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A Numerical experiments

The goal of this section is to quantify how much (in addition to interpolating the training dataset) our
model is able to generalize on the test dataset. This is also useful to compare the performances of our
model with those of standard ResNet architectures (which integrate batch normalization and training
of the hidden layers). We implemented our model in Pytorch [45] and trained it on image datasets for
classification tasks. Source code is available at https://github.com/rbarboni/FlowResNets.

Experiments were conducted using a private infrastructure, which has a carbon efficiency of
0.05 kgCO2eq/kWh. A cumulative of (at most) 1000 hours of computation was performed on
hardware of type Tesla V100-PCIE-16GB (TDP of 300W). Total emissions are estimated to be
15 kgCO2eq (or 60km in an average car) of which 0 percents were directly offset.
Estimations were conducted using the MachineLearning Impact calculator presented in [30].
Computational setup for classification tasks. In the context of classification tasks, we use a
cross entropy loss in place of the least square loss of Eq. (7). For a problem with K classes, the
output dimension of the model is d′ = K and targets y ∈ RK are one-hot vector encoding the target
classes. For a batch of N predictions (zi)1≤i≤N and targets (yi)1≤i≤N in RK the Cross Entropy
loss is defined as:

CrossEntropy((zi)i, (y
i)i) :=

1

N

N∑
i=1

ℓ(zi, yi),

where ℓ is the Binary Entropy defined for one prediction z and one target y ∈ RK by:

ℓ(z, y) :=

∑K
j=1 y

i
je

zi
j∑K

j=1 e
zi
j

.

Then for a model F depending on the parameters W and a training batch (xi, yi)1≤i≤N we define
the empirical risk:

L(W ) := CrossEntropy((F (W,xi)i, (y
i)i),

and train the model by Stochastic Gradient Descent (SGD) on W . Finally, the performance of the
model is assessed by the Top-1 error rate on a test dataset.

Note that, as explained in Remark 2, the result of Theorem 3 can be extended to this cross en-
tropy loss. Indeed, ℓ satisfies a functional inequality similar to the Polyak-Lojasiewicz inequality.
Assuming without loss of generality that y = e1 is the indicator of class 1, one has:

∇z1ℓ(z, y) = e−ℓ(z,y) − 1,

Then by convexity of exponential, when ℓ(z, y) ≤ 1:

∥∇zℓ(z, y)∥2 ≥ (1− e−ℓ(z,y))2 ≥ (1− e−1)2ℓ(z, y)2.

Note however that Theorem 3 is only valid for full batch gradient descent. We leave its extension to
SGD for future works.

A.1 Experiments on MNIST

We implemented the model of Definition 1 on Pytorch using the torchdiffeq package [11] and
performed experiments on the MNIST dataset.
Implementation using torchdiffeq. The model of Definition 1 is implemented as a succession of
convolutional layers. Given some number of layers L the trained parameters consist of convolution
matrices Wk ∈ RC×Cint×3×3 for k ∈ J0, LK, with C the number of channels of the input image and
Cint some number of channels for the hidden layers. The control parameter v is defined at discrete
time steps {k/L}0≤k≤L by:

vk/L(x) = Wk ⋆ ReLU(U ⋆ x),

where U ∈ RCint×C×3×3 is a fixed and untrained convolution matrix. We refer to this setting as a
ResNet with RKHS residuals. On the other hand, we refer to the setting where U is replaced at each
layer by trained convolution matrices Uk as ResNet with Single Hidden Layer (SHL) residuals.

15

https://github.com/rbarboni/FlowResNets
https://mlco2.github.io/impact#compute


Remark 6. By analogy with the definition of RKHSs generated by random features (Eq. (20)), the
ratio between the number of features and the dimension is here:

r

q
=

Cint

C
.

For any t ∈ [0, 1], vt is defined by affine interpolation:

vt(x) := vk/L(x) + (tL− k)
(
v(k+1)/L(x)− vk/L(x)

)
= (Wk + (tL− k)(Wk+1 −Wk)) ⋆ σ(U ⋆ x),

with k = ⌊tL⌋. The forward method consists in integrating the ODE of Eq. (6) with control param-
eter v using the torchdiffeq.odeint method [11]. For some input z0 define:

z1((Wk), z0) := torchdiffeq.odeint(v, z0, [0, 1]),

then for an image input x the model’s output is given by:

F ((Wk), x) = B(z1((Wk), A(x))),

where A and B are small convolutional networks, fixed during the training of F . These networks
play the same role as the matrices A and B in Definition 1, that is they are used for the purpose of
adjusting the data dimension.
Hyperparameter tuning. Several choices of hyperparameters can affect the performances of the
model.

• The convolution matrix U : as detailed in Section 5, the way the weights of U are sampled
determines to which RKHS V belongs the control parameter v. For the sake of simplicity
we choose to sample the coefficients of U as i.i.d. Gaussians.

• The initialization of (Wk): the weights of the convolution matrices Wk are initialized to 0.
For an input image x the output is given at initialization by F (0, x) = B(A(x)).

• The integration method: torchdiffeq.odeint allows the user to choose an integration
method. We observed an explicit midpoint method to offer a good trade-off between per-
formance and numerical stability w.r.t. other fixed-steps methods such as explicit Euler or
RK4.

• The number of layers L: we tested our model for L ∈ {5, 10, 20}. This parameter controls
the total number of parameters of the model.

• The networks A and B: their choice defines the dimension of space in which the forward
ODE Eq. (6) is integrated, which is expected to have an important impact on the perfor-
mances of the model (c.f. Section 5). Moreover, as the parameters (Wk) are initialized at 0,
the performances of the model before training are those of the concatenation B◦A. Without
training, the classification error of B ◦ A is of 90% while with enough training, it can be as
good as 2%. We tested our model with different levels of training of B ◦ A.

Results. Figure 1 shows the evolution of the performances of RKHS-NODEs while trained on the
MNIST dataset. The decay of the Empirical Risk is directly related to the decay of the classification
error. Without pretraining A and B, our model already achieves up to 98% accuracy on the test set.
When A and B are pretrained RKHS-NODE still improves on the starting accuracy: in this setting
more than 99% accuracy is reached. Most importantly, Fig. 1 shows that not training the hidden lay-
ers inside residual blocks does not significantly hinders the performances in classification. Indeed,
comparing the performances of ResNets with RKHS residuals and SHL residuals one observes a
1% accuracy drop when training RKHS-NODE from scratch (Fig. 1a) and 0.5% accuracy when
networks A and B are pretrained (Fig. 1b).

