scores across all the
motions. For the mean scores, higher values are better, bold indi-
cates best, and underline indicates second-best.

Synthesis type Plausibility Synchronization

Mean St. Dev. Mean St. Dev.

Set 1

Original Speaker 3.25 0.90 3.10 1.34
Ours 3.27 0.86 3.15 1.32
w/o AC Graphs 2.61 1.14 2.48 1.38
w/o Disc. 2.79 1.02 2.02 1.30

Set 2
Original Speaker 2.99 0.80 2.79 1.08
Ours 3.01 0.82 2.79 1.07
w/o Synchronous Synthesis 2.41 0.78 1.79 0.88

lated version was without using the face and pose anatom-155
ical component (AC) graphs for training, and one without156
our discriminator. In the second set, there were three types157
of motions in each group corresponding to the same speech:158
the original speaker motions, motions rendered using the159
face landmarks and poses synthesized by our network, and160
the ablated version using asynchronously synthesized faces161
and poses. Our motivation to separately compare with the162
asynchronously synthesized motions was to eliminate dis-163
tractors from other motions and enable our participants to164

focus more closely on the synchronization between the face 165
and the pose expressions. We randomized the order of these 166
motions in each group in each set and kept the order un- 167
known to the participants. We did not present our other 168
ablated versions to the participants as they did not have suf- 169
ficient motion and were visually inferior in obvious ways. 170

E.2. Evaluation Process 171

Our aim in the user study is to evaluate our synthesized mo- 172
tions on two key aspects: (i) how plausible they appear to 173
human observers compared to the motions of the original 174
speakers and the ablated versions, and (ii) whether syn- 175
chronous synthesis of face and pose expressions produces 176
perceptible improvements over asynchronous synthesis. To 177
evaluate plausibility, we ask the participants to rate each 178
motion in each group in each set on “how natural the mo- 179
tion looks” on a five-point Likert scale, with the options 180
“very unnatural” (worst), “not realistic”, “looks OK” (av- 181
erage), “looks good”, and “looks great” (best). To evaluate 182
the effect of synchronous synthesis, we ask the participants 183
to observe the face and the pose movements in each motion 184
in each group in each set and rate them on “how the face 185
and the pose sync with the speech” on a five-point Likert 186
scale, with the options “no/arbitrary movements” (worst), 187
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“slight movements”, “has movements, but are not expres-188
sive” (average), “somewhat expressive movements”, and189
“have movements with appropriate expressions” (best).190

E.3. Results191

Since we randomly select the speech for each of the eight192
groups of motions each participant watched, and we also193
randomized the order of the motions in each group in each194
set, we can consider the participants’ responses in each195
group to be independent of all the other groups. Thus, we196
aggregate their responses to each type of motion across all197
the groups within a set to obtain the overall distributions198
of the Likert-scale scores of the motions for that set. We199
show these distributions for each of the two questions on200
plausibility and synchronization in each set in Fig. E.1. We201
also report the Likert-scale score statistics for each type of202
motion on the two questions in each set in Table E.1. Over-203
all, in the two sets, 88.89% and 80.00% participants respec-204
tively marked our synchronously synthesized motions 3 or205
above on the first question, and 65.46% and 62.87% partic-206
ipants respectively marked 3 or above on the second ques-207
tion. This indicates that the majority of participants found208
the motions satisfactory.209
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