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A Algorithm

We present a PyTorch-style pseudocode for SimSiam with GSG. It can be written analogously for
BYOL with GSG. The pseudocode can be vectorized more, but we offer it in its current form for a
better understanding.

Algorithm 1 SimSiam with GSG

# pytorch style pseudocode

for batch in loader:
loss = []
for x1, x2 in zip(batch, shuffle(batch)):
x11, x12 = aug(x1l), aug(xl) # views
x21, x22 = aug(x2), aug(x2) # aug: random augmentation

z11, z12 = £(x11), £(x12) # projections

221, 222 = £(x21), £(x22) # f: encoder = backbone + projector (mlp)
pll, p12 = h(z11), h(z12) # predictions
p21, p22 = h(z21), h(z22) # h: predictor (mlp)

d1121 = d(z11, z21) # Euclidean distances
d1122 = d(z11, z22)

di1221 d(z12, z21)

d1222 = d(z12, z22)

m = min(d1121, d1122, d1221, d1222)

# D: negative cosine similarity
# sg: stop-gradient, sg(z) = z.detach()
if d1121 == m:

1 = D(p11, sg(z12)) + D(p21, sg(z22))
elif d1122 == m:

1 = D(p11, sg(z12)) + D(p22, sg(z21))
elif d1221 == m:

1 = D(p12, sg(z11)) + D(p21, sg(z22))
elif d1222 == m:

1 = D(p12, sg(z11)) + D(p22, sg(z21))
loss.append(0.5 * 1)

loss = sum(loss) / len(loss) # mean
loss.backward() # back-propagate
update(f, h) # SGD update
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B Data augmentation details

B.1 ImageNet

The training set consists of 1,281,167 images, and the validation dataset consists of 50,000 images.
Since the label of ImageNet’s test set is not provided, we use the validation set for evaluation. The
number of classes in ImageNet is 1,000. The images are variable-sized, so they are cropped to size
224 x 224 during the data augmentation process. We apply in turn the following data transformations
in pre-training.

* RandomResizedCrop: Crop a random patch of the image with scale (0.2, 1) and then resize
it to a size of (224,224).

* ColorJitter: With a probability of 0.8, change the image’s brightness, contrast, saturation,
and hue with strength (0.4,0.4,0.4,0.1).

* RandomGrayscale: With a probability of 0.2, convert the image to grayscale.

* GaussianBlur: With a probability of 0.5, apply the Gaussian blur filter to the image with
a radius uniformly sampled from [0.1, 2].

* RandomHorizontalFlip: With a probability of 0.5, flop the image horizontally.

* Normalize: Normalize the image with mean (0.485, 0.456, 0.406) and standard deviation
(0.229,0.224, 0.225).

B.2 CIFAR-10

The training set consists of 60,000 images, and the test set consists of 10,000 images. The number of
classes in CIFAR-10 is 10. The images have a fixed size of 32 x 32. We apply in turn the following
data transformations in pre-training.

* RandomResizedCrop: Crop a random patch of the image with scale (0.08,1) and then
resize it to a size of (32, 32).

* RandomHorizontalFlip: With a probability of 0.5, flop the image horizontally.

* ColorJitter: With a probability of 0.8, change the image’s brightness, contrast, saturation,
and hue with strength (0.4,0.4,0.4,0.1).

* RandomGrayscale: With a probability of 0.2, convert the image to grayscale.

* Normalize: Normalize the image with mean (0.485, 0.456, 0.406) and standard deviation
(0.229,0.224,0.225).

C Pre-training implementation details

C.1 ImageNet

For the ImageNet experiments, we follow the experimental setup in SimSiam’s original paper [Chen
and He, 2021] and https://github. com/facebookresearch/simsiam. The encoder f consists
of a backbone and a projector. The backbone is ResNet-50 [He et al., 2016] with about 23M
parameters, and the projector consists of three fully-connected (FC) layers. Batch normalization (BN)
and ReL.U are applied to each layer except for the output layer, where only BN is used. The input
and output dimensions of the layers are 2,048. The predictor h consists of two FC layers. BN and
ReLU are applied to the first layer, and nothing is applied to the second layer. The input and output
dimensions of the first layer are 2,048 and 512, and the input and output dimensions of the second
layer are 512 and 2,048 (bottleneck structure).