Finally we showcase the relevance of the analysis of Section 5 by training our model with a varying
number of input channels in Fig. 2. We observe a significant drop in convergence of the empirical
risk with 4 channels compared with 8 and 32 channels. Non-convergence of the empirical risk
also implies poorer performances in generalization. Such results are coherent with the convergence
condition of Eq. (15): augmenting the data dimension allows to have global convergence when the
loss at initialization is too high.
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A.2 Experiments on CIFAR10

We performed experiments on the CIFAR10 dataset, using an architecture inspired from
ResNet18 [25].
Implementation. Our architecture relies on the ResNet18 architecture [25] but residual blocks are
changed and simplified (by removing the final non-linearity and the batch-normalization) to match
the definition of RKHS-NODE (Definition 1). Each residual block consists in the composition of a
convolution U , a ReLU non-linearity and a convolution W . More precisely, for an input image x,
the output of the kth layer reads:

Fk(x) = x+Wk ⋆ ReLU(Uk ⋆ x),

where Uk ∈ RCint×C×3×3, Wk ∈ RC×Cint×3×3 are convolution matrices, C is the number of
channels of the input image and Cint is the number of channels of the hidden layer. When both
convolutions Wk and Uk are trained, we refer to these residuals as Single Hidden Layer (SHL)
residuals. In the framework of RKHS-NODE, all convolutions Uk are fixed and set to the same
convolution U . We refer to it as RKHS residuals.

Finally, ResNet18 consists of 4 blocks each containing 2 residual layers. We keep 2 of our residuals
in the first, second and fourth block but stack an arbitrary number D of residual layers in the third
block. Thereby we refer to this third block as the NODE block, which performs the integration
of Eq. (6).

Note that compared to the residuals in the original ResNet18 architecture, batch-normalization at
input and output of the residuals as well as ReLU non-linearities are removed. Moreover, in order
to reproduce the framework of Random Fourier Features (Eq. (20)), the weights of U are sampled
as i.i.d. gaussians and rescaled by a C

−1/2
int factor. Finally, the weights of the convolutions Wk are

initialized at 0. Such an initialization corresponds in many ways to the one proposed in [61].
Results. Fig. 3 reports the training of RKHS-NODE on the CIFAR10 dataset. Figure 3a shows the
training of RKHS-NODE (RKHS residuals) and is to be compared with Fig. 3b which shows the
training of the same model but with trained hidden layers (SHL residuals). Our experiments show
that similar performances can be achieved: both ResNets achieve up to 88% accuracy on the test
dataset. As a comparison, the ResNet18 original architecture can be trained to achieve up to 94%
accuracy.

Finally, Fig. 3 also compares the performances of the model depending on the number of layers
inside the NODE block. One observes significantly different behavior when there is no NODE (1
layer) and one there is (10 and 20 layers): more layers are related to better performances both on
the train dataset and on the test dataset and both when hidden layers are trained or not. However,
one sees that the improvement related to adding more layers is limited: performances with 10 and
20 layers are very similar and a NODE block with 1 layers already achieves 82% accuracy RKHS
residuals and 84% accuracy with SHL residuals.

B Proofs of Section 3

We give a proof of Theorem 1. This essentially follows the proof given in [36].

Proof of Theorem 1. Assume the loss L satisfies Definition 2 with M and m and that Eq. (9) is
satisfied at initialization v0 ∈ Rm. The proof proceeds by induction over the gradient step k

Assume the convergence rate and the regularization bound of Eq. (10) are satisfied for every l ≤ k.
Then at step k + 1:

∥vk+1 − v0∥ = ∥η
k∑

l=0

∇L(vl)∥ ≤ η

k∑
l=0

∥∇L(vl)∥

≤ η

k∑
l=0

√
2M(∥vl∥)L(vl).
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(b) With pretraining (starting with 97% accuracy)

Figure 1: Performances of NODE with 32 channels while trained on MNIST with SGD. Left column
reports evolution of the empirical risk and right column reports evolution of classification error, both
for ResNets with RKHS residuals (plain) and SHL residuals (dashed). The x-axis is the number of
pass through the dataset. Experiments are performed with different levels of pretraining of A and B,
corresponding to different starting accuracy ((a)-(b)), and with different number of layers. Learning
rate and batch size are fixed, learning rate is divided by 10 after 35 iterations. Plots are average over
20 runs, lines are means and, for RKHS residuals, colored areas are mean ± one standard deviation.
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Figure 2: Training of RKHS-NODE on MNIST with 20 layers, 4, 8 and 32 input channels C and
without pretraining. The x-axis is the number of pass through the dataset. The rate Cint/C = 1
is the same for each model. Learning rate and batch size are fixed, learning rate is divided by 10
after 35 iterations. Plots are average over 20 runs, lines are means and colored areas are mean ± one
standard deviation.
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(a) Fixed hidden layers (RKHS)
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(b) Trained hidden layers (SHL)

Figure 3: Performances of RKHS-NODE while trained on CIFAR10 with SGD (256 images per
batch). Left column reports evolution of the empirical risk on the train set and right column reports
the classification error on the test set. The x-axis is the number of pass through the dataset. Learning
rate and batch size are fixed, learning rate is divided by 10 after 260 iterations. Plots are average
over 20 runs, lines are means and colored areas are mean ± one standard deviation.

Using the induction hypothesis and setting µ = m(∥v0∥+R) we have:

∥vk+1 − v0∥ ≤ η
√

2M(∥v0∥+R)L(v0)

k∑
l=0

(1− ηµ)−l/2

≤ η
√
2M(∥v0∥+R)L(v0)(1−

√
1− ηµ)−1

≤ 2

µ

√
2M(∥v0∥+R)L(v0)

≤ R,

where the last inequality is Eq. (9). We thus recovered the regularization bound of Eq. (10) at step
k + 1.

Moreover, because vk+1 is located in B(v0, R) we have thanks to the smoothness assumption:

L(vk+1) ≤ L(vk)− η∥∇L(vk)∥2 + η2
β

2
∥∇L(v)∥2

≤ L(vk)− η

2
∥∇L(vk)∥2,

because η ≤ β−1. Thus using the lower bound in the PL inequality Eq. (8):

L(vk+1) ≤ L(vk)(1−m(∥v0∥+R)η),

which gives the convergence rate of Eq. (10) at step k + 1 by induction on k.
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C Proofs of Section 4

C.1 About the definition of RKHS-NODE

Before deriving proofs for the properties of our RKHS-NODE model, it is interesting to study care-
fully the well-posedness of Definition 1. Indeed, because the control parameter v is only integrable
in time and not continuous, the Cauchy-Lipschitz theorem does not ensure that there exist solu-
tions to Eq. (6). Instead we rely on a weaker notion of solution and use a result from Carathéodory
(Section I.5 in [23]).

Proposition 3. Let V be some RKHS satisfying Assumption 1 and v ∈ L2([0, 1] , V ) be some control
parameter. Then for every x ∈ Rd there exists a unique solution z of Eq. (6) in the weak sense of
absolutely continuous functions. More precisely there exists a unique z ∈ H1([0, 1] ,Rq) such that
for every t ∈ [0, 1]:

zt = Ax+

∫ t

0

vs(zs)ds . (21)

Proof. The map (t, z) ∈ [0, 1]×Rq 7→ vt(z) is measurable and by Assumption 1 we have for every
t ∈ [0, 1] and every z ∈ Rq:

∥vt(z)∥ ≤ κ∥vt∥V ,

whose upper-bound is integrable w.r.t. t ∈ [0, 1]. Then, applying Theorem 5.1 of [23] gives a unique
absolutely continuous solution z of Eq. (21). Applying Assumption 1 once again, we have that ż is
square integrable and thus z is in H1.

