
A Broader Impacts and Ethical Considerations of this Work489

The specification of an adequate privacy level ε is challenging since it does not only depend on490

the domain but also on the dataset itself. This challenge persists when assigning individual privacy491

levels over a dataset. Especially in sensitive domains, one needs to make sure that the assignment492

of individual privacy guarantees does not pose an additional risk to the individuals whose data is493

processed. Therefore, one needs to first make sure that assigning individual privacy guarantees is not494

abused. This can occur when the entity training the model violates underlying individuals’ privacy495

by nudging them into choosing inadequate privacy levels. Second, one needs to prevent individuals496

from giving up their privacy due to a lack of understanding or a wrong perception of their risk. To497

do so, IDP-SGD should not be used as a stand-alone method. Instead, following the example of498

[5], we suggest incorporating it into a whole process that involves communicating the functioning499

of DP and the risks associated with a decision to the individuals, analyzing their preferences, and500

supporting them in an informed decision-making process. There exist a growing body of work on the501

communication of DP methodology and associated risks to the public [32, 7, 10]. The most recent502

finding [10] suggests that medical risk communication formats, such as percentages or frequencies,503

are best applicable to inform about privacy risks. For the identification of privacy preferences, existing504

frameworks, such as [30] can be applied. Finally, we suggest giving individuals the choice between505

categorical privacy levels (e.g., high, medium, low) while putting a regulatory entity, such as an ethics506

committee in charge of specifying concrete numeric values of ε. This mitigates the disadvantages of507

the general limited interpretability of ε that exist independently of individualization.508

Limitations. In this work, we consider a setup where individuals indicate their privacy preferences.509

We acknowledge that not all individuals are aware of their own privacy preferences and might,510

therefore, provide inaccurate indications. Therefore, our framework should be always deployed511

in a protected setup as described above. While we provide theoretical privacy guarantees in the512

framework of differential privacy, we assess the practical impact of these guarantees on the individuals513

solely through membership inference attacks. Future work should investigate the practical (disparate514

per privacy-group) impact on other known privacy risks, such as data reconstruction. Due to the515

lack of sensitive-real world datasets that, in addition to individuals’ data, also capture their privacy516

preferences, we evaluate our methods on standard benchmark datasets. We, therefore, have to simulate517

a privacy preference distribution on this data according to the distribution known from society.518

B Extended Background519

B.1 Differential Privacy520

Differential Privacy (DP) [8] provides a theoretical upper bound on the influence that a single data521

point can have on the outcome of an analysis over the whole dataset.522

The most commonly applied instantiation of DP is (ε, δ)-DP which is defined as follows:523

Definition B.1. Let D,D′ ⊆ D be two neighboring datasets, i.e., datasets that differ in exactly one524

data point. Let further M : D∗ → R be a mechanism that processes an arbitrary number of data525

points. M satisfies (ε, δ)-DP if for all datasets D ∼ D′, and for all result events R ⊆ R526

P [M(D) ∈ R] ≤ eε · P [M(D′) ∈ R] + δ . (4)

In the definition, the privacy level is specified by ε ∈ R+, while δ ∈ [0, 1] offers a relaxation, i.e., a527

small probability of violating the guarantees.528

In Algorithm 3, we highlight the DP-SGD algorithm that allows to train ML models with DP529

guarantees.530

B.2 Differential Privacy Accounting in Machine Learning531

Privacy accounting in DP-SGD is most commonly implemented by the moments accountant which532

keeps track of a bound on the moments of the privacy loss random variable at outcome R, defined by533

c(R;M, aux, D,D′) = log
Pr[M(aux, D) ∈ R]

Pr[M(aux, D′) ∈ R]
. (5)

for D,D′,M and R as above, and an auxiliary input aux.534
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Algorithm 3: Differentially Private SGD [1]

Require: Training dataset D with data points {x1, . . . , xN}, loss function l, learning rate η, noise
multiplier σ, sampling rate q, clip norm c, number of training iterations I .

1: Initialize θ0 randomly
2: for t ∈ [I] do
3: Poisson Sampling: Sample mini-batch Lt with per-point probability q from D.
4: For each i ∈ Lt, compute gt(xi)← ∇θt l(θt, xi)
5: 1. Gradient Clipping

6: ḡt(xi)← gt(xi)/max
(

1, ∥gt(xi)∥2

c

)

7: 2. Noise Addition
8: g̃t ←

1
|Lt|

(
∑

i ḡt(xi) +N (0, (σc)2I)
)

9: θt+1 ← θt − ηg̃t
10: end for
11: Output θT , privacy cost (ε, δ) computed using a privacy accounting method.

