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(a) Test cross-entropy loss with different permutation transform.
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Figure 5: Sensitivity analysis of test CE metric for different rotation and permutation on CI-
FAR10/100 and three different backbones, ResNet32, VGG11 and Denset121.

A EXPERIMENTS

A.1 MORE DETAILS ABOUT EXPERIMENTS

Network Architecture and Dataset Our experiments involve two image classification datasets: CI-
FAR10/100 Krizhevsky (2009). And for every dataset, we use three different convolutional neural
networks to verify our finding, including ResNet He et al. (2016), VGG Simonyan & Zisserman
(2015), DenseNet Huang et al. (2017). Both datasets are balanced with 10 and 100 classes respec-
tively, each having 500 and 5, 000 training images per class. We attach a linear layer after the end
of backbone, which can transform feature dimensions. For CIFAR10, we use 32 and 6 as the fea-
ture dimensions of backbone. And for CIFAR100, we use 256 and 64 as the feature dimensions of
backbone.

Training To reach NC phenomenon during training, we follow Papyan et al. (2020)’s practice.
For all experiments, we minimize cross entropy loss using stochastic gradient descent with epoch
200, momentum 0.9, batch size 256 and weight decay 5 × 10−4. Besides, the learning rate is
set as 5 × 10−2 and annealed by ten-fold at 120-th and 160-th epoch for every dataset. As for
data preprocess, we only perform standard pixel-wise mean subtracting and deviation dividing on
images. To achieve 100% accuracy on training set, we remove all dropout layers in the backbone
and only perform RandomFilp augmentation.

A.2 LARGE VARIANCE OF PAIR-WISE MARGIN

In the experiments of Section 5, we also records margins between each class pair. We record them
at the epoch that model has the maximal test accuracy during TPT. The Figure 6 illustrates the all
margins in the training of three backbones on the CIFAR10. We could find that these margins exhibit
large variability, which means that the feature of classification model does not exhibit the rigorous
Simplex ETF structure. We can observe that the difference between margins are still much large
even during TPT, which provide empirical support for our conclusion in Remark 4.9.
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A.3 MORE METRIC COMPARISON

We also provide test CE loss comparison to verify the non-conservative generalization, which is
illustrated in Figure 5.

B PROOF OF THEOREM 4.1

Theorem 4.1 (Multiclass SVM). For the CE loss function (1), consider a path of gradient flow
{(M (t),Z(t))}t. If CELoss(M (t),Z(t))→ 0 (t→∞), then pmin →∞ (t→∞), where pmin is
the margin of the train set

pmin := min
y ̸=y′

min
i∈[N/C]

⟨My −My′ , zy,i⟩.

Proof. For simplicity, we leave out the upper script (t). First, we have ∀t

CELoss(Z,M) =

C∑
y=1

N/C∑
i=1

− log
exp

(
⟨My, zy,i⟩

)∑
y′ exp

(
⟨My′ , zy,i⟩

)
=

C∑
y=1

N/C∑
i=1

log

(
1 +

∑
y′ ̸=y

exp
(
⟨My′ −My, zy,i⟩

))

≤
C∑

y=1

N/C∑
i=1

log

(
1 + (C − 1) exp

(
max
y′ ̸=y
{⟨My′ −My, zy,i⟩

)
}
)

≤N

C

C∑
y=1

log

(
1 + (C − 1) exp

(
max
y′ ̸=y

max
i∈[N/C]

{⟨My′ −My, zy,i⟩
)
}
)

≤N max
y∈[C]

log

(
1 + (C − 1) exp

(
max
y′ ̸=y

max
i∈[N/C]

{⟨My′ −My, zy,i⟩
)
}
)

=N log

(
1 + (C − 1) exp

(
max
y∈[C]

max
y′ ̸=y

max
i∈[N/C]

{⟨My′ −My, zy,i⟩
)
}
)

(2)