In the paper, every equality implying derivatives has to be understood in the sense of weak deriva-
tives of H1 functions. In particular, this notion allows to perform integration by parts, which is used
in the following proof of Property 1.

Proof Property 1. Consider the optimization problem of minimizing the empirical risk of Eq. (7)
with F the RKHS-NODE model of Definition 1 and a dataset (xi, yi)1≤i≤N ∈ (Rd × Rd′

)N .
Introducing for every index i ∈ J1, NK the variables zi ∈ H1([0, 1] ,Rq) solutions of Eq. (6), this
can be viewed as an optimisation problem over ((zi)i, v) under the constraint that Eq. (6) is satisfied:

min
(zi)i∈H1(Rq)N

v∈L2(V )

1

2N

N∑
i=1

∥Bzi1 − yi∥2

with ∀i ∈ J1, NK,
{

żit = vt(z
i
t) ∀t ∈ [0, 1]

zi0 = Axi.

Introducing the adjoint variables (pi)i ∈ H1(Rq)N , the Lagrangian of the optimization problem is
defined as:

L((zi), (P i), v) :=

N∑
i=1

( 1

2N
∥Bzi1 − yi∥+

∫ 1

0

⟨pit, żit − vt(z
i
t)⟩dt

)
=

N∑
i=1

( 1

2N
∥Bzi1 − yi∥+

[
⟨pit, zit⟩

]1
0
−
∫ 1

0

⟨ṗit, zit⟩dt−
∫ t

0

⟨pit, vt(zit)⟩dt
)
,

where the second equality is established by integration by parts. Therefore, the condition for opti-
mality over zi is equivalent to Eq. (11). For every index i:

∇ziL = 0 ⇔
{

ṗit = −Dvt(z
i
t)p

i
t

pi1 = − 1
NB⊤(Bzi1 − yi),

which has to be understand in the sense of weak solutions in H1.

20



The gradient of L is obtained by differentiating over the v variable. Denoting δpz the linear form
v 7→ ⟨v(z), p⟩, we have:

∇L(v) = ∇vL((zi), (pi), v)

= −
N∑
i=1

K ∗ δp
i

zi

= −
N∑
i=1

K(., zi)pi,

with K the kernel function of the RKHS V and K∗ : V ∗ → V the associated isometry1.

C.2 Proof of Property 2

We prove here that for any given dataset (xi, yi)1≤i≤N ∈ (Rd × Rd′
)N , the empirical risk L as-

sociated with the RKHS-NODE model satisfies a (local) Polyak-Lojasiewicz property. As stated in
Property 2. The proof uses Assumption 1 to derive estimates on the solutions of Eq. (6) and Eq. (11),
which we give in the following lemma:
Lemma 1. Let V satisfy Assumption 1 with constant κ and let v ∈ L2([0, 1] , V ) be some control
parameter.

(i) Let (zi)1≤i≤N be the solutions of Eq. (6) for some data inputs (xi)1≤i≤N ∈ (Rd)N . Then for
every indices i, j ∈ J1, NK and every time t ∈ [0, 1]:

∥zi − zj∥ ≥ σmin(A)e−κ∥v∥L2 ∥xi − xj∥ . (22)

(ii) Let (pi)1≤i≤N be the solutions of Eq. (11) associated with (zi)1≤i≤N with objective outputs
(yi)1≤i≤N ∈ (Rd′

)N . Then for every i ∈ J1, NK and every time t ∈ [0, 1]:

σmin(B
⊤)

N
e−κ∥v∥2

L∥Bzi1 − yi∥ ≤ ∥pit∥ ≤ σmax(B
⊤)

N
eκ∥v∥

2
L∥Bzi1 − yi∥ .

Proof of Lemma 1. Proof of (i) Let i, j ∈ J1, NK. Assume by contradiction that for some time
t ∈ [0, 1] we have:

∥zit − zjt ∥ < e−κ∥v∥L2 ∥zi0 − zj0∥.
Then because zi and zj are absolutely continuous, ∥zi − zj∥2 is absolutely continuous and for any
time s ∈ [0, 1]:

∥zis − zjs∥2 = ∥zit − zjt ∥2 + 2

∫ s

t

⟨vr(zir)− vr(z
j
r), z

i
r − zjr⟩dr

≤ ∥zit − zjt ∥2 + 2

∫ s

t

κ∥vr∥V ∥zir − zjr∥2dr,

where the inequality follows from ∥Dvr∥2,∞ ≤ κ∥vr∥V . Applying Grönwall’s lemma, we have:

∥zis − zjs∥2 ≤ ∥zit − zjt ∥2e2κ∥v∥L2 ,

and by setting s = 0:

∥zi0 − zj0∥2 ≤ ∥zit − zjt ∥2e2κ∥v∥L2 < ∥zi0 − zj0∥,
which is a contradiction. Therefore for any time t ∈ [0, 1]:

∥zit − zjt ∥ ≥ e−κ∥v∥L2 ∥zi0 − zj0∥,
and the result follows by considering the initial condition zi0 = Axi.

1The notation K∗ reminds of convolution which is the case when the kernel is translation invariant.
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Proof of (ii) Let i ∈ J1, NK be any index and let pi be the solution of Eq. (11) with initial condition
pi1 = − 1

NB⊤(Bzi1 − yi). Then because pi is absolutely continuous, ∥pi∥ is absolutely continuous
and for any time t ≤ s ∈ [0, 1]:

∥pit∥2 = ∥pi1∥2 − 2

∫ t

1

⟨Dvs(z
i
s)p

i
s, p

i
s⟩ds,

so that using Assumption 1 we have:

∥pis∥2 ≤ ∥pit∥2 + 2

∫ s

t

κ∥vr∥V ∥pir∥2dr .

Using Grönwall’s lemma in the first inequality and setting s = 0 we have:

∥pi1∥2 ≤ ∥pit∥2e2κ∥v∥L2 ,

and proceeding by contradiction (such as in (i)) we have:

∥pi1∥2 ≥ ∥pit∥2e−2κ∥v∥L2 .

The result follows by considering the initial condition on pi1.

Provided those estimates on zi and pi, it remains to use Assumption 2 in order to conclude.

Proof of Property 2. Let v ∈ L2([0, 1] , V ) and consider the form of the gradient of L given by Prop-
erty 1 with (zi)1≤i≤N the solutions of Eq. (6) and (pi)1≤i≤N the solutions of Eq. (11). Let t ∈ [0, 1],
then by definition of the norm in RKHSs:

∥∇L(v)t∥2V =
∑

1≤i,j≤N

(pit)
⊤K(zit, z

j
t )p

j
t ,

where we recall that K is the kernel associated with V . Noting p := (pit) ∈ RNq , the vector of the
stacked (pit)1≤i≤N , and K the kernel matrix associated with the family of points (zit)i, we have:

∥∇L(v)t∥2V = ⟨p,Kp⟩ .
Then by Assumption 2, there exists a non-increasing function λ and a constant Λ such that:

λ( max
1≤i,j≤N

∥zit − zjt ∥−1)∥p∥2 ≤ ∥∇L(v)t∥2V ≤ Λ∥p∥2.

