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1 Introduction Set up & Model architecture
- Understanding the change of binding affinity (AAG) caused by mutations Models: PP — [ esm ] — -
in protein-protein interaction(PPI) is important in protein engineering & - MuPIPR! WIS pat } Sharoweighis] 1~ ]
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- The trustworthiness of Deep Learning is a concern due to the limited and (right figure) } Share weighis § G ©O— MLP|— AAG
biased experimental data in reality. - ProtMut_c Fer i — | esm | Y
- A comprehensive guideline is needed to assess reliability of models which (cross attan- et pak srarweighis] 1 [
consists of data analysis, model evaluation and interpretation. tion) NN - SRS
2 Biased dataset 4 Model interpretation
SKEMPI v2 dataset visualization Model performance on held-out inputs sanity check
— The dataset is highly Metrics: spearman Metrics: pearson
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3 Model evaluation methods
Dataset Split Methods e o "
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— Align with the real world needs . PC 1 of MuPIPR(a) shares a correlation with sequence length, implying it
this task: Spearman correlation T st spearman learns dataset feature like sequence length instead the underlying protein-

— Aggregate metric -> granular evaluations protein interaction mechanism

this task: Metrics in each protein family 5 Conclusion & Discussion

Held-out sanity check
— Deep learning models might be learning unintentional biases present in

the dataset rather than the actual biological relationships
— Biased data in biology is a significant issue that requires careful attenti-
Metrics: spearman Metrics: pearson on and resolution
— The effectiveness of complex model architecture is limited when the da-

— Dataset features regression test
— Held out one sequence in the protein sequence pair test
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: . taset is insufficient. (cross-attention doesn’t improve the performance)
— Data bias, model evaluation and model interpretation should be paid
- — e more attention in bioscience field
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