
A Proofs for Theoretical Claims

We begin by supplementing the definition of multiple domain calibration, extending it for the case of
regression, then we provide proofs of the theorems in the paper.

A.1 Definition of Calibration

Recall our definition of a calibrated classifier for binary tasks.
Definition S1. Let f : X ! [0, 1] and P [X,Y ] be a joint distribution over the features and label.
Then f(x) is calibrated w.r.t to P if for all ↵ 2 [0, 1] in the range of f :

EP [Y | f(X) = ↵] = ↵.

In the multiple environments setting, f(x) is calibrated on Etrain if for all ei 2 Etrain and ↵ in the
range of f restricted to ei:

E[Y | f(X) = ↵, E = ei] = ↵.

Let us prove the connection between multi-domain calibration and invariance, we repeat the statement
of the lemma from the main paper for convenience.
Lemma S1 (Lemma 1 in main paper). If a binary classifier f is invariant w.r.t Etrain then there exists
some g : R ! [0, 1] such that g � f is calibrated on all training environments and its mean squared
error on each environment does not exceed that of f . On the other hand, if a classifier is calibrated
on all training environments it is also invariant w.r.t Etrain.
Proof. Assume that the classifier is invariant w.r.t Etrain, let ei 2 Etrain and note that:

E[(Y � f(X))2 | E = ei] � min
g:R!R

E[(Y � g � f(X))2 | E = ei].

The solution to the RHS is to take g(↵̂) = E[Y | f(X) = ↵̂, E = ei] for all ↵̂ 2 [0, 1] and it
results in a classifier g � f that is calibrated w.r.t ei. Due to invariance, for all ↵̂ 2 R the expectation
E[Y | f(X) = ↵̂] is identical across all ei 2 Etrain where ↵̂ is in the range of f restricted to ei.
Therefore there exists a single function g that solves the RHS simultaneously over all environments.
The resulting g � f is indeed calibrated over all training domains and its mean squared error does
not exceed that of f (note that since the square loss is Bayes-consistent, this claim also holds for the
classification error). The other part of the statement that a calibrated classifier on all Etrain is invariant
follows easily from the definitions.

For regression tasks, one may consider a function that outputs a full CDF on Y and define a calibrated
classifier as one where all quantiles of the CDF match the true quantiles of Y as the number of
examples approached infinity. This leads to the definition in [25], and one may follow this to analyze
more general cases than the scenario we will consider in this work.

Since in this section we consider Gaussian distributions and linear regressors, a definition based on
the first two moments of the distribution (instead of all quantiles of a CDF) will suffice. Hence we
will be working the following definition:
Definition S2. Let f : X ! R2 and P [X,Y ] a joint distribution over the features and label. Then
f(x) is calibrated w.r.t to P if for all (↵,�) 2 R2 in the range of f :

E[Y | f(X)1 = ↵] = ↵, E
⇥
Y 2

| f(X)2 = �
⇤
= �.

In the multiple environments setting, f(x) is calibrated on Etrain if for all ei 2 Etrain and (↵,�) in
the range of f restricted to ei:

E[Y | f(X) = (↵,�), E = ei] = ↵, E
⇥
Y 2

| f(X) = (↵,�), E = ei
⇤
= �. (4)

A.2 Details about ECE, MMCE and Post-Processing Methods

To evaluate calibration and optimize our models towards multi-domain calibration, we use the
Expected Calibration Error (ECE) and the Maximum Mean Calibration Error (MMCE) [26].

The ECE is a scalar summary of the calibration plot, used throughout the literature to assess how well
calibrated is a given classifier. Calibration plots [7] are a visual representation of model calibration
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in the case of binary labels. Each example x is placed into one of B bins that partition the [0, 1]
interval, in which the output, or confidence, of the classifier f(x) falls. For each bin b, the accuracy
of f on the bin’s examples acc(b) is calculated along with the average confidence conf(b). These are
plotted against each other to form a curve, where deviations from a diagonal represent miscalibration.
ECE score summarizes the calibration curve by averaging the deviation between accuracy and
confidence:

ECE =
BX

b=1

nb

N
|acc(b)� conf(b)|. (5)

nb is the number of examples in bin b, N is the total number of examples. In all of our experiments
we used B = 10 bins of equal size.

To handle the miscalibration that is often observed in models such as neural networks [12], the MMCE
was proposed in [26] as a method to improve calibration at training time. Recalling the definition of
this loss: We consider a dataset D = {xi, yi}mi=1, a binary classifier parameterized by a vector ✓ which
we denote f✓ :! [0, 1]. The confidence of f✓ on the i-th example is f✓;i = max{f✓(xi), 1� f✓(xi)}
and its correctness is ci = |yi�f✓;i|<

1
2

. Then we fix a kernel k : R ⇥ R ! R, associated with a
feature map � : [0, 1] ! H, and MMCE over the dataset D is given by:

rDMMCE(f✓) =
1

m2

X

i,j2D

(ci � f✓;i)(cj � f✓;j)k(f✓;i, f✓;j). (6)

In our experiments we use an RBF kernel k(r, r0) = exp(��(r � r0)2) with � = 2.5. Equation (6)
is the finite sample approximation of the following:

MMCE(f✓;P [X,Y ]) = kE(x,y)⇠P [(c� f✓(x))�(f✓(x))]kH. (7)

Here c is the correctness of f✓ on (x, y) as defined for Equation (6). Attractive properties of the
MMCE include it being a proper scoring rule:
Theorem (Adapted from Thm. 1 in [26]). Let P [X,Y ] be a probability measure defined on the space
(X ⇥ {0, 1}) such that the conditionals on the pushforward measure P [r, c] = f✓]P ,6 P (r | c = 1)
over ([0, 1]⇥ {0, 1}), P (r | c = 0) are Borel probability measures, and let k be a universal kernel.
The MMCE in Equation (7) is 0 if and only if f✓ is calibrated w.r.t P .