Using (i) in Lemma 1 we have:

λ( max
1≤i,j≤N

∥zit − zjt ∥−1) ≥ λ(σmin(A)−1δ−1eκ∥v∥L2 ),

where δ := min1≤i,j≤N ∥xi − xj∥ is the data separation. Finally the result follows by using (ii).
More precisely:

∥p∥2 =

N∑
i=1

∥pit∥2

≤ σmax(B
⊤)2

N2
e2κ∥v∥L2

N∑
i=1

∥Bzi1 − yi∥2

= 2
σmax(B

⊤)2

N
e2κ∥v∥L2L(v),

and in the same manner:

∥p∥2 ≥ 2
σmin(B

⊤)2

N
e−2κ∥v∥L2L(v).
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C.3 Proof of Theorem 2

Theorem 2 is a direct consequence of Property 2. In order to apply Theorem 1, it suffices to show
that L satisfies some smoothness assumption as defined in Definition 3:
Property 3 (Smoothness of L). Let V be some RKHS satisfying Assumption 1. Let L be the empir-
ical risk defined on L2([0, 1] , V ) and associated with the RKHS-NODE model. Then there exists a
continuous function C : R+ → R∗

+ such that for every R ≥ 0 and every v, v̄ ∈ L2([0, 1] , V ) with
∥v∥L2 , ∥v̄∥L2 ≤ R:

∥∇L(v)−∇L(v̄)∥L2 ≤ C(R)∥v − v̄∥L2 .

We note κ the constant associated with Assumption 1. The proof of Property 3 relies on the following
lemma:
Lemma 2. Let v, v̄ ∈ L2([0, 1] , V ) be some control parameters and R ≥ 0 be some radius such
that ∥v∥L2 , ∥v̄∥L2 ≤ R. Let (x, y) ∈ Rd × Rd′

be some pair of data input / objective output.

(i) Let z, z̄ be solutions of Eq. (6) with parameter v and v̄ respectively and with the same initial
condition Ax, then for any t ∈ [0, 1]:

∥zt − z̄t∥ ≤ κeκR∥v − v̄∥L2 .

(ii) Let p, p̄ be solutions of Eq. (11) with parameter v and v̄ respectively and with initial condition
1
NB⊤(Bz1 − y) and 1

NB⊤(Bz̄1 − y), then for any t ∈ [0, 1]:

∥pt − p̄t∥ ≤
κe2κR∥B∥2

N
∥v − v̄∥L2

[
∥B∥2 + ∥B(z̄1 − y)∥(1 +ReκR)

]
.

Proof of Lemma 2. Proof of (i) For every time t ∈ [0, 1] we have:

zt − z̄t =

∫ t

0

(
vs(zs)− v̄s(z̄s)

)
ds

=

∫ t

0

(
vs(zs)− vs(z̄s) + vs(z̄s)− v̄s(z̄s)

)
ds ,

and by triangle inequality:

∥zt − z̄t∥ ≤
∫ t

0

(
∥vs(zs)− vs(z̄s)∥+ ∥vs(z̄s)− v̄s(z̄s)∥

)
ds

≤
∫ t

0

κ∥vs∥V ∥∥zs − z̄s∥ds+
∫ t

0

κ∥vs − v̄s∥V ds ,

where we used Assumption 1 in the second inequality. Therefore, by Grönwall’s lemma:

∥zt − z̄t∥ ≤ κeκ∥v∥L2

∫ t

0

∥vs − v̄s∥V ds

≤ κeκR∥v − v̄∥L2 .

Proof of (ii) For any t ∈ [0, 1] we have:

pt − p̄t = (p1 − p̄1)−
∫ t

1

(
Dvs(zs)

⊤ps −Dv̄s(z̄s)
⊤p̄s

)
ds

= (p1 − p̄1)−
∫ t

1

[
Dvs(zs)

⊤(ps − p̄s) +
(
Dvs(zs)−Dvs(z̄s)

)⊤
p̄s +

(
Dvs(z̄s)−Dv̄s(z̄s)

)⊤
p̄s

]
ds ,

and using the triangle inequality and Assumption 1:

∥pt − p̄t∥ ≤ ∥p1 − p̄1∥+
∫ 1

t

[κ∥vs∥V ∥ps − p̄s∥+ κ∥vs∥V ∥zs − z̄s∥∥p̄s∥+ κ∥vs − v̄s∥V ∥p̄s∥] ds.
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Then, using Grönwall’s lemma backward in time gives:

∥pt − p̄t∥ ≤ ∥p1 − p̄1∥eκ∥v∥L2 + κeκ∥v∥L2

∫ 1

t

∥vs − v̄s∥V ∥p̄s∥ds+ κeκ∥v∥L2

∫ 1

t

∥vs∥V ∥zs − z̄s∥∥p̄s∥ds.

On one hand, because of (i) we have for every s ∈ [0, 1]:

∥zs − z̄s∥ ≤ κeκR∥v − v̄∥L2 ,

and also:

∥p1 − p̄1∥ =
1

N
∥B⊤B(z1 − z̄1)∥

≤ ∥B∥22
N

κeκR∥v − v̄∥L2 .

On the other hand, recalling (ii) of Lemma 1, for every s ∈ [0, 1]:

∥p̄s∥ ≤ σmax(B
⊤)

N
eκR∥Bz1 − y∥.

Putting these estimates in the preceding inequality gives:

∥pt − p̄t∥ ≤
[∥B∥22

N
κe2κR +

σmax(B
⊤)

N
κe2κR∥B(z̄1 − y)∥+R

σmax(B
⊤)

N
κ2e3κR∥B(z̄1 − y)∥

]
∥v − v̄∥L2 ,

which is the desired result.

Proof of Property 3. Let v, v̄ ∈ L2([0, 1] , V ) with ∥v∥L2 , ∥v̄∥L2 ≤ R. Then taking the same nota-
tion as in Lemma 2, we have for any t ∈ [0, 1]:

∇L(v)t −∇L(v̄)t =

N∑
i=1

K(., zit)p
i
t −

N∑
i=1

K(.z̄it)p̄
i
t

=

N∑
i=1

K(., zit)(p
i
t − p̄it) +

N∑
i=1

(K(., zit)−K(.z̄it))p̄
i
t,

and we can write ∥∇L(v)t −∇L(v̄)t∥V ≤ T1 + T2 with:

T1 := ∥
N∑
i=1

K(., zit)(p
i
t − p̄it)∥V , T2 := ∥

N∑
i=1

(K(., zit)−K(.z̄it))p̄
i
t∥V .

First we consider deriving an upper bound on T1. Note that by the definition of the norm in RKHSs
and by Assumption 2 we have:

T 2
1 =

∑
1≤i,j≤N

(pit − p̄it)
⊤K(zit, z

j
t )(p

j
t − p̄jt ) ≤ Λ

N∑
i=1

∥pit − p̄it∥2.