C.2 CIFAR-10

For the CIFAR-10 experiments, we follow the default setup in [[Susmelj et al., [2020] and https:
//github.com/lightly-ai/lightly. The encoder f consists of a backbone and a projector. The
backbone is a variant of ResNet-18 for CIFAR-10 with about 11M parameters, and the projector
consists of two FC layers. BN and ReLU are applied to the first layer, and only BN is applied to the
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second layer. The input and output dimensions of the first layer are 512 and 2,048, and the input
and output dimensions of the second layer are 2,048. The predictor & is the same as in the case of
ImageNet.

D Transfer learning implementation details

We present the implementation details for transfer learning. Other details can be found in [[Ericsson
et al.,2021]] and https://github.com/linusericsson/ssl-transfer, We minimally change
the code under the same computational parameters.

D.1 Image recognition

In the Caltech dataset, 30 images for each class are randomly selected to form the training set, and
the remaining images form the test set. On the DTD and SUN397 datasets, the first dataset split
provided by the authors is used. For validation sets, the pre-defined ones are used on the Aircraft,
DTD, Flowers, and VOC2007 datasets, and on the rest of the datasets, 20% of the training set are
randomly selected to form the validation set.

We resize the images so that the number of pixels of the shorter side of each image is 224 using
bicubic interpolation. We crop the images at the center with size (224, 224). The best weight decay
rate is selected on the validation set over 45 evenly spaced values from 10~% to 10° on a logarithmic
scale with base 10. We find the best hyperparameters on the validation set, retrain the networks on
the training and validation sets, and evaluate on the test set. Since VOC2007 is a multi-label dataset,
we fit a binary classifier for each class. L-BFGS [Liu and Nocedall, [1989] is used as a solver when
doing a logistic regression.

D.2 Object detection

We initially normalize the images with mean (123.675,116.280, 103.530) and standard deviation
(58.395,57.120,57.375).

Pascal-VOC The images are resized so that the number of pixels of the shorter side of each image is
one of {480,512, 544, 576, 608, 640, 672,704, 736, 768, 800} for training and 800 for test. We use
the batch size of 2. The base learning rate is chosen as 0.0025, and it decays by tenths at the 96, 000th
and 128, 000th iterations, respectively. We warm up the networks for 100 iterations and train them
for 144, 000 iterations.

MS-COCO The images are resized so that the number of pixels of the shorter side of each image
is one of {640,672, 704, 736, 768,800} for training and 800 for test. We use the batch size of 16.
We choose the base learning rate as 0.02, and it decays by tenths at the 210, 000th and 250, 000th
iterations, respectively. We warm up the networks for 1000 iterations and train them for 270, 000
iterations.

D.3 Semantic segmentation

We use the SGD optimizer with momentum of 0.9, learning rate of 0.02, weight decay rate of 0.0001,
and learning rate decay rate of 0.9. We use the batch size of 2. The networks are trained for 150, 000
iterations in total (30 epochs and 5, 000 iterations per epoch). The learning rate decays every 500
iterations.

E t-distributed stochastic neighbor embedding (t-SNE)

We present t-SNE visualizations [[Van der Maaten and Hintonl 2008]|] of representations of images
from the test set of CIFAR-10. Figure [I|shows that in both SimSiam and BYOL, applying our GSG
made the clusters corresponding to the classes better separate.
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Figure 1: t-SNE visualizations of CIFAR-10. Clusters of our algorithms are better separated than
those of the original algorithms as expected.

F Semantic segmentation

We present semantic segmentation results (test image, ground truth, and predicted results of each
algorithm) of the first ten images from the validation set of ADE20K. Figure [2] shows that the
representations pre-trained by our algorithms transfer well to the semantic segmentation task. Also,
the performance of our algorithms is similar to or better than that of the existing algorithms.

G Limitations and future directions

Since this is the first study in the direction of implicitly applying the idea of contrastive learning, we
adopt algorithms with simple losses (such as SimSiam and BYOL) as the benchmark algorithms. To
do so, we want to see vividly and not to obscure the effect of our method. The performance may be
further improved when applied to algorithms that utilize more complicated strategies. For example,
there are algorithms that use a multi-crop strategy 2020]] where both global and local

views are considered [[Caron et all 2021}, [Zhang et al., 2022| [Wanyan et al., 2023]]. Combining
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Figure 2: Semantic segmentation results of the first ten images from the validation set of ADE20K.
The performance of our algorithms is similar or better than that of the original algorithms.



our ideas with these algorithms may further improve transfer learning (e.g., dense prediction tasks)
performance on multi-object datasets. Since our methodology is an intermediate between contrastive
and non-contrastive learning, it may help the community to better understand the differences and
similarities between them [Garrido et al., [2022]].
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