Corollary 1 in the paper follows by considering
P

e2Etrain
MMCE(f✓;P [X,Y | E = e]) and

applying the theorem to each summand. For more details on the MMCE, its derivation as an integral
probability measure analogue of the ECE and its properties, we refer the reader to [26].

Another popular metric for calibration in binary classification problems is the Brier score, which is
simply the squared error between the predicted probability and the outcome [5]:

BS(f) =
1

m

mX

i=1

(f(xi)� yi)
2.

The Isotonic Regression [30] post-processing methods that we use in the paper minimize the Brier
score using a monotonic post-processing function. Hence we consider a classifier f and a dataset
{xi, yi}mi=1. Denote the prediction of f on xi by fi, then isotonic regression solves:

min
z:fifj)z(fi)z(fj)

1

m

mX

i=1

(z(fi)� yi)
2.

A motivation for using this as a post-processing calibration method is the decomposition of the
Brier score to a refinement and calibration score. We may denote the set of prediction values that
are obtained by f across the dataset by F = {fi | i 2 [m]}. For each such value f̃ 2 F then
denote Nf̃ = |{i | fi = f̃}| as the number of points for which we obtain this prediction and
yf̃ = 1

Nf̃

P
i:fi=f̃ yi the average outcome over them:

BS(f) = CAL(f) +REF (f) =
1

m

X

f̃2F

Nf̃ (f̃ � yf̃ )
2 +

1

m

X

f̃2F

Nf̃ (yf̃ (1� yf̃ ))

6we note the abuse of notation here, as f✓]P is used to denote the measure that we get by applying f✓ to X
to obtain r and c is obtained by calculating its correctness w.r.t to Y .
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The calibration score measures how far is the average prediction value from the average outcome,
while refinement gives a measure of their sharpness (i.e. it raises the score of uncertain prediction).
Due to the monotonicity constraint of isotonic Regression, it is usually thought of as not changing
the REF (f) too much, which means it minimizes the Brier score mainly by reducing CAL(f).
In the multi-domain cases we are interested in, note that this vanilla isotonic regression does not
take domains into account. In our experiments we use it simple by pooling the dataset on all
environments and performing post-processing calibration on this dataset using isotonic regression.
This procedure could output a classifier that is perfectly calibrated for the entire dataset, but not on
single environments.

To give a simple variant that does post-processing while taking environments into account, we
proposed a Robust Isotonic Regression method. The method minimizes the Brier score on the
worst-case environment, thus aiming to bound the worst miscalibration on each environment. While
in practice it will usually not provide perfect calibration on each environment, the method trades off
the error between environments so it is better geared towards simultaneous calibration of the classifier
on all domains. Formally we solve:

z⇤ = argmin
z:fifj)z(fi)z(fj)

max
e2Etrain

1

Ne

NeX

i=1

(z(fe,i)� yi)
2. (8)

Where Ne are the number of data points in environment e 2 Etrain and fe,i is the output of f on point
i in the environment.

A.3 Causal Graphical Models

In order to answer queries about unseen distributions based on data from different, observed distribu-
tions, one must make certain assumptions about the data generating processes and the relationships
between the observed and unobserved distributions. One way of articulating such models of the
world is by using causal graphs. In a causal graph, edges from a variable X to a variable Y mean that
changing the value of X may change the distribution of Y . Causal graphs entail all statistical depen-
dencies between variables, and we can read off such independence statements using the d-separation
criterion [32]. We refer to background material to discuss how to identify and estimate causal effects
with these causal graphical models in hand [33].

In the main paper, Figure 1 illustrates our assumed causal graph for a general problem of
distribution shift, and Figure 2 illustrates the assumed causal graph for causal and anti-causal
simplified examples described in equations 2 and 3, respectively. For instance according to
d-separation, in distributions described by Figure 1 it holds that Y ?? E | Xcausal, Xac-non-spurious
and that in general Y ?6? E | Xac-spurious. Furthermore, if we introduce a node �(X )
whose parents do not include Xac-spurious, then Y ?? E | �(X) (and conversely, if
Xac-spuriousisaparentthentheindependencedoesnotholdingeneral), whichmotivatesthedefinitionofarepresentationthathasnospuriouscorrelations.

Equipped with the definitions and background given in the previous sections, we now turn to the
proofs of the theorems in the paper.

A.4 Classification with Invariant Features

We first consider the classification task from the main paper, where the data generating process is
described in Figure S1. Recall that we are considering linear classifiers of the form f(x;w, b) =
�(w>x + b). Our environments here are defined by the parameters of the multivariate Gaussian
distributions that generate the spurious features {µi,⌃i}

k
i=1. As a first step we will derive the

algebraic form of the constraints that calibration imposes on w and the parameters defining the
environments. For convenience, we modify the notation from the main paper and consider a binary
label where Y = {�1, 1} instead of Y = {0, 1}.
Lemma S2. Assume we have k environments with means and covariance matrices for environmental
features µi 2 Rde ,⌃i 2 Sde

++, i 2 [k] and a common covariance matrix ⌃ns 2 Sdns
++ for invariant

features, where data is generated according to:

y =

⇢
1 w.p ⌘
�1 otherwise

,
xns | Y = y ⇠ N (yµns,⌃ns),

xsp | Y = y ⇠ N (yµi,⌃i),
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Y

Xsp
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Xns

Figure S1: Diagram for data generating process in the invariant features scenario.

and xns,xsp are drawn independently. Let � : R ! (0, 1) be an invertible function and define the
classifier:

f(x;w, b) = �(w>x� b).