Therefore, using (ii) from Lemma 2 to bound ∥pit − p̄it∥ for every index i we get:

T 2
1 ≤ ΛC2

1∥v − v̄∥2L2 ,

with:

C2
1 =

N∑
i=1

κ2e4κR∥B∥22
N2

[
∥B∥2 + ∥B(z̄i1 − y)∥(1 +ReκR)

]2
≤

N∑
i=1

2κ2e4κR∥B∥22
N2

[
∥B∥22 + ∥B(z̄i1 − y)∥2(1 +ReκR)2

]
≤ 2κ2e4κR∥B∥42

N
+

4κ2e4κR∥B∥22
N

(1 +ReκR)2L(v̄),
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where we recognised L(v̄) in the third line. By continuity of L we can define for every R ≥ 0:
L∗(R) := sup

∥v∥L2≤R

L(v).

And therefore:

C2
1 ≤ 2κ2e4κR∥B∥42

N
+

4κ2e4κR∥B∥22
N

(1 +ReκR)2L∗(R) =: C3(R)2.

We then consider deriving an upper-bound on T2. By triangle inequality:

T2 ≤
N∑
i=1

∥(K(., zit)−K(., z̄it))p̄
i
t∥V .

Consider any α ∈ V , then for any index i ∈ J1, NK, by the reproducing property:

⟨(K(., zit)−K(., z̄it))p̄
i
t, α⟩V = ⟨α(zit)− α(z̄it), p̄

i
t⟩

≤ κ∥α∥V ∥zit − z̄it∥∥p̄it∥,
where we used the Cauchy-Schwarz inequality and Assumption 1 applied to α. Therefore, by dual-
ity:

∥(K(., zit)−K(., z̄it))p̄
i
t∥V ≤ κ∥zit − z̄it∥∥p̄it∥.

Using the estimates of Lemma 1 and Lemma 2 we get:

∥(K(., zit)−K(., z̄it))p̄
i
t∥V ≤ κ2e2κR∥B∥2

N
∥Bz̄i1 − yi∥∥v − v̄∥L2 .

And finally, using Cauchy-Schwarz inequality and recognizing L(v̄) we have:

T 2
2 ≤ N

N∑
i=1

∥(K(., zit)−K(., z̄it))p̄
i
t∥2V

≤ C2
2∥v − v̄∥2L2 ,

with:
C2

2 = 2κ4e4κR∥B∥22L(v̄)
≤ 2κ4e4κR∥B∥22L∗(R) =: C4(R)2.

Therefore we obtain the result by setting:

C(R) =
[
ΛC3(R)2 +C4(R)2

]1/2
.

Provided with Property 3, we can finish the proof of Theorem 2.

Proof of Theorem 2. By Property 2, L satisfies the PL inqualities of Definition 2 and the proof is a
direct corollary of Theorem 1. It only remains to show that the smoothness condition of Definition 3
is verified.

Let v, v̄ ∈ L2([0, 1] , V ) such that ∥v∥L2 , ∥v̄∥L2 ≤ R for some radius R ≥ 0. Then we have:

L(v̄) =L(v) +

∫ 1

0

∇L(v + t(v̄ − v)).(v̄ − v)dt

=L(v) +∇L(v).(v̄ − v)

+

∫ 1

0

[
∇L(v + t(v̄ − v))−∇L(v)

]
· (v̄ − v)dt.

Using Property 3, there exists some C(R) such that:
∥∇L(v + t(v̄ − v))−∇L(v)∥L2 ≤ tC(R)∥v̄ − v∥L2 .

This gives the inequality:

L(v̄) ≤ L(v) +∇L(v) · (v̄ − v) +
C(R)

2
∥v̄ − v∥2L2 ,

which is the desired result.
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D Proofs of Section 5

The results in Section 5 show how the condition for convergence in Eq. (15) can be enforced by con-
sidering suitable RKHSs of vector-fields and suitable matrices A and B. We give in Appendix D.3
examples of suitable kernels.

In the following, we assume that for every q ≥ 1 we are provided with a function kq : R+ → R
such that the induced symmetric rotationally-invariant kernel Kq defined by:

∀z, z′ ∈ Rq, Kq(z, z
′) = kq(∥z − z′∥) Idq, (23)

is a positive-definite kernel over Rq . Without loss of generality, one can assume kq to be normalized,
that is kq(0) = 1. We note Vq the vector-valued RKHS associated with Kq . The properties of Vq are
then entirely determined by kq . In particular, smoothness of the kernel at 0 implies regularity of the
vector-fields in Vq:

Property 4 (Regularity of Vq). Let kq : R+ → R be some function defining a positive symmetric
kernel Kq . If kq is 4 times differentiable at 0, with k′q(0) = k

(3)
q (0) = 0. Then Vq satisfies Assump-

tion 1 with constant κ =
√
kq(0) +

√
−k′′q (0) +

√
k
(4)
q (0).

As a consequence, if the derivatives of kq can be bounded uniformly over q then Vq satisfies As-
sumption 1 with some constant κ independent of q. This, is the case for the Matérn kernel k defined
in Eq. (17).

Proof. The proof proceeds by duality arguments. For q ≥ 1, consider some v ∈ Vq . Then for any
z ∈ Rq and any α ∈ Vq , by the reproducing properties of RKHSs:

⟨v(z), α⟩ = ⟨v,Kq(., z)α⟩Vq

≤ ∥v∥Vq
∥Kq(., z)α∥Vq

= ∥v∥Vq

(
⟨α,Kq(z, z)α⟩

)1/2
≤
√
kq(0)∥v∥Vq

∥α∥.

Therefore, by duality ∥v(z)∥ ≤
√

kq(0)∥v∥Vq
and then by taking the supremum over z ∈ Rq:

∥v∥∞ ≤ kq(0)∥v∥Vq .

Then for any z ∈ Rq any α, β ∈ Rq and any h ∈ R+:

⟨v(z + hα)− v(z), β⟩
= ⟨v, (Kq(., z + hα)−Kq(., z))β⟩
≤ ∥v∥Vq∥(Kq(., z + hα)−Kq(., z))β∥Vq .

In the r.h.s we have using Taylor’s expansion of kq at 0:

∥(Kq(., z + hα)−Kq(., z))β∥2Vq
=

(
β
−β

)⊤(
kq(0)Idq kq(h∥α∥)Idq

kq(h∥α∥)Idq k(0)Idq

)(
β
−β

)
= 2∥β∥2(kq(0)− kq(h∥α∥))
= −∥β∥2h2∥α∥2k′′q (0) + o(h2).

Taking the limit h → 0:

⟨Dv(z)α, β⟩ = lim
h→0

h−1⟨v(z + hα)− v(z), β⟩

≤
√

−k′′q (0)∥v∥Vq
∥α∥∥β∥,

and therefore ∥Dv(z)∥2 ≤
√
−k′′q (0)∥v∥Vq .
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Finally, let us bound ∥D2v∥2,∞. For any z ∈ Rq any α, β, γ ∈ Rq and any h, l ≥ 0 we have in the
same manner:

⟨v(z + hβ + lα)− v(z + hβ)− v(z + lα) + v(z), γ⟩

≤ ∥v∥Vq
∥β∥∥α∥∥γ∥hl

√
k
(4)
q (0) + o(hl)

where the second line is obtained by Taylor expansion of kq at 0. Thus, taking the limit h, l → 0:

⟨D2v(z)(α, β), γ⟩ = lim
h,l→0

h−1l−1⟨v(z + hβ + lα)− v(z + hβ)− v(z + lα) + v(z), γ⟩

≤
√
k
(4)
q (0)∥v∥Vq

∥β∥∥α∥∥γ∥,

and therefore ∥D2v(z)∥2 ≤
√

k
(4)
q (0)∥v∥Vq

.