In addition, we have

log

(
1 + exp

(
max
y∈[C]

max
y′ ̸=y

max
i∈[N/C]

{⟨My′ −My, zy,i⟩
)
}
)
≤ CELoss(Z,M) (3)

We denote maxy∈[C] maxy′ ̸=y as maxy′ ̸=y and define the margin of entire dataset (refer to Sec-
tion.3.1 of Ji et al. (2022)) as follow:

pmin := min
y ̸=y′

min
i∈[N/C]

⟨My −My′ , zy,i⟩

Therefore, we have

log

(
1 + exp (−pmin)

)
︸ ︷︷ ︸

ℓ1(pmin)

≤ CELoss(Z,M) ≤ N log

(
1 + (C − 1) exp (−pmin)

)
︸ ︷︷ ︸

ℓC−1(pmin)

(4)

where ℓa(p) = log(1 + ae−p). Then we represent ℓa(·) as the form of exponential function, i.e.

ℓa(p) = e−ϕa(p) and ϕa(p) = − log log(1 + ae−p).

Denote the inverse function of ϕa(·) as Φa(·), where Φa(p) = − log( e
e−p

−1
a ). Then continue from

(4), we have

ℓ1(pmin) ≤ CELoss(Z,M) ≤ NℓC−1(pmin)

⇔e−ϕ1(pmin) ≤ CELoss(Z,M) ≤ Ne−ϕC−1(pmin)

⇔ϕC−1(pmin)− log(N) ≤ − log(CELoss(Z,M)) ≤ ϕ1(pmin)
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According to the monotonicity of Φ1(·), we have

Φ1 (ϕC−1(pmin)− log(N)) ≤ Φ1 (− log(CELoss(Z,M))) ≤ pmin

Use the mean value theorem, there exists a ξ ∈ (ϕC−1(pmin)− log(N), ϕ1(pmin)) such that

Φ1(ϕC−1(pmin)− log(N)) = pmin − Φ
′

1(ξ)(ϕ1(pmin)− ϕC−1(pmin) + log(N)),

then

pmin − Φ
′

1(ξ)(ϕ1(pmin)− ϕC−1(pmin) + log(N))︸ ︷︷ ︸
∆(t)

≤ Φ1 (− log(CELoss(Z,M))) ≤ pmin (5)

Then we will show ∆(t) = O(1)(t→∞). Since

ξ > ϕC−1(pmin)− log(N) ≥ − log(CELoss(Z,M))− log(N),

we know ξ → ∞ and pmin → ∞ as CELoss(Z,M) → 0. By simple calculation,

we have ϕ1(pmin) − ϕC−1(pmin) → log(C − 1) and Φ
′

1(ξ) = ee
−ξ−ξ

ee
−ξ−1

→ 1. There-
fore, as CELoss(Z,M) → 0, we have pmin → +∞ according to (5) and monotonicity of
Φ1(− log(·)).

C PROOF OF THEOREM 4.4

The following lemma provide a two-class classification generalization bound based on margin.
Lemma C.1 (Theorem.5 of Kakade et al. (2008): Margin Bound). Consider a data space X and
a probability measure P on it. There is a dataset {xi}ni=1 that contains n samples, which are drawn
i.i.d from P . Consider an arbitrary function class F such that ∀f ∈ F we have supx∈X |f(x)| ≤
K, then with probability at least 1 − δ over the sample, for all margins γ > 0 and all f ∈ F we
have,

Px(f(x) ≤ 0) ≤
n∑

i=1

I(f(xi) ≤ γ)

n
+

Rn(F)
γ

+

√
log(log2

4K
γ )

n
+

√
log(1/δ)

2n

We give a multiclass version of Lemma C.1.
Theorem 4.4 (Multiclass Margin Bound). Consider a dataset S with C classes. For any classifier
(M , f(·;w)), we denote its margin between y and y′ classes as (My−My′)T f(·;w). And suppose
the function space of the margin is F = {(My −My′)T f(·;w)|∀y ̸= y′,∀M ,w}, whose uppder
bound is

sup
y ̸=y′

sup
M ,w

sup
x∈My

∣∣(My −My′)T f(x;w)
∣∣ ≤ K.