Decompose the weights w = [wns,wsp] to the coefficients of the invariant and spurious features
accordingly. Then if the classifier is calibrated on all environments, it holds that either w = 0 or
there exists t 6= 0 such that:

w>

nsµns +w>

spµi

w>
ns⌃nswns +w>

sp⌃iwsp
= t 8i 2 [k]. (9)

Proof. Let i 2 [k], the joint distribution of features in the environment is Gaussian with mean

µ̂i = [µns, µi], covariance ⌃̂i =


⌃ns 0
0 ⌃i

�
. Hence the output of the affine function corresponding

to the classifier is a random variable with probability density function:

P [��1(f(X)) = ↵ | Y = y,E = ei] = (2⇡w>⌃̂iw)�
1
2 exp

 �
↵� yw>µ̂i + b

�2

2w>⌃̂iw

!
.

Hence the conditional probability of Y is given by:

P [Y = 1 | ��1(f(X)) = ↵, E = ei] =

⌘ exp

✓
(↵�w>µ̂i+b)2

2w>⌃̂iw

◆

⌘ exp
⇣

(↵�w>µ̂i+b)2

2w>⌃̂iw

⌘
+ (1� ⌘) exp

⇣
(↵+w>µ̂i+b)2

2w>⌃̂iw

⌘ .

Note that unless w = 0 (which results in a calibrated classifier that satisfies Equation (9)), the
variance of ��1(f(X)) is strictly positive since ⌃̂i � 0, so above conditional probabilities are
well-defined. Now it is easy to see that if the classifier is calibrated across environments, we need to
have equality in the log-odds ratio for each i, j and all ↵ 2 R:
�
↵�w>µ̂i + b

�2

2w>⌃̂iw
�

�
↵+w>µ̂i + b

�2

2w>⌃̂iw
=

�
↵�w>µ̂j + b

�2

2w>⌃̂jw
�

�
↵+w>µ̂j + b

�2

2w>⌃̂jw
8↵ 2 R.

After dropping all the terms that cancel out in the subtractions we arrive at:

w>µ̂i

w>⌃̂iw
=

w>µ̂j

w>⌃̂jw
.

This may also be written as a system of equations with an additional scalar variable t 2 R:

w>µ̂i

w>⌃̂iw
= t 8i 2 [k].

Now because we assumed ⌃i � 0 for all environments, for any solution to the above system with
t = 0, we must have:

w>µ̂i = 0 8i 2 [k].

Furthermore we will have for any ↵ 2 R:

P [Y = 1 | ��1(f(X)) = ↵, E = ei] = ⌘.

Since we assume f is calibrated and the right hand side needs to equal ↵, this is only possible if
f(x;w, b) is a constant function. Again, because ⌃i � 0, this is only possible if w = 0. Hence we
conclude with our desired result, as can be seen by decomposing w to the parts corresponding to
invariant and spurious features.
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We now give a result for the special case where the covariance matrices of the spurious features
satisfy ⌃i = �2

i I, considered in [37]. The nice correspondence here is that we will see that calibration
demands one more environment than IRM to discard all spurious features. This matches the intuition
that each environment reduces a degree of freedom from the set of invariant classifiers, while risk
minimization reduces one more degree of freedom.
Lemma S3. Assume we have k � dsp + 2 environments and define M

�
{µi,�i}

k
i=1

�
2 Rk⇥de+2:

M({µi,�i}
k
i=1) =

2

64
µ>

1 �2
1 1
...

µ>

k �2
k 1

3

75 .

If the matrix has full rank, then for any invariant predictor the linear coefficients on spurious features
are zero.

Proof. According to Lemma S2, writing down the conditional probability P [Y | ��1(f(x)), E = e]
and demanding calibration results in the constraint that either w = 0, and then the linear coefficients
on spurious features are indeed 0; or that for some t 6= 0:

w>

nsµns +w>

spµi

w>
ns⌃nswns + �2

i kwspk
2
2

= t 8i 2 [k].

Without loss of generality we can phrase these constraints as:

w>

nsµns +w>

spµi

w>
ns⌃nswns + �2

i kwspk
2
2

= 1 8i 2 [k].

This is true since if w is a solution to this system of equations where the right hand side is some
t 2 R then tw is a solution to the system where t is replaced by 1. Rewrite the constraints again to
isolate the parts depending on wsp:

�2
i kwspk

2
2 � µ>

i wsp = w>

ns⌃nswns �w>

nsµns 8i 2 [k].

To find whether this system has a solution where wsp is non-zero we can replace the right hand side
with a scalar variable t 2 R, and ask whether the following system has a non-zero solution:

�2
i kwspk

2
2 � µ>

i wsp = t 8i 2 [k].

For the above equations to have a non-zero solution, the following linear system must also have such
a solution:

M({µi,�i}
k
i=1)x = 0.

But from our non-degeneracy condition, such a solution does not exist.

Next we generalize the above to prove the result from the main paper, namely when the matri-
ces {⌃i}

k
i=1 are not diagonal. For this purpose we introduce a definition of general position for

environments, similar to the one given in [1].
Definition S3. Given k > 2dsp environments with mean parameters {⌃i, µi}

k
i=1, we say they are in

general position if for all non-zero x 2 Rd
sp:

dim

 
span

⇢
⌃ix+ µi

1

��

i2[k]

!
= de + 1.

Equipped with this notion of general position, we now need to show that if it holds then the only
predictors that satisfy the conditions of Lemma S2 are those with wsp = 0. Another claim we will
need to prove is that the subset of environments which do not lie in general position have measure
zero in the set of all possible environment settings. Hence generic environments are expected to lie in
general position. This argument will follow the lines of the one given in [1], adapted to our case with
the fixed coordinate 1 added in the above definition.
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Theorem 1. Under the setting of Lemma S2, if the environments lie in general position then all
classifiers that are calibrated across environments satisfy wsp = 0.