Setting κ =
√
kq(0)+

√
−k′′q (0)+

√
k
(4)
q (0) we obtain the result. Moreover, choosing appropriate

v in the above proof, inequalities become sharp and one observes that the constant κ is optimal.

D.1 Enforcing convergence with high dimensional lifting and universal kernels

Here we investigate the dependency of Eq. (15) w.r.t. q, δ and N for the class of RKHS Vq and
thereby recover the proof of Proposition 1.

We make the following assumption concerning the decay of kq at infinity:
Assumption 3 (Decay of kq). For every q ≥ 1, kq(x) tends to 0 when x tends to infinity and we
note βq,N > 0 s.t.:

∀x ≥ βq,N , |kq(x)| ≤
1

2N
.

Moreover for fixed N we assume that

βq,N = oq→+∞(q1/4).

D.1.1 Lifting matrices

For any q ≥ 1 we consider here the matrices:

Aq := q−1/4(Idd, ..., Idd, 0)
⊤ ∈ Rq×d,

Bq := q1/4(Idd′ , 0...0) ∈ Rd′×q,

where there are ⌊q/d⌋ copies of Idd in Aq . In particular we have:

σmin(Aq) = q−1/4
√
⌊q/d⌋ ≃ q1/4,

σmin(B
⊤
q ) = σmax(B

⊤
q ) = q1/4

and BqAq ∈ Rd′×d is independent of q. We also consider for every q ≥ 1 some control parameter
initialization V 0

q ∈ L2(Vq) such that ∥v0q∥L2 ≤ R0q
−1/4 and assume the data distribution to be

compactly supported.
Proposition 4. Let R > 0 and d, d′ ≥ 1. Assume Assumption 3 is satisfied, Vq satisfies Assumption 1
with constant κ independent of q and there exists R0 > 0 s.t. ∥v0q∥ ≤ R0q

−1/4 for every q ≥ 1.
Then there exists some constant C > 0 so that for any N ≥ 2 and any δ ∈ (0, 1], Eq. (15) is satisfied
with matrices Aq, Bq and κ, λ,Λ associated with the RKHS Vq as soon as:

q ≥ CN4, and q ≥ Cδ−4β4
q,N . (24)

Note that the second condition in Eq. (24) can always be ensured for large enough q thanks to As-
sumption 3. In the case of the Matérn kernel k defined in Eq. (17), such an assumption is verified
because it has exponential decay and it is independent of q. Hence, Proposition 1 is a direct conse-
quence of Proposition 4.
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Proof of Proposition 4. Let q ≥ 1. Using the fact that d2⌊q/d⌋2 ≥ q(q − 2d), considering:

q ≥ 2d+ d2
β4
q,N

δ4e−4κ(R+R0)
(25)

is enough to ensure that:

q−1/4
√

⌊q/d⌋δe−κ(R+R0) ≥ βq,N .

Then, by Assumption 3 for (zi)1≤i≤N ∈ (Rq)N with data separation q−1/4
√
⌊q/d⌋δe−κ(R+R0) we

have:

∀1 ≤ i < j ≤ N, |kq(∥zi − zj∥)| ≤ 1

2N
.

Thus, the kernel matrix K = (kq(∥zi − zj∥) Idq)i,j is diagonally dominant with:

λmin(K) ≥ 1− N − 1

2N
≥ 1

2
,

and by definition of λ in Eq. (15):

λ(σmin(Aq)
−1δ−1eκ(R+R0)) ≥ 1

2
. (26)

Moreover, Λ ≤ N because kq is bounded by 1.

Let x ∈ B(0, r0) and assume z is a solution of Eq. (6) for the control parameter v0q and with initial
condition Aqx. We have at time t = 1:

z1 = Aqx+

∫ 1

0

(v0q )t(zt)dt,

so that by triangle inequality and Assumption 1:

∥z1 −Aqx∥ ≤ κ∥v0q∥L2 ,

and then because ∥v0q∥ ≤ R0q
−1/4 and the dataset is compactly supported:

∥F (v0q , x)∥ = ∥Bqz1∥
≤ ∥BqAqx∥+ ∥Bq(z1 −Aqx)∥
≤ ∥BqAq∥2r0 + κR0,

with BqAq independent of q. Thus L(v0q ) ≤ C for some constant C independent of q, N and δ.

Finally:

σmax(B
⊤
q )

σmin(B⊤
q )2

= q−1/4, (27)

and putting Eq. (26) and Eq. (27) into the l.h.s. Eq. (15) gives:

2
√
2σmax(B

⊤
q )
√
NΛL(0)e3κ(R+R0)

σmin(B⊤
q )2λ(σmin(Aq)−1δ−1e−κ(R+R0))

≤ 4
√
2Ce3κ(R+R0)

N

q1/4
.

Considering R > 0 is fixed (c.f. Remark 7), Theorem 2 can be applied as soon as:

q ≥ 210C2e12κ(R+R0)R−4N4 (28)

and combining this bound with the one in Eq. (25) gives the result.

Remark 7 (Choice of R). The proof of Proposition 4 holds for any fixed R > 0 whose choice
impacts the result through the constant C. There is a trade-off between minimizing e4κR to have
a better dependency of q w.r.t. δ−1 log(N) in Eq. (25) and minimizing R−1e3κR to have a better
dependency w.r.t. N in Eq. (28). However, in any case, optimizing w.r.t. R only improves the result
up to a constant factor.
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D.1.2 Scaling matrices

For α > 0, we consider here the matrices:

A = α(Idd, 0)
⊤ ∈ R(d+d′)×d and B = α(0, Idd′) ∈ Rd′×(d+d′).

Then, in the proof of Proposition 4 one has σmin(A) = α and thus Eq. (26) holds as soon as:

α ≥ δ−1eκ(R+R0)βd+d′,N .

Moreover, σmax(B
⊤) = σmin(B

⊤) = α and F (0, x) = 0 for every input x as BA = 0. Thus, with
initialization v0 = 0 the l.h.s. of Eq. (15) scales as:

2
√
2σmax(B

⊤)
√
NΛL(0)e3κR)

σmin(B⊤)2λ(σmin(A)−1δ−1e−κR)
≤ 4

√
2Ce3κR

N

α
= O(1/α),

and global convergence holds for α = Ω(δ−1βd+d′,N +N).

D.2 Enforcing convergence with high dimensional embedding en finite dimensional kernels

We recover here the result of Proposition 2 for the more general kernel kq . In particular notice that,
as an application of Bochner’s theorem [50], for every q ≥ 1 there exists some probability measure
µq over Rq such that:

∀z ∈ Rq, kq(∥z∥) =
∫
Rq

eı⟨z,ω⟩dµq(ω). (29)

Then, such as in Eq. (20) for the Matérn kernel, for any independent sampling ωj ∼ µq of size r
one can consider the feature map:

φ : z 7→
(
eı⟨z,ω

j⟩
)
1≤j≤r

∈ Cr. (30)

Such a feature map induces a structure of RKHS V̂q which is the set of residuals of Eq. (3) with
activation φ. The associated kernel is K̂q : (z, z′) 7→ k̂q(z, z

′) Idq with:

∀z, z′ ∈ Rq, k̂q(z, z
′) := ⟨φ(z), φ(z′)⟩

r→+∞−−−−−→ kq(∥z − z′∥),
almost surely, by the law of large numbers.