B.3 Formalizing Individualized Privacy535

Individualized privacy guarantees with DP can be formalized as follows [15]:536

Definition B.2. Let d ∈ D be a data point. M satisfies (εd, δd)-DP if for all datasets D
d
∼ D′, and537

for all result events R ⊆ R538

P [M(D) ∈ R] ≤ eεd · P [M(D′) ∈ R] + δd . (6)

Note that other notions of DP (e.g., RDP) can analogously be generalized to enable per-data point539

privacy guarantees.540

B.4 PATE Algorithm541

The Private Aggregation of Teacher Ensembles (PATE) algorithm [26] represents an alternative to DP-542

SGD for training ML models with privacy guarantees. This ensemble-based algorithm implements543

privacy guarantees through a knowledge transfer from the ensemble to a separate student model. More544

concretely, in PATE, the private training data is split into non-overlapping subsets and distributed545

among several teacher models. Once each teacher is trained on their own data subset, they perform a546

privacy-preserving knowledge transfer by jointly labeling an additional unlabeled public dataset. To547

implement DP guarantees, noise is added to the labeling process. On completion, an independent548

student model is trained on the public dataset using the generated labels, and thereby incorporating549

knowledge about the original training data without ever requiring access to it.550

Individualized PATE. The individualized PATE variants by [5] are Upsample and Weight. Upsam-551

ple duplicates data points and distributes them to different teachers in the PATE ensemble. Utility552

increase in this method result from the availability of more training data points for the teachers.553

Since the sensitivity for a duplicated data point increases (it can change the votes of all the teachers554

that are trained on its duplicates), privacy consumption of that data point is higher. Since each data555

point can be duplicated individually, this method allows for a fine-grained individualization. In556

contrast, the weight method allows for a per-teacher model privacy individualization. Data points557

with the same privacy budget are assigned to the same teacher model(s) and the impact of that teacher558

model’s weight on the final vote is weighted according to its training data points’ privacy preferences.559

Teachers that are trained on data points with low privacy requirements are weighted higher, increasing560

the privacy consumption of their training data.561

B.5 The Lira Membership Inference Attack562

The Lira membership inference attack [6] proceeds in three steps to determine which data points563

from a dataset D = {x1, . . . , xN} were used to train a target model f : (1) First, multiple shadow564

models, similar to f , are trained on different subsets of D. (2) Then, the mean and variance of two565

loss distributions N (µin, σin) and N (µout, σout) are estimated per data point xi. Both distributions566
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are calculated from the logits of xi at the target class yi—the former one over the shadow models567

that xi is a member of, the latter one on shadow models that xi is not a member of. (3) Finally, the568

likelihood of a new data point x of class y being a member of the target model f is calculated as569

Λ =
p(f(x)y | N (µin,σ

2

in))

p(f(x)y | N (µout,σ
2

out))
.570

C Details on the Methods571

C.1 Sample572

Leveraging Higher Sampling Rates for Increased Utility. With higher sampling rates for certain573

data points, utility could, in principle be increased in several ways. (1) Larger sampling rates can be574

used to obtain higher mini-batch sizes B (while keeping the number of training iterations I constant).575

Line 3 in Algorithm 3 shows that noise is added to the aggregate of all gradients. Hence, with larger576

mini-batches, the signal-to-noise ratio is higher, which can improve training. (2) Alternatively, the577

mini-batch size B can be kept constant while increasing the number of training iterations I . Longer578

training can increase model performance. However, these two approaches result in a change of core579

training hyperparamters (mini-batch size and number of iterations). As we discuss in Section 3,580

changing training hyperparameters would require a separate fine-tuning, for example, to adapt the581

learning rate for larger mini-batches, as in (1) or longer training as in (2). Since the training parameters582

would change according to the privacy budgets encountered in the private training dataset, and the583

ratios of these budgets over the training data points, the hyperparameter-tuning would have to be584

repeated whenever the dataset is updated, individuals change their privacy preferences, or decide to585

withdraw their consent for leveraging their data for the ML model alltogether, yielding significant586

overheads. We, therefore, implement our Sample according to the third option (3), described587

in Section 3.3 which leverages higher sampling rates for improved utility by reducing the noise588

multiplier of the added noise σ. This allows us to perform an apple to apple comparison between589

both our methods and to the standard DP-SGD.590

C.2 Scale591

Deriving Noise Multiplier σscaleσscaleσscale. Given the desired clip norm c found through hyperparameter592

tuning of the standard DP-SGD, we set the individual clip norms such that their weighted average593

yields c as c = 1
N

∑P
p=1 |Gp| · cp. So, we derive the σscale in the following way:594

c =
1

N

P
∑

p=1

|Gp| · cp (7)

c =
1

N

P
∑

p=1

|Gp| ·

(

c
σscale

σp

)