Proof. According to Lemma S2, if the predictor is calibrated then Equation (9) must hold. Following
the same arguments laid out in the proof at the main paper, we get that wsp needs to be a solution for
the following system of equations:

w>

sp⌃iwsp � µ>

i wsp � t = 0 8i 2 [k]. (10)

Now, let wsp 2 Rdsp be a non-zero vector and let us define the k ⇥ de + 1 matrix:

M({µi,⌃i}
k
i=1,wsp) =

2

64
w>

sp⌃1 � µ>

1 1
...

w>

sp⌃k � µ>

k 1

3

75

If the environments are in general position, the above matrix has full rank for any non-zero wsp.
Similarly to the proof of Lemma S3, if Equation (10) has a non-zero solution then the following
system must also have a solution:

M({µi,⌃i}
k
i=1,wsp)x = 0.

Which is of course impossible due to M({µi,⌃i}
k
i=1,wsp) having full rank.

We conclude with the statement about the measure of sets of environments which do not lie in general
position, this will follow the lines of [1].
Lemma S4. Let k > 2dsp and {µi}

k
i=1 be arbitrary fixed vectors, then the set of matrices {⌃i}

k
i=1 2

(Sdsp
++)

k for which {⌃i, µi}
k
i=1 do not lie in general position has measure zero within the set (Sdsp

++)
k.

Proof. We assume k > 2dsp and denote by LR(k, dsp, r) the matrices of dimensions k ⇥ dsp and
rank r. Also for any d denote by 1d the vector in Rd where all entries equal 1. Define M1

⇤
(k, dsp) as

the set of k ⇥ dsp matrices of full column-rank whose columns span the vector of ones 1k:

M1
⇤
(k, dsp) = {A 2 LR(k, dsp, dsp) | 1k 2 colsp(A)}.

Let {⌃i}
k
i=1 2 (Sdsp

++)
k and define W ✓ Rk⇥dsp as the image of the mapping G : Rdsp \ {0} !

Rk⇥dsp :

(G(x))i,l = (⌃ix� µi)l

By the definition of general position given in the paper, the environments defined by {⌃i, µi}
k
i=1 lie

in general position if W does not intersect LR(k, dsp, r) for all r < dsp and M1
⇤
(k, dsp). We would

like to show that this happens for all but a measure zero of
⇣
Sdsp

++

⌘k
.

Due to the exact same arguments in Thoerem 10 of [1], we have that W is transversal to any
submanifold of Rk⇥dsp and also does not intersect LR(k, dsp, r) where r < dsp, for all {⌃i}

k
i=1 but a

measure zero of
⇣
Sdsp

++

⌘k
.

It is left to show that it also does not intersect M1
⇤
(k, dsp) for all but a measure zero of

⇣
Sdsp

++

⌘k
. Be-

cause M1
⇤
(k, dsp) is a submanifold of Rk⇥dsp , it intersects transversally with W for generic {⌃i}

k
i=1.

Then by transversality they cannot intersect if dim(W) + dim(M1
⇤
(k, dsp))� dim(Rk⇥dsp) < 0. We

will claim that dim(M1
⇤
(k, dsp)) = k(dsp � 1) + dsp and then since k > 2dsp we may obtain:

dim(W) + dim(M1
⇤
(k, dsp))� dim(Rk⇥dsp)  dsp + k(dsp � 1) + dsp � kdsp

= 2dsp � k

< 0.
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The negativity of the dimension implies that if W and M1
⇤
(k, dsp) are transversal then they do not

intersect, and we may conclude our desired result that the environments lie in general position for all

but a measure zero of
⇣
Sdsp
++

⌘k
.

To show that dim(M1
⇤
(k, dsp)) = k(dsp � 1) + dsp, consider a matrix A 2 M1

⇤
(k, dsp). Since it has

full rank, it has a dsp ⇥ dsp minor that is invertible. Assume this minor is just the first dsp rows of A,
otherwise there is a linear isomorphism that transforms it into such a matrix and the arguments that
follow still apply (see [27], Example 5.30; our proof follows a similar line of reasoning). Now write
A as a block matrix using B 2 Rdsp⇥dsp , C 2 R(k�dsp)⇥dsp :

A =


B
C

�
.

Denoting by U the set of k⇥dsp matrices whose first dsp rows are invertible, we consider the mapping
F : U ! Rk�dsp :

F (A) = 1k�dsp � CB�11dsp .

Clearly F�1(0) = M1
⇤
(k, dsp) and F is smooth. We will show that it is a submersion by observing

that its differential DF (U) is surjective for each U 2 U. To this end, for a given U =


B
C

�
and any

X 2 R(k�dsp)⇥dsp define a curve � : (�✏, ✏) ! U by:

�(t) =


B

C + �X

�
.

We have that:

(F � �)0(t) =
d

dt
|t=0(1k�dsp � (C + tX)B�11dsp) = XB�11dsp .

Since B�11dsp is not the zero vector, and X 2 R(k�dsp)⇥dsp where k � dsp > dsp, then it is clear that
the above mapping is surjective. Note that the derivatives along the curve are just a subset of the range
of DF (U), hence DF (U) is also surjective at each point U 2 U. It follows from the submersion
theorem that dim(M1

⇤
(k, dsp)) = kdsp � (k � dsp) = k(dsp � 1) + dsp as desired for our result to

hold.

A.5 Regression Under Covariate Shift and Spurious Features

We now move on to the second scenario presented in the paper where the mechanism P (Y | X) is
invariant and the diagram depicting the data generating process is given in Figure S2. Here for each
environment i 2 [k] we will have:

Xc ⇠ N (µc
i ,⌃

c
i ) (11)

Y = w⇤

c
>xc + ⇠, ⇠ ⇠ N (0,�2

y)

Xsp = yµi + ⌘, ⌘ ⇠ N (0,⌃i).