Then, for any classifier (M , f(·;w)) and margins {γy,y′}y ̸=y′(γy,y′ > 0), the following inequality
holds with probability at least 1− δ

Px,y

(
max
y′

[Mf(x;w)]y′ ̸= y
)
≤

C∑
y=1

p(y)
∑
y′ ̸=y

RNy
(F)

γy,y′
+

C∑
y=1

p(y)
∑
y′ ̸=y

√√√√ log(log2
4K
γy,y′

)

Ny

+ empirical risk term + probability term

where

empirical risk term =

C∑
y=1

p(y)
∑
y′ ̸=y

∑
x∈Sy

I((My −My′)T f(x) ≤ γy,y′)

Ny
,

probability term =

C∑
y=1

p(y)
∑
y′ ̸=y

√
log(C(C − 1)/δ)

2Ny
.

RNy
(F) is the Rademacher complexity Kakade et al. (2008); Bartlett & Mendelson (2002) of func-

tion space F .
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Proof. We decompose the error as errors within every class by Bayes Theory:

Px,y

(
argmax

y′
[Mf(x;w)]y′ ̸= y

)
=

C∑
y=1

p(y)Px|y

(
argmax

y′
[Mf(x;w)]y′ ̸= y

)
(6)

where p(y) is the probability density of y-th class. Then, we focus on the accuracy within every
class y.

Px|y

(
argmax

y′
[Mf(x;w)]y′ ̸= y

)
= Px|y

( ⋃
y′ ̸=y

{(My −My′)T f(x;w) < 0}

)

According to union bound, we have

Px|y

(
argmax

y′
[Mf(x;w)]y′ ̸= y

)
≤
∑
y′ ̸=y

Px|y

(
(My −My′)T f(x;w) < 0

)
Recall our assumption of function class:

sup
y ̸=y′

sup
M ,w

sup
x∈My

|(My −My′)T f(x;w)| ≤ K.

Then follow from the Margin Bound (Theorem C.1), we have

Px,y

(
argmax

y′
[Mf(x;w)]y′ ̸= y

)
≤

C∑
y=1

p(y)
∑
y′ ̸=y

Px|y

(
(My −My′)T f(x;w) < 0

)

≤
C∑

y=1

p(y)
∑
y′ ̸=y

RNy (F)
γy,y′

+

C∑
y=1

p(y)
∑
y′ ̸=y

√√√√ log(log2
4K
γy,y′

)

Ny
+

C∑
y=1

p(y)
∑
y′ ̸=y

√
log(1/δ)

2Ny︸ ︷︷ ︸
probability term

+

C∑
y=1

p(y)
∑
y′ ̸=y

∑
x∈Sy

I((My −My′)T f(x) ≤ γy,y′)

Ny︸ ︷︷ ︸
empirical risk term

with probability at least 1 − C(C − 1)δ. Then, we perform the following replace to drive the final
result:

δ ← δ

C(C − 1)

D PROOF OF THEOREM 4.8

We first introduce the definition of Covering Number.

Definition D.1 (Covering Number Kulkarni & Posner (1995)). Given ϵ > 0 and x ∈ RD, the open
ball of radius ϵ around x is denoted as

Bϵ(x) = {u ∈ RD, ∥u− x∥ < ϵ}.