(8)

c = cσscale

1

N

P
∑

p=1

|Gp|

σp

(9)

σscale =

(

1

N

P
∑

p=1

|Gp|

σp

)−1

(10)

From (7) to (8), we use the equality between the scale of added noise σscalec = σpcp. In (9), we595

extract terms that are independent of the privacy groups (c and σscale) before the summation.596

C.3 Algorithmic Details597

We specify our used sub-routines used for determining a sample rate or noise multiplier based on598

given privacy parameters in Algorithm 4 and Algorithm 5, respectively.599
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Algorithm 4: Subroutine getSampleRate. Is the equivalent to Opacus’ function
get_noise_multiplier [25] for deriving an adequate sample rate for given paramteters.

Require: Target ε, target δ, iterations I , noise multiplier σ, precision γ = 0.01
1: init εhigh: εhigh ←∞
2: init qlow, qhigh: qlow ← 1e−9, qhigh ← 0.1
3: while εhigh > ε do
4: qhigh ← 2qhigh

5: εhigh ← I · 2q2high
1
σ2 {approximate epsilon according to Equation (2), we suppress α for

simplicity}
6: end while
7: while ε− εhigh > γ do
8: q ← (qlow + qhigh)/2
9: εtemp ← I · 2q2 1

σ2 {approximate epsilon according to Equation (2), we suppress α for
simplicity}

10: if εtemp < ε then
11: qhigh ← q
12: εhigh ← εtemp

13: else
14: qlow ← q
15: end if
16: end while
17: Output qhigh

Algorithm 5: Subroutine getNoise. Implements Opacus’ function get_noise_multiplier [25].

Require: Target ε, target δ, iterations I , sample rate q, precision γ = 0.01
1: init εhigh: εhigh ←∞
2: init σlow, σhigh: σlow ← 0, σhigh ← 10
3: while εhigh > ε do
4: σhigh ← 2σhigh

5: εhigh ← I · 2q2 1
σ2

high

{approximate epsilon according to Equation (2), we suppress α for

simplicity}
6: end while
7: while ε− εhigh > γ do
8: σ ← (σlow + σhigh)/2
9: εtemp ← I · 2q2 1

σ2 {approximate epsilon according to Equation (2), we suppress α for
simplicity}

10: if εtemp < ε then
11: σhigh ← σ
12: εhigh ← εtemp

13: else
14: σlow ← σ
15: end if
16: end while
17: Output σhigh

D Additional Empirical Evaluation600

We report the hyperparameters found for our individualized methods in Table 5. The training and601

standard DP-SGD hyperparameters are specified in Table 4. The performance of our individualized602

methods when using the hyperparameters of standard DP-SGD is presented in Table 7. Already when603

using these (non-individually tuned) hyperparameters, our methods yield a significant performance604

increase in comparison to standard DP-SGD. For MNIST, individual hyperparameter for our methods605

and individual setups did not yield significant improvements, therefore the results presented in Table 7606

and Table 2 are identical for MNIST.607
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Computing Resources. The implementation of our methods does not increase computation time608

over the standard implementation of DP-SGD apart from the derivation of the privacy parameters that609

is performed once at the beginning of training. Hence, to run all experiments around our methods and610

their evaluation, we required, in total less than 16h of GPU time on a standard GeForce RTX 2080611

Ti. We ran the experiment on combining individualized privacy assignment and accounting on the612

same machines RTX 2080Ti and the total compute time is also around 2h. To train all the shadow613

models for our membership inference attack and run inference on them, we ran on an A100 GPU and614

required a total runtime of roughly 32 hours.615

Table 4: DP-SGD Hyperparameters. LR: learning rate, B: expected mini-batch size, I: number
of iterations, C: clip norm, σ: noise multiplier in DP-SGD derived from the desired privacy budget
ε = 1. Default target δ = 0.00001.

DATASET LR B I C σ

MNIST 0.6 512 9375∼80 EPOCHS 0.2 3.42529
SVHN 0.2 1024 2146∼30 EPOCHS 0.9 2.74658

CIFAR10 0.7 1024 1465∼30 EPOCHS 0.4 3.29346

Table 5: DP-SGD Hyperparameters (Individually Tuned). LR: learning rate, B: expected mini-
batch size, I: number of iterations, C: clip norm, σ. Default target δ = 0.00001. Setup A is for
privacy budgets ε = {1.0, 2.0, 3.0} and their respective distribution of 34%-43%-23%. Setup B is
for the same privacy budgets but with their distributions 54%-37%-9%.