We consider a regressor f : X ! R2, where the estimate of the mean is linear, i.e. [f(x;w)]1 =
w>x, and the estimate of the variance is constant [f(x;w)]2 = c.7 We decompose the weights w
into their parts corresponding to causal and spurious features [wc,wsp]. Then our result regarding
calibration and generalization to E is given below.
Theorem 2. Denote the dimensions of Xc, Xsp by dc, dsp accordingly. Assume we have k environ-
ments with parameters {µc

i , µi,⌃c
i ,⌃i}

k
i=1. For any matrix A denote its i-th row by Ai, and define

the matrices M({µc
i , µi}

k
i=1) 2 Rk⇥dc+dsp+1 and M2({µc

i ,⌃
c
i}

k
i=1,�

2
y,w

⇤

c ) 2 Rk⇥dc+2 whose rows

7Limiting the variance estimate to a constant does not make a difference for the purpose of our proof. The
proof does not rely on the correctness of the variance estimate as imposed by Equation (4), but only on the
variances being equal across environments when conditioned on f(x). In other words it relies on the correctness
of the mean estimate, and the distribution of Y conditioned on f(X) being the same across environments.
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Figure S2: Diagram for data generating process in the covariate shift scenario.

are given by:

M({µc
i , µi}

k
i=1) =

2

6664

µc
i
>

⇣
w⇤

c
>µc

1

⌘
µ>

1 1

...
µc
k
>

⇣
w⇤

c
>µc

k

⌘
µ>

k 1

3

7775
,

M2({µ
c
i ,⌃

c
i}

k
i=1,�

2
y,w

⇤

c ) =

2

666664

w⇤

c
>⌃c

1 +

✓
w⇤

c
>⌃c

1w
⇤
c+�2

y

w⇤
c
>µc

1

◆
µc
1
> w⇤

c
>⌃c

1w
⇤
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Let f(x;w) be a calibrated regressor, assume w⇤

c
>µc

i 6= 0 for all i 2 [k] and that there exists
i, j 2 [k] such that E[Y | E = ei] 6= E[Y | E = ej ]. Furthermore assume that one of the following
conditions hold:
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then the weights of f must be w = [w⇤

c ,0].

It is rather clear that rank-deficiency of M2 would impose some highly non-trivial conditions on
the relationships between µc
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i=1. The proof proceeds by writing the conditional distribution of Y on f(X), and

showing that the conditions in the theorem are the direct result of the calibration constraints.

Proof. Since Xc, Xsp, Y are jointly Gaussian, we can write their distribution at environment i 2 [k]
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The predictions w>X are then also normally distributed, and jointly with Y this can be written as:
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Now we can write the mean of the conditional distribution of Y on f(X)1 = ↵ as:
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For each environment i 2 [k], the above is a linear function of ↵. Demanding f(X) to be calibrated
on all environments then imposes both the slopes and intercepts to be equal across environments.
Writing this for the slope, we obtain that there must exist t 2 R such that:

�f,y,i

�2
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= t 8i 2 [k]. (12)

We note that t 6= 0 since if it is zero then we have that E[Y | f(X)1 = ↵, E = i] does not depend on
↵, where calibration demands that it equals ↵. This can only happen if wc = 0, otherwise the range
of f(x) is R because we assumed in the definition of the environments that ⌃i

c � 0. Furthermore,
wc = 0 cannot be calibrated if E[Y | E = ei] is not constant across environments; which is also part
of the non-degeneracy constraints we required. Next we demand the equality of the intercepts across
environments. Taking these equations and replacing Equation (12) into each of them, we get:

w⇤

c
>µc

i � t
⇣
w>

c µ
c
i + (w>

spµi)(w
⇤

c
>µc

i )
⌘
= w⇤

c
>µc

j � t
⇣
w>

c µ
c
j + (w>

spµj)(w
⇤

c
>µc

j)
⌘
8i, j 2 [k].

Dividing both sides by t and defining w̄c =
w⇤

c
t �wc, we can introduce another variable t2 2 R and

write this as a linear system of equations in variables wsp, w̄c, t2:
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We see that given dc + dsp + 1 environments, then with mild conditions on their non-degeneracy
(i.e. the vectors containing the environment means and an extra entry of 1 span Rdc+dsp+1), the only
solution to the system is w̄c = 0,wsp = 0, proving the last part of our statement.

Moving forward to demand multiple calibration on second moments E[Y 2
| f(X)1 = ↵, E = ei] =

E[Y 2
| f(X)1 = ↵, E = ej ] for all i, j 2 [k], we may write this as:
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Plugging Equation (12) into the above, a simplified expression is obtained:
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Again we can divide by t and obtain an explicit expression using w̄c,wsp:
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Finally, we can plug in Equation (13) and introduce another variable t3 2 R to turn the above
equations into:
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It is now easy to see that if k > dc + 2 and M2({µi,⌃i}
k
i=1,�

2
y,w

⇤

c ) has full rank, the only solution
to these equations satisfies w̄c = 0, t2 = t3 = 0. When this is plugged into Equation (13), we find
that if k > dsp and the spurious means span Rdsp then the only possible solution is wsp = 0. Finally,
w̄c = 0 means w⇤

c = twc, and if f(x) is calibrated then we must have t = 1 since otherwise its
estimate of the conditional mean is incorrect. Hence our proof is concluded.

We note that even though the setting we considered is restricted to causal features, anti-causal non-
spurious features as those in Figure S1 can also be treated (resulting in the graph given in Figure 1).
This is since for a single environment, the distribution P [Xc, Xac-ns, Xac-spurious, Y | E = e] (we
shorten here to P e for convenience) can always be written as follows, treating Xac-ns as causal
features:

P e[Xc, Xac-ns, Xac-sp, Y ] = P e(Xc, Xac-ns)P
e(Y | Xc, Xac-ns)P

e(Xac-sp | Y,Xac-ns, Xc)

= P e(Xc, Xac-ns)P
e(Y | Xc, Xac-ns)P

e(Xac-sp | Xac-ns).