Then the covering numberN (ϵ, A) of a set A ⊂ RD is defined as the smallest number of open balls
whose union contains A:

N (ϵ, A) = inf

{
k : ∃u1, . . . ,uk ∈ RD, s.t.A ∈

k⋃
i=1

Bϵ(ui)

}

The following conclusion is demonstrated in the proof of Theorem.1 of Kulkarni & Posner (1995).
We use it to prove our theorem.
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Lemma D.2 (Vural & Guillemot (2017); Kulkarni & Posner (1995)). There are N samples
{x1, . . . , xN} drawn i.i.d from the probability measure P . Suppose the bounded support of P is
M, then if N is larger then Covering Number N (ϵ,M), we have

Px

(
∥x− x̂∥ > ϵ

)
≤ N (ϵ,M)

2N
,∀ϵ > 0

where x̂ is the sample that is closest to x in {x1, . . . , xN}:

x̂ ∈ argmin
x′∈{x1,...,xN}

∥x′ − x∥

Then we provide the proof of Theorem 4.8.

Theorem 4.8. Given a balanced dataset S and a classifier (M , f(·;w)), suppose (M , f(·;w))
can linearly separate S by margin {γy,y′}y ̸=y′ . Besides, we make the following assumptions:

• f(·,w) is L-Lipschitz for any w, i.e. ∀x1,x2, ∥f(x1,w)− f(x2,w)∥ ≤ L∥x1 − x2∥

• S is large enough such that Ny ≥ maxy′ ̸=yN (
γy,y′

L∥My−My′∥ ,My) for every class y

• The tight support of probability Px|y is denoted asMy

whereN (·,My) is the covering number ofMy . Please refer to Appendix D for its definition. Then
the expected accuracy of (M , f(·;w)) over the entire distribution is given by

Px,y

(
max
y′

[Mf(x;w)]y′ = y
)
> 1− 1

2N

C∑
y=1

max
y′ ̸=y
N (

γy,y′

L∥My −My′∥
,My).

Proof. We decompose the accuracy:

Px,y

(
max
y′

[Mf(x;w)]y′ = y
)
=

C∑
y=1

p(y)Px|y

(
max
y′

[Mf(x;w)]y′ = y
)

(7)

where p(y) is the class distribution. Then, we focus on the error within every class i.

Px|y(max
y′

[Mf(x;w)]y′ = y) = Px|y({(My −My′)T f(x;w) > 0 for any y′ ̸= y})

We select the data that is closest to x in y class samples Sy , and denote it as

x̂(Si) = argmin
x1∈Si

∥x1 − x∥

According to the linear separability,

(My −My′)T f(x̂(Sy);w) ≥ γy,y′ ,∀y′ ̸= y

For any y′ ̸= y, we have

(My −My′)T f(x;w) = (My −My′)T (f(x;w) + f(x̂(Sy);w)− f(x̂(Sy);w))

= (My −My′)T f(x̂(Sy);w) + (My −My′)T (f(x;w)− f(x̂(Sy);w))

≥ γy,y′ − ∥My −My′∥∥f(x;w)− f(x̂(Sy);w)∥
≥ γy,y′ − L∥My −My′∥∥x− x̂(Sy)∥

(8)
The prediction result is related to the distance between x and x̂(Sy). According to Theorem D.2,
we know

Px|y

(
∥x− x̂(Sy)∥ > ϵ

)
≤ N (ϵ,My)

2Ny
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To obtain the correct prediction result, i.e., assure (8) > 0 for all y′ ̸= y, we choose ϵ <
miny′ ̸=y

γy,y′

L∥My−My′∥ . Therefore, we have

Px|y

({
(My −My′)T f(x;w) > 0,∀y′ ̸= y

})
≥ Px|y

(
∥x− x̂(Sy)∥ < min

y′ ̸=y

γy,y′

L∥My −My′∥

)

> 1−
N (miny′ ̸=y

γy,y′

L∥My−My′∥ ,My)

2Ny

(9)
Plug (9) into (7) to derive

Px,y

(
max
y′

[Mf(x;w)]y′ = y
)
> 1−

C∑
y=1

p(y)
N (miny′ ̸=y

γy,y′

L∥My−My′∥ ,My)

2Ny

= 1−
C∑

y=1

p(y)
maxy′ ̸=yN (

γy,y′

L∥My−My′∥ ,My)

2Ny

E PROOF OF THEOREM 4.10

First, we provide the Hoeffding’s Inequality Mohri et al. (2012).