We make the following assumption on µq:
Assumption 4 (Moments of µq). The measure µq admits finite moments up to order 8:

Eµq

 8∏
j=1

∣∣ωij

∣∣ < ∞, ∀i1, ..., i8 ∈ J1, qK.

Moreover, we assume those moments are independent of q.

Note that Assumption 4 implies regularity on the function kq . Indeed by Fourier inversion theorem
we have for every r ∈ R+ and every θ ∈ Sd−1:

kq(r) = Eµq

[
eır⟨θ,ω⟩

]
.

By theorems of derivation under the integral kq is 8th-time differentiable on R+ and for 0 ≤ l ≤ 8:

k(l)q (r) = Eµq

[
(ı⟨θ, ω⟩)leır⟨θ,ω⟩

]
.

In particular, kq is four time differentiable at 0 and:

k′(0) = Eµq [ı⟨θ, ω⟩]
k(3)(0) = Eµq

[
−ı⟨θ, ω⟩3

]
Therefore, k′q(0) and k

(3)
q (0) are in ıR ∩ R = {0} and Property 4 holds. Moreover, as the moments

are independent of q, the associated κ is also independent of q.
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Proposition 5. Consider q,N ≥ 1 and ϵ, τ, R > 0.

(i) Assume Assumption 4 is satisfied. For r ≥ Ω(τq8), with probability greater than 1 − τ−1, V̂q

satisfies Assumption 1 with some κ̂ ≤ κ+ 1.

(ii) For r ≥ Ω(ϵ−2N2(q log(∥A∥2r0 + R) + τ)), with probability greater than 1 − e−τ , for any
control parameter v ∈ L2([0, 1] , V̂q) s.t. ∥v∥L2 ≤ R and any time t ∈ [0, 1]:

λmin(K̂((zit)i)) ≥ λmin(K((zit)i))− ϵ,

where the (zi)i are the solutions to Eq. (6) and K̂, K are the kernel matrices associated with k̂ and
k respectively.

As Assumption 4 is satisfied for the Matérn kernel k defined in Eq. (17) as soon as ν > 4, Proposi-
tion 2 is a direct consequence of Proposition 5.

Proof of Proposition 5. Proof of (i) We already saw that thanks to the assumption on the moments
of µq , the RKHS Vq associated with kq satisfies Assumption 1 with constant κ.

Then we want to prove that for sufficiently high r, the RKHS V̂q generated by the feature map φ
in Eq. (20), satisfies Assumption 1.

Let v ∈ V̂q be of the form:

v : z 7→ Wφ(z)

for some W ∈ Rq×r. For z ∈ Rq , ∥φ(z)∥ = 1 and thus:

∥v(z)∥ = ∥Wφ(z)∥ ≤ ∥W∥ = ∥v∥V̂q
,

so that ∥v∥∞ ≤ ∥v∥V̂q
.

Then Dv(z) = WDφ(z) and by the law of large number we have for any θ ∈ Sq−1:

∥Dφ(z)θ∥2 =
1

r

r∑
j=1

∑
1≤k,l≤q

ωj
kω

j
l θkθl

=
1

r

r∑
j=1

⟨ωj , θ⟩2

r→+∞−−−−−→ Eµq

[
⟨ω, θ⟩2

]
= −k′′q (0).

Because µq admits finite fourth order moments, the rate of convergence can be controlled using
Chebyshev’s inequality. For every indices k, l ∈ J1, qK:

P
( ∣∣∣∣∣∣1r

r∑
j=1

ωj
kω

j
l − Eµq [ωkωl]

∣∣∣∣∣∣ ≥ α/q
)
≤ q2Eµq

[
ω2
kω

2
l

]
α2r

.

For r ≥ Ω( q
4τ
α2 ) we have with probability greater than 1− τ−1 that the above inequality is satisfied

for every indices k, l. Thus for every z ∈ Rq and every θ ∈ Sq−1:∣∣∥Dφ(z)θ∥2 + k′′q (0)
∣∣ ≤ ∑

1≤k,l≤q

|θkθl|
∣∣∣1
r

r∑
j=1

ωj
kω

j
l − Eµq

[ωkωl]
∣∣∣

≤
∑

1≤k,l≤q

|θkθl|
α

q

≤ α,

using Chauchy-Schwarz inequality in the last line. We can thus conclude:

∥Dφ∥22,∞ ≤ −k′′q (0) + α.
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The same arguments holds for D2v(z) = WD2φ(z). For any θ ∈ Sq−1 we have:

D2φ(z)(θ, θ) =

 1√
r

∑
1≤k,l≤q

−eı⟨z,ω
j⟩ωj

kω
j
l θkθl


1≤j≤r

.

Passing to the squared norm we get:

∥D2φ(z)(θ, θ)∥2 =
1

r

r∑
j=1

∑
1≤k,l,s,t≤q

ωj
kω

j
l ω

j
sω

j
t θkθlθsθt

r→+∞−−−−−→
∑

1≤k,l,s,t≤q

Eµq
[ωkωlωsωt] θkθlθsθt

= Eµq

[
⟨ω, θ⟩4

]
= k(4)q (0).

Then because µq admits 8th order moments, we can control the convergence in probability by
Chebyshev’s inequality. For r ≥ Ω( q

8τ
α2 ) we have with probability greater than 1− τ−1:

∥D2φ∥22,∞ ≤ k(4)q (0) + α.

Finally V̂q satisfies Assumption 1 with:

κ̂ ≤ (kq(0))
1/2 + (−k′′q (0))

1/2 + (k(4)q (0))1/2 + 1

for α sufficiently low.

Proof of (ii). For t ∈ [0, 1], we consider (zit)i the solutions of of Eq. (6) for some control parameter
v ∈ L2([0, 1] , V̂q) and we introduce the kernel matrices:

K̂t = (K̂q(z
i
t, z

j
t ))1≤i,j≤N , Kt = (Kq(z

i
t, z

j
t ))1≤i,j≤N .

Using the first point, we know that if ∥v∥L2 ≤ R, then ∥zit∥ ≤ ∥Axi∥ + (κ + 1)R. Then, using
Theorem 1 in [53], we have for every indices i, j and every t ∈ [0, 1]:

P
(
|k̂(zit, zjt )− k(∥zit − zjt ∥)| ≥

h(q,R) +
√
2τ√

r

)
≤ e−τ ,

with h(q,R) := O(
√

q log(∥A∥2r0 +R)). Thus, choosing
r ≥ Ω

(
ϵ−2N2(q log(∥A∥2r0 +R) + τ)

)
, we have with probability greater than 1 − e−τ ,

λmin(K̂t) ≥ λmin (Kt)− ϵ, for any t ∈ [0, 1] .