The last equality is due to the separation properties of the graph, and since the joint distribution is
a multivariate Gaussian, so are all the factors in the above product. Hence each environment can
be described using a structural equation model of the same type as Equation (11) and Theorem 2
applies.
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B Dataset Statistics and Models

For each of the four WILDS experiments presented in Section 6, we briefly describe the data and
report the splits we use for training, validation and test. In each experiment we train a model on
the training set, and the calibrators on the validation set. The post-processing calibrators receive
tuples of model predictions and labels as input, whereas fine tuning with CLOvE receives a latent
representation (values of the last hidden layer for Camelyon17 and FMoW, and average of the
representation of the cls token over the last 4 hidden layers in CivilComments). CLOvE is trained over
a Multilayer Perceptron with 3 hidden layers, with batch size of 64 and the Adam optimizer. We then
compare all alternatives (Original, Naive Calibration, Robust Calibration and CLOvE) on the held-out
test set (OOD). Whenever an In-Domain (ID) test set is available (PovertyMap and Camelyon17), we
evaluate the model on it as well. Throughout our experiments, we measure and report the Expected
Calibration Error (ECE) using 10 bins, dividing the [0, 1] interval into sub-intervals of equal length.
The licenses to the datasets are CC0 for Camelyon17 and CivilComments, FMoW is distributed under
the FMoW Challenge Public License and PovertyMap is public domain. All model training is done
on an infrastructure with 4 RTX 2080 Ti GPUs.

B.1 PovertyMap

Problem Setting PovertyMap is a regression task of poverty mapping across countries. Input x is a
multispectral satellite image, output y is a real-valued asset wealth index and domain d is a country
and whether the satellite image is of an urban or a rural area. The goal is to generalize across countries
and demonstrate subpopulation performance across urban and rural areas.

Data PovertyMap is based on a dataset collected by [49], which organized satellite images and survey
data from 23 African countries between 2009 and 2016. There are 23 countries, and every location
is classified as either urban or rural. Each example includes the survey year, and its urban/rural
classification.

1. Training: 10000 images from 13 countries.
2. Validation (OOD): 4000 images from 5 different countries (distinct from training and test

(OOD) countries).
3. Test (OOD): 4000 images from 5 different countries (distinct from training and validation

(OOD) countries).
4. Validation (ID): 1000 images from the same 13 countries in the training set.
5. Test (ID): 1000 images from the same 13 countries in the training set.

B.2 Camelyon17

Problem Setting Camelyon17 is a tumor identification task across different hospitals. Input x is an
histopathological image, label y is a binary indicator of whether the central region contains any tumor
tissue and domain d is an integer identifying the hospital. The training and validation sets include the
same four hospitals, and the goal is to generalize to an unseen fifth hospital. We note that in [23]
they include data from three hospitals in the training set and validate on data from a fourth hospital.
Our setting includes a validation set from multiple hospitals since our fine tuning methods requires
multiple domains.

Data The dataset comprises 450000 patches extracted from 50 whole-slide images (WSIs) of breast
cancer metastases in lymph node sections, with 10 WSIs from each of five hospitals in the Netherlands
[2]. Each WSI was manually annotated with tumor regions by pathologists, and the resulting
segmentation masks were used to determine the labels for each patch. Data is split according to the
hospital from which patches were taken.

1. Training: 335996 patches taken from each of the 4 hospitals in the training set.
2. Validation: 60000 patches taken from each of the 4 hospitals in the training set (15000

patches from each hospital).
3. Test (OOD): 85054 patches taken from the 5th hospital, which was chosen because its

patches were the most visually distinctive.

23



B.3 CivilComments

Problem Setting CivilComments is a toxicity classification task across different demographic iden-
tities. Input x is a comment on an online article, label y indicates if it is toxic, and domain d is a
one-hot vector with 8 dimensions corresponding to whether the comment mentions either of the 8
demographic identities male, female, LGBTQ, Christian, Muslim, other religions, Black, and White.
The goal is to do well across all subpopulations, as computed through the average and worst case
model performance.

Data CivilComments comprises 450000 comments, annotated for toxicity and demographic mentions
by multiple crowdworkers, where toxicity classification is modeled as a binary task [4]. Each
comment was originally made on an online article. Articles are randomly partitioned into disjoint
training, validation, and test splits, and then formed the corresponding datasets by taking all comments
on the articles in those splits.

1. Training: 269038 comments.
2. Validation: 45180 comments.
3. Test: 133782 comments.

B.4 FMoW

Problem Setting FMoW is a building and land multi-class classification task across regions and
years. Input x is an RGB satellite image, label y is one of 62 building or land use categories, and
domain d is the time the image was taken and the geographical region it captures. The goal is to
generalize across time, and improve subpopulation performance across all regions.

Data FMoW is based on the Functional Map of the World dataset [6], which includes over 1 million
high-resolution satellite images from over 200 countries, based on the functional purpose of the
buildings or land in the image, over the years 2002–2018. We use a subset of this data introduced in
[23], which is split into three time range domains, 2002–2013, 2013–2016, and 2016–2018, as well
as five geographical regions as subpopulations: Africa, Americas, Oceania, Asia and Europe.

1. Training: 76863 images from the years 2002–2013.
2. Validation (OOD): 19915 images from the years from 2013–2016.
3. Test (OOD): 22108 images from the years from 2016–2018.
4. Validation (ID): 11483 images from the years from 2002–2013.
5. Test (ID): 11327 images from the years from 2002–2013.

Models In the following we briefly describe each of the models used in the experiments reported in
Section 6.