Lemma E.1 (Hoeffding’s Inequality). Let X1, . . . , Xn be independent random variables such that
b ≤ Xi ≤ a. Consider the sum of these random variables, let Ên(X) = 1

n

∑n
i=1 Xi, then ∀ϵ > 0,

we have
P
(
Ên(X)− E(Ên(X)) ≥ ϵ

)
≤ exp

(
−2nϵ2/(b− a)2

)
P
(
E(Ên(X))− Ên(X) ≥ ϵ

)
≤ exp

(
−2nϵ2/(b− a)2

)
P
(∣∣∣Ên(X)− E(Ên(X))

∣∣∣ ≥ ϵ
)
≤ 2 exp

(
−2nϵ2/(b− a)2

)
Then, we extend the Hoeffding’s Inequality to a higher-dimensional form.

Lemma E.2 (High Dimensional Hoeffding’s Inequality). Let X1, . . . ,Xn be independent random
vectors ∈ RD such that ∥Xi∥ ≤ ρ, ∀i, where Xj

i indecates the j-th coordinate of Xi. Consider the
sum of them, let Ên(X) = 1

n

∑n
i=1 Xi, then ∀ϵ > 0, we have

P
(∥∥∥Ên(X)− E

(
Ê(X)

)∥∥∥ ≥ ϵ
)
≤ 2D exp

(
−nϵ2/2D2ρ2

)
Proof. Due to ∥Xi∥ ≤ ρ (∀i), we know−ρ ≤Xj

i ≤ ρ (∀i, j). According to Lemma E.1, we know
∀j ∈ [D],

P
(∣∣∣Ên(X

j)− E
(
Ê(Xj)

)∣∣∣ ≥ ϵ
)
≤ 2 exp

(
−nϵ2/2ρ2

)
,

where Ên(X
j) =

1

n

n∑
i=1

Xj
i

,

then
P
(∣∣∣Ên(X

j)− E
(
Ê(Xj)

)∣∣∣ < ϵ
)
> 1− 2 exp

(
−nϵ2/2ρ2

)
,

and we combine all j ∈ [D],

P

 D∑
j=1

∣∣∣Ên(X
j)− E

(
Ê(Xj)

)∣∣∣ < Dϵ

 > 1− 2D exp
(
−nϵ2/2ρ2

)
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Then, we perform the ϵ← ϵ
D . And according to the following formula, we drive the final result.∥∥∥Ên(X)− E

(
Ê(X)

)∥∥∥ ≤ D∑
j=1

∣∣∣Ên(X
j)− E

(
Ê(Xj)

)∣∣∣,
Corollary E.3. Let X1, . . . ,Xn be i.i.d random vectors ∈ RD such that E(Xi) = E(X),∀i and
−ρ ≤ Xj

i ≤ ρ, ∀j, where Xj
i indecates the j-th coordinate of Xi. Consider the sum of them, let

Ên(X) = 1
n

∑n
i=1 Xi, then ∀ϵ > 0, we have

P
(∥∥∥Ên(X)− E(X)

∥∥∥ ≥ ϵ
)
≤ 2D exp

(
−nϵ2/2D2ρ2

)
In our settings, all samples in the y-th class are i.i.d from probability Px|y . So we apply the Corol-
lary.E.3 in the proof of Theorem 4.10.
Theorem 4.10. Given the balanced dataset S and a classifier (M , f(·;w)), suppose (M , f(·;w))
can linearly separate S by margin {γy,y′}y ̸=y′ . Assume the maximum norm of features in y-th class
is ρy = supw,x∈Px|y

∥f(x;w)∥. Then the expected accuracy of (M , f(·;w)) is given by

Acc ≥ 1− 2d

C

C∑
y=1

(
H (1, d, ρy, N/C) +H

(
min
y′ ̸=y

γy,y′

∥My −My′∥
−
√

N/C, d, ρy, N/C

))

where we denoteH(α, d, ρ, n) = exp
(

−nα2

8d2ρ2

)
.