Note that the assumption of finite 8th moments is only needed to control the convergence rate of
k̂q towards kq in probability. By the law of large numbers, assuming finite 4th-order moments is
sufficient to have convergence almost surely. Also, we used the Chebyshev’s inequality in order to
control the convergence rate. Making stronger assumptions on the decay of µq (e.g. sub-gaussianity)
could have led to faster convergence by using sharper concentration inequalities.

D.3 Example of appropriate kernels

We show here that the Matérn kernel of parameter ν ∈ (8,+∞] satisfies Assumption 3 and Assump-
tion 4.

Gaussian kernel. The Gaussian kernel defined by for some parameter σ > 0 by kq(r) = e−
σ2r2

2 .
In this case the frequency distribution µq is the multivariate normal of variance σ and has a density
given for every ω ∈ Rq by:

µq(ω) =
1

(2πσ2)q/2
e−

∥ω∥2

2σ2 ,
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This distribution admits finite moments of every order which are independent of q. Also, kq is four
times differentiable at 0 and by Property 4 the associated Vq is (strongly) admissible with κ = 2+

√
3

Moreover Assumption 3 as one has |kq(x)| ≤ 1/2N if:

x ≥ βq,N =
2

σ2

√
log(2N).

Matérn kernel. Sobolev spaces Hs(Rq,Rq) are RKHSs as soon as s > q/2. Given some ν > 0,
the kernel kq associated with H(q/2+ν)(Rq,Rq) is independent of q and is defined in Eq. (17). It is
associated with the multivariate t-distribution:

µq(ω) = C(q, ν)(1 +
∥ω∥2
2ν

)−(ν+q/2),

for some normalising constant C(q, ν). Therefore, µq admits lth order moments as soon as ν ≥ l/2,
and those moments are bounded independently of q (see [28] for the computation of moments).
In particular, for ν > 2, kq is four times differentiable at 0 with k′′(0) = ν/(ν − 1) and
k(4)(0) = 3ν2/(ν − 1)(ν − 2). Thus by Property 4, Vq is (strongly) admissible with:

κ = 1 +

√
ν

(ν − 1)
+

√
3ν2

(ν − 1)(ν − 2)
.

Because kq has exponential decay (see [31]), there exist constants Hν , Gν such that:

|kq(r)| ≤ Gνe
−H−1

ν r

and Assumption 3 is satisfied with

βq,N = Hν log(2GνN).

Remark 8 (Sampling). Sampling over µq can be achieved using that for Y ∼ N (0, Idq) and for u
distributed according to χ2

2ν , the chi-squared distribution with 2ν degrees of freedom, Y/
√
u/2ν is

distributed according to µq .

E RKHS-NODE as a generalization of linear networks

In an attempt to better understand the convergence properties of GD in the training of ResNets, lots
of attention has first been brought towards the study of linear models, for which the training dynamic
is now well understood [24, 7, 64]. We explain here in what extent our work can be seen, at least
formally, as a generalization of these results to a more general class of ResNets. In this purpose, we
highlight the similarity between Theorem 2, which applies to the whole class of models described
by Definition 1, and [64, Theorem 3.1.], which only applies to linear ResNets.

More precisely, [64] studies model of the form:

F (W,x) := B(Id+
1

D
WD)...(Id+

1

D
W1)Ax, (31)

where x ∈ Rd is the input data, W = (W1, ...,WD) ∈ (Rq×q)D is the trained parameter and
A ∈ Rq×d, B ∈ Rd′×q are fixed matrices. Taking the limit of infinite depth D → +∞ in the above
model motivates the following definition for linear Neural ODE models:

Definition 4 (Linear-NODE). Let A ∈ Rq×d and B ∈ Rd′×q be fixed matrices. Then for
W ∈ L2([0, 1],Rq×q) and input x ∈ Rd, the Linear-NODE output is given by F (W,x) := BU1Ax,
where U is the solution to the following forward problem:

U̇t = WtUt, and U0 = IdRq .

One sees that the ResNet F has residual terms that are linear w.r.t. the parameters and thus fits in
the framework of our analysis. More precisely, the Linear-NODE of Definition 4 can be seen as a
special instance of RKHS-NODE of Definition 1 with space of residual defined as:

V := {v : z 7→ Wz, W ∈ Rq×q}.
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This corresponds to Eq. (3) with the choice of feature map φ = Id : Rq → Rq . The set of residuals
V is then of course a RKHS for the Frobenius metric on matrices. In particular V satisfies an analog
of Assumption 1 in the sense that for (v : z 7→ Wz) ∈ V :

max{ sup
∥z∥=1

∥v(z)∥, sup
∥z∥=1

∥Dv(z)∥, sup
∥z∥=1

∥D2v(z)∥} ≤ ∥W∥ = ∥v∥V .

Universality (Assumption 2) is also satisfied on full-rank data matrices. If Z = (z1|...|zN ) ∈ Rq×N

then the associated kernel matrix verifies:

λmin(K((zi))) = λmin(Z
⊤Z) = σmin(Z)2,

λmax(K((zi))) = λmax(Z
⊤Z) = σmax(Z)2.

As in our above presentation we consider training Linear-NODE for the minimization of the empir-
ical risk associated to the square euclidean distance on the output space Rd′

. Given data matrices
X = (x1|...|xN ) ∈ Rd×N for the input and Y = (y1|...|yN ) ∈ Rd′×N for the output, we aim at
finding a control parameter minimizing the risk defined for every W ∈ L2([0, 1],Rq×q) as:

L(W ) :=
1

2N

N∑
i=1

∥F (W,xi)− yi∥ =
1

2N
∥BU1AX − Y ∥2.

One difference with the previous analysis is that one can not expect the empirical risk to reach
the value 0 if the target data Y is not in the linear span of the input X . We are thus interested in
minimizing the excess risk defined as:

L̃(W ) := L(W )− L∗

with L∗ := infU∈Rq×q
1

2N ∥BUAX − Y ∥2.

Following the line of the proof of Property 2, one can then show that the excess risk L̃ associated to
our Linear-NODE model verifies the following (local) PL property:

∀W ∈ L2([0, 1],Rq×q), 2m(∥W∥)L̃(W ) ≤ ∥∇L̃(W )∥2 ≤ 2M(∥W̃∥)L̃(W ),

where m and M are given for R ≥ 0 by:

m(R) =
1

N
σmin(B

⊤)2σmin(A)2σr(X)2e−2R, M(R) =
1

N
σmax(B

⊤)2σmax(A)2σmax(X)2e2R,

with σr(X) the smallest positive singular value of X . Hence, in the same way local PL implies
local convergence for a general RKHS V (Theorem 2), convergence in the linear case follows as an
application of Theorem 1:
Theorem 4 (analog to Theorem 3.1. in [64]). Let W0 be some control parameter initialization with
norm ∥W0∥ = R0 and assume there exists some R > 0 s.t.:

√
8
σmax(B

⊤)σmax(A)σmax(X)

σmin(B⊤)2σmin(A)2σr(X)2

√
L(W0)− L∗ ≤ Re−3(R+R0)

then, for a sufficiently small step-size η, GD initialized at W0 converges towards a global minimizer
of L with linear convergence rate.

33