• BERT - BERT is a 12-layer Transformer model [46] that represents textual inputs con-
textually and sequentially [9]. It is widely used in NLP, and is considered the standard
benchmark for any state-of-the-art system. It was previously shown to be miscalibrated
across its training and test environments [8]. In our CivilComments experiments, we use
BERT-base-uncased, a smaller variant of BERT which has a layer size of 768

• DenseNet - Dense Convolutional Network (DenseNet), is a feed-forward neural network
where for each layer, the feature-maps of all preceding layers are used as inputs, and its
own feature-maps are used as inputs into all subsequent layers [19]. DenseNets are widely
used in computer vision, especially for image classification tasks . We use a DenseNet-121
model, a DenseNet variant with 121 layers, in the Camelyon17 and FMoW experiments.

• ResNet - Residual Network (ResNet) is a feed-forward neural network where layers are
reformulated to learning residual functions with reference to the layer inputs [15]. DenseNets
where shown to be successful in multiple image recognition tasks. We use the 18-layer
variant, ResNet-18, in the PovertyMap experiment.

We run our models using the default setting used in [23]. Each model is trained four times, using a
different random seed at each run. We report performance averages and their standard deviation in
Section 6.
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Robustness to Model Architecture Choice For each of the five WILDS datasets we report results
on (PovertyMap, Camelyon17, CivilComments and FMoW) also tested the robustness of our results
to different model architectures. In the following we describe the architecture we tested for each
dataset, and the relative results achieved.

• BERT - We used a pre-trained BERT in the Civilcomments experiments. On the Civilcom-
ments dataset, we compared results on the BERT-base-uncased model with the cased and
large versions. While we did find the performance increases with model size, perfromance
drops on OOD examples remained consistent across models, with CLOvE outperforming
Robust Calibration and Naive Calibration by an average of 1.4% and 3.1% (absolute),
respectively.

• DenseNet - In the FMoW experiments, we tested the relative performance of the 121 layer
version to the 169 and 201 layer alternatives available via https://pytorch.org/hub/
pytorch_vision_densenet/. Differences between the three models were not statistically
significant.

• ResNet - In the PovertyMap experiments, we compare ResNet-18 to the 34 and 50 layers
alternatives available via https://pytorch.org/hub/pytorch_vision_resnet/. We
found that ResNet-18 performs slightly on the OOD test set, with average gain of 0.01 in
pearson correlation compared with ResNet-34. Robust Calibration remained better than
Naive Calibration and the original model across runs.

Training Algorithms In the WILDS experiments, for each dataset we train our models using three
out of these four alternatives:

• ERM - Empirical risk minimization (ERM) is a training algorithms the looks for models
that minimize the average training loss, regardless of the training environment.

• IRM Invariant risk minimization (IRM) [1] is a training algorithm that penalizes feature
distributions that have different optimal linear classifiers for each environment.

• DeepCORAL DeepCORAL [44] is an algorithm that penalizes differences in the means
and covariances of the feature distributions for each training environment. It was originally
proposed in the context of domain adaptation, and has been subsequently adapted for domain
generalization [11].

• GroupDRO - Group DRO [18] uses distributionally robust optimization (DRO) to explicitly
minimize the loss on the worst-case environment.

We do not perform any hyperparameter search, and use the default version available in [23].

C Experiments on Colored MNIST

For the colored MNIST8 dataset we trained Multi-Layer Perceptrons (MLPs) with ERM, IRMv1 and
CLOvE, based on the code provided in [20] with the following adjustments: we add CLOvE and
optimize it using SGD with batches of size 512 from each training environment, for 5001 steps at
each run ( 50 epochs). We used either the Adagrad optimizer [10] or Adam [22] (Adam was replaced
with Adagrad in one environment where it produced highly unstable training metrics). All models
were trained on a single NVidia Tesla P100 GPU virtual machine, on the Google Cloud Platform.
Other algorithms were trained with Gradient Descent (i.e. without batching the dataset, which is
infeasible for CLOvE since it is based on kernels) and Adam for 500 steps/epochs, exactly as done
in the code provided by [1, 20]. For CLOvE, hyperparamters are drawn similarly to the rest of the
algorithms, except when using Adagrad where we multiply the originally drawn learning rate by 5.

C.1 Performance of CLOvE

We will refer to environments with tuples (↵,�) that denote correlation with digit and color respec-
tively, as done in Section 6.1. For each setting of training and test environments we experiment
with, 100 models are trained using each algorithm: ERM, IRM and CLOvE. To illustrate the failure

8The MNIST dataset is available under the terms of the Creative Commons Attribution-Share Alike 3.0
license

25

https://pytorch.org/hub/pytorch_vision_densenet/
https://pytorch.org/hub/pytorch_vision_densenet/
https://pytorch.org/hub/pytorch_vision_resnet/


case pointed out in [20] and Section 6 of the paper, we train the algorithms with training envi-
ronments corresponding to e1 = (0.1, 0.05), e2 = (0.2, 0.05) and use data from test environment
e3 = (0.9, 0.05). Figure S3 which we produce using code provided in [20] shows the results, where
each point corresponds to a model trained with some set of drawn hyperparameters. Most models
trained by CLOvE achieve log-loss that is close to that of the optimal invariant classifier (marked by
dashed black line), while the models trained with IRMv1 are more scattered and specifically those
that achieve lower log-loss are the ones that also obtain lower training objective. The bold colored
lines mark the points that minimize

P
e2Etrain

le(f✓) + � · re(f✓) with � = 106 (expect for ERM
where it’s the point which minimizes the empirical loss), showing that out of the models trained
with IRMv1, the one which minimizes the objective has loss close to that of the solution OPTIRMv1
from Figure 3(a) in the paper (marked by dashed red line). That is while the CLOvE model with
the lowest training objective is very close to the optimal invariant classifier in its test loss (marked
by black dashed line). Note that in this case color is the invariant feature while the digit is spurious.