Proof. We denote the class center of y-th class as µ̂y = 1
Ny

∑
x∈Sy

f(x;w) and µ = Ex|yx =

ESy
µ̂y . and start from (8) in the proof of Theorem 4.10.

(My −My′)T f(x;w) = (My −My′)T (f(x;w) + µ̂y − µ̂y)

= (My −My′)T µ̂y + (My −My′)T (f(x;w)− µ̂y)

≥ γy,y′ − ∥My −My′∥∥f(x;w)− µ̂y∥
≥ γy,y′ − ∥My −My′∥ (∥f(x;w)− µy∥+ ∥µy − µ̂y∥)

(10)

According to Corollary.E.3, we have ∀δ ∈ (0, 1)

Px|y (∥f(x;w)− µy∥ ≥ ϵ) ≤ 2d exp
(
−ϵ2/2d2ρ2y

)
PSy (∥µ̂y − µy∥ ≥ ϵ) ≤ 2d exp

(
−nϵ2/2d2ρ2y

)
Let ϵ = 1

2 miny′ ̸=y
γy,y′

∥My−My′∥ , then

Px|y,Sy

({
(My −My′)

T
f(x;w) > 0,∀y′ ̸= y

})
≥Px|y,Sy

(
∥f(x;w)− µy∥+ ∥µ̂y − µy∥ ≥ min

y′ ̸=y

γy,y′

∥My −My′∥

)
≥1− Px|y,Sy

(
∥f(x;w)− µy∥ ≥

√
Ny

)
− Px|y,Sy

(
∥µ̂y − µy∥ ≥ min

y′ ̸=y

γy,y′

∥My −My′∥
−
√
Ny

)

≥1− 2d exp

(
−Ny

8d2ρ2y

)
− 2d exp

−Ny

(
miny′ ̸=y

γy,y′

∥My−My′∥ −
√
Ny

)2
8d2ρ2y


So

Px,y,S

(
argmax

y′
[Mf(x;w)]y′ = y

)

≥1− 2d

C

C∑
y=1

(
H (1, d, ρy, Ny) +H

(
min
y′ ̸=y

γy,y′

∥My −My′∥
−
√
Ny, d, ρy, Ny

))
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2.6 4.4 2.5 3.3 0.0 3.5 3.6 3.5 5.0 3.5

3.0 4.1 3.9 3.0 3.6 0.0 3.2 3.8 3.3 4.8

2.2 3.7 3.1 3.1 1.9 3.1 0.0 3.3 3.0 3.9
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(a) Pair-wise margins comparison with three different permutations on DenseNet121.
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-0.3 1.9 -1.8 -0.1 -0.7 0.0 0.8 -1.5 1.7 0.3
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1.8 4.7 0.0 1.9 3.4 1.6 1.1 2.3 2.2 2.5

7.6 2.6 1.9 0.0 2.7 2.2 3.0 2.0 3.2 2.0

4.1 6.3 5.0 1.6 0.0 2.3 2.7 2.4 2.7 2.9

1.6 2.4 2.7 2.0 2.6 0.0 1.4 1.9 2.4 5.3

2.1 2.6 1.8 2.2 3.9 1.7 0.0 9.0 2.1 2.2

1.8 6.2 3.1 2.7 2.4 2.7 8.3 0.0 6.4 1.3
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-1.7 1.4 -0.4 -2.4 -2.7 0.0 -1.5 -2.9 1.2 -0.6
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(b) Pair-wise margins comparison with three different permutations on ResNet32.
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3.8 4.6 4.0 2.7 3.7 3.8 3.1 0.0 4.4 3.4