Figure S3: Log-loss on test environment (0.9, 0.05) of classifiers trained with ERM, CLOvE and
IRMv1 on training environments (0.1, 0.05), (0.2, 0.05). Black dashed line marks the log-loss
achieved by the optimal invariant classifier, while the red dashed line shows the loss achieved by
OPTIRMv1 from Figure 3(a). Bold colored lines mark the test loss achieved by the model which
minimizes

P
e2Etrain

le(f✓) + � · re(f✓) with � = 106 out of all trained models.

For the opposite case, where the digit is invariant, the error incurred by MLPs in digit recognition
makes it difficult to find the exact invariant classifier by optimizing CLOvE (since this error is close
to the magnitude of the 0.05 correlation). Yet in Section C.2 the failure case of IRMv1 in these
environments will be illustrated by average ECE (which CLOvE is a surrogate for) being a better
measure of invariance than the IRMv1 objective.

The experiment presented in [1] used the training environments e1 = (0.25, 0.1), e2 = (0.25, 0.2)
with test environments e3 = (0.25, 0.9), where IRMv1 can in principle learn the optimal invariant
classifier. We give the results on learning with these environments for completion. As can be observed
in Figure S4, both CLOvE and IRMv1 learn models that are close to the optimal invariant one. While
IRMv1 learned more of those models during the hyperparameter sweep9, CLOvE still obtains some
close-to-invariant models during the sweep. The rest of this section will be dedicated to studying
model selection with the proposed average ECE criterion and the correlation between ID average
ECE and OOD performance.

C.2 Model Selection Experiments

Let us recall and elaborate the selection procedure proposed in Section 5:

9This can be attributed to the choice of ranges for drawing hyperparameters which we did not carefully tune
to accommodate CLOvE.
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Figure S4: Log-loss on test environment (0.25, 0.9) of classifiers trained with ERM, CLOvE and
IRMv1 on training environments (0.25, 0.1), (0.25, 0.2). Lines denote the same corresponding
quantities in Figure S3, except we omit the red dashed line from that figure.

Figure S5: Model selection under a constraint on the ID accuracy. The OOD accuracy obtained by the
proposed model selection method is plotted against the desired In-Domain accuracy, accID, which is
the minimal validation accuracy that we constrain the selected model to achieve. Red marker denotes
the performance of the model achieved by selection based on ID validation accuracy alone.

• Given a desired threshold for In-Domain accuracy ThrID and a set of models
f1(x), . . . , fn(x) from which we would like to select a candidate, perform the following.

• For each candidate model f̂ , recalibrate it with Isotonic Regression or some other preferred
post-processing technique 10. Calculate its ID validation error valID(f̂) over a held-out
dataset. For the held-out dataset from each environment e 2 Etrain also calculate ECEe(f̂):
the ECE of f̂ over this dataset. Then take ECE(f̂) =

P
e2Etrain

ECEe(f̂).

• Choose argminf̂ :valID(f̂)�ThrID
ECE(f̂).

Selection with minimal ECE facilitates a tradeoff between ID accuracy and stability. We use the
trained models from the last section (all models trained with either ERM, IRMv1 or CLOvE are pooled
into a set of candidates), over environments e1 = (0.25, 0.1), e2 = (0.25, 0.2). Selecting the model
with minimal valID(f̂) delivers a classifier with 10.96%(±0.81) accuracy on etest = (0.25, 0.9) and
85.43%(±0.13) accuracy on the training environments. The trade-off achieved by selection with

10This is a crucial step, since models that are highly miscalibrated can become well-calibrated upon post-
processing
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(a) (b)

Figure S6: Comparison of proposed model selection procedure applied with IRMv1 objective
and the average ECE over training environments in two settings. (a) e1 = (0.05, 0.1), e2 =
(0.05, 0.2), etest = (0.05, 0.9) and (b) e1 = (0.25, 0.1), e2 = (0.25, 0.2), etest = (0.25, 0.9).

the proposed criterion is shown in Figure S5. Demanding ID accuracy that is higher than 75% (the
ID error obtained by an optimal invariant classifier) yields a relatively sharp drop towards the OOD
accuracy obtained by a classifier that purely minimizes empirical error. Going below 75% retrieves a
classifier that achieves 64.98%(±2.67)% OOD accuracy.
Comparison with IRMv1 Penalty as Selection Criterion. As a baseline to the average ECE over
training environments we compare it with using the value of the IRMv1 regularizer, also calculated
with a validation set from each training environment. In Figure S6 we compare the curves obtained
by the proposed model selection procedure, and that same procedure when replacing the ECE with
the value of IRMv1. Figure S6(a) shows the result on the scenario where e1 = (0.25, 0.1), e2 =
(0.25, 0.2) and etest = (0.25, 0.9). In this case the two methods are quite comparable, expect for the
tail of high desired ID accuracies, where the chosen models are trained with ERM and the IRMv1
criterion fails to rank them by their OOD accuracy. Figure S6(b) shows the same plot on the scenario
where e1 = (0.05, 0.1), e2 = (0.05, 0.2) and etest = (0.05, 0.9), which corresponds to the failure
case of IRM in Figure 3(a). Due the observation of [20], we may expect the IRMv1 objective to fail at
capturing invariance in this setting. Indeed, the model selection done using the IRMv1 penalty gives a
worst model than the one selected by ECE in this case. In Figure S7 we also plot the correspondence
between OOD accuracy and these quantities (namely ID average ECE, and IRMv1 penalty) as in
Figure 3(b) for both settings depicted in Figure S6 showing the erratic behavior of the IRM penalty
when considered on different training regimes.
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(a)

(b)

Figure S7: Scatter plots of average ECE, and average IRMv1 penalty over training environments
against the accuracy on test environments in settings (a) e1 = (0.05, 0.1), e2 = (0.05, 0.2), etest =
(0.05, 0.9) and (b) e1 = (0.25, 0.1), e2 = (0.25, 0.2), etest = (0.25, 0.9). Size of marker is propor-
tional to the ratio between OOD and ID accuracies.
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