3.1 3.1 4.7 4.7 4.3 3.7 3.5 5.3 0.0 3.2

3.8 3.6 3.0 3.4 3.9 3.3 4.0 4.3 1.8 0.0
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3.2 4.5 3.6 3.4 0.0 3.3 3.6 2.6 4.5 4.0

2.1 3.7 2.7 1.6 3.4 0.0 2.6 3.3 3.2 3.6

3.3 3.9 3.7 3.4 3.6 3.1 0.0 4.5 3.7 3.5

3.3 3.9 3.4 3.1 3.0 3.4 3.9 0.0 4.2 3.6

1.8 3.4 3.7 4.0 3.6 4.0 4.2 4.1 0.0 3.2

2.7 2.6 3.9 2.9 4.6 3.6 3.4 4.4 2.1 0.0
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0.0 -5.6 -5.4 -4.4 -4.8 -6.4 -3.3 -4.1 -5.7 -4.6

-4.2 0.0 -6.6 -4.4 -5.4 -5.9 -8.9 -2.2 -5.0 -6.1

-5.4 -2.5 0.0 -4.9 -8.0 -6.1 -5.0 -4.2 -4.7 -3.5

-5.4 -4.2 -7.3 0.0 -5.3 -7.1 -6.5 -6.5 -4.6 -5.9

-6.7 -2.4 -6.8 -6.0 0.0 -6.4 -7.3 -7.6 -5.9 -4.9

-5.5 -1.8 -4.5 -5.7 -5.3 0.0 -8.2 -7.2 -4.4 -6.7

-4.3 -3.6 -6.5 -6.9 -5.3 -6.7 0.0 -2.4 -4.4 -4.4

-5.8 -1.8 -5.4 -8.7 -6.4 -8.1 -4.0 0.0 -3.5 -4.6

-5.4 -5.2 -3.5 -6.9 -3.6 -3.2 -1.9 -3.1 0.0 -6.1

-5.0 -6.2 -6.8 -3.9 -2.8 -4.4 -3.9 -6.0 -5.3 0.0

(c) Pair-wise margins comparison with three different rotations on DenseNet121.
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5.0 2.1 2.9 1.8 2.3 0.0 2.4 1.7 4.5 2.3

3.1 8.1 1.1 3.3 3.2 2.5 0.0 5.9 2.3 1.0

3.2 2.4 2.5 2.1 6.8 2.4 3.9 0.0 3.4 1.6
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1.1 4.9 0.0 3.1 2.1 1.8 2.1 1.7 3.5 4.1

5.3 2.0 2.5 0.0 1.2 -1.3 1.6 1.8 2.1 1.8

2.6 2.8 1.9 1.2 0.0 0.3 1.8 4.3 3.8 3.6

4.8 2.4 2.0 1.3 2.4 0.0 1.1 1.4 4.9 3.5

2.2 5.9 2.7 1.7 1.4 1.3 0.0 5.7 1.9 2.6
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1.5 6.1 0.0 2.6 1.9 2.8 1.6 2.1 3.1 4.4

8.7 4.3 3.0 0.0 1.5 1.8 2.7 2.2 1.8 2.7

3.1 1.9 2.3 2.3 0.0 1.5 2.6 5.3 4.2 2.7

4.0 3.1 2.1 2.1 3.1 0.0 2.1 3.0 6.5 3.1

2.6 6.4 1.7 2.6 2.2 2.9 0.0 4.6 2.6 3.2

2.2 3.9 2.1 2.1 5.7 1.8 2.3 0.0 2.7 2.0

1.2 2.4 2.0 1.3 2.7 7.3 2.2 3.8 0.0 2.7

1.3 1.7 4.1 -1.0 2.3 3.6 2.0 2.8 2.3 0.0

(d) Pair-wise margins comparison with three different rotations on ResNet32.

Figure 6: Values comparison of pair-wise margins on training of ResNet32 and DenseNet121 with
different permutations and rotations on CIFAR10.
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