DATASET METHOD SETUP LR B I C σ

MNIST SAMPLE A 0.6 512 9375∼80 EPOCHS 0.2 3.42529
SVHN SAMPLE A 0.2 1024 5723∼80 EPOCHS 0.6 2.53261

CIFAR10 SAMPLE A 0.2 1024 2929∼60 EPOCHS 1.0 2.65712

MNIST SAMPLE B 0.6 512 9375∼80 EPOCHS 0.2 3.42529
SVHN SAMPLE B 0.1 1024 3577∼50 EPOCHS 0.6 2.41421

CIFAR10 SAMPLE B 0.1 1024 2929∼60 EPOCHS 1.8 3.14049

MNIST SCALE A 0.6 512 9375∼80 EPOCHS 0.2 3.42529
SVHN SCALE A 0.1 1024 3577∼50 EPOCHS 2.0 2.09719

CIFAR10 SCALE A 0.2 1024 3418∼70 EPOCHS 1.1 2.88335

MNIST SCALE B 0.6 512 9375∼80 EPOCHS 0.2 3.42529
SVHN SCALE B 0.1 1024 3577∼50 EPOCHS 1.6 2.45703

CIFAR10 SCALE B 0.1 1024 2929∼60 EPOCHS 1.8 3.17792

We present the individualized privacy parameters identified for our methods in Table 6.

Table 6: Individualization Parameters Computed by our Methods for Table 7. We report
the individualized privacy parameters identified for our Scale and Sample by Algorithm 2 and
Algorithm 1, respectively. The parameters are obtained on the MNIST, SVHN, and CIFAR10 datasets
when using the privacy budget distributions of Table 7 with ε = {1.0− 2.0− 3.0}

DP-SGD SCALE SAMPLE

DATASET SETUP σσσ ccc qqq σSCALEσSCALEσSCALE {σ1, . . . , σP }{σ1, . . . , σP }{σ1, . . . , σP } {c1, . . . , cP }{c1, . . . , cP }{c1, . . . , cP } σSAMPLEσSAMPLEσSAMPLE {q1, . . . , qP }{q1, . . . , qP }{q1, . . . , qP }

MNIST
34%-43%-23% 3.425 0.2 0.008 2.063 {2.189, 1.310, 1.032} {0.129, 0.216, 0.274} 2.024 {0.005, 0.009, 0.013}

54%-37%-9% 3.425 0.2 0.008 2.418 {2.189, 1.310, 1.032} {0.148, 0.248, 0.315} 2.376 {0.006, 0.011, 0.016}

SVHN
34%-43%-23% 2.747 0.9 0.014 1.896 {2.747, 1.589, 1.214} {0.561, 0.970, 1.270} 1.667 {0.008, 0.015, 0.021}

54%-37%-9% 2.747 0.9 0.014 2.180 {2.747, 1.589, 1.214} {0.651, 1.125, 1.472} 1.937 {0.009, 0.018, 0.025}

CIFAR10
34%-43%-23% 3.293 0.4 0.020 2.244 {3.294, 1.868, 1.399} {0.244, 0.430, 0.574} 1.965 {0.012, 0.022, 0.031}

54%-37%-9% 3.293 0.4 0.020 2.594 {3.294, 1.868, 1.399} {0.285, 0.502, 0.671} 2.300 {0.014, 0.026, 0.037}

616

D.1 Privacy Consumption of our Methods617

We track privacy consumption of our methods over the course of training in Figure 4. The figure618

highlights the good calibration of our methods which causes all privacy groups to exhaust their budget619

after the pre-specified number of training iterations.620
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Table 7: Model Test Accuracy after training with Standard DP-SGD vs our Individualized
DP-SGD using Sample or Scale. D is the distribution of privacy groups (percentages) and εεε the
privacy budget for a given group. The percentages of the three privacy groups are chosen according
to Alaggan et al. [2] (first setup) and [23] (second setup). We used the hyperparameters found for
standard DP-SGD, see Table 4 and report the standard deviation over 10 trials.

DATASET SETUP DP-SGD SAMPLE SCALE

MNIST

D 34%-43%-23% 96.75 97.81 97.78

εεε 1.0-2.0-3.0 ± 0.15 ± 0.09 ± 0.08

D 54%-37%-9% 96.75 97.6 97.54

εεε 1.0-2.0-3.0 ± 0.15 ± 0.11 0.09

SVHN

D 34%-43%-23% 83.26 84.56 84.48

εεε 1.0-2.0-3.0 ±0.31 ±0.25 ±0.25

D 54%-37%-9% 83.26 84.32 84.31

εεε 1.0-2.0-3.0 ±0.31 ±0.31 ±0.26

CIFAR10

D 34%-43%-23% 52.77 54.89 54.92

εεε 1.0-2.0-3.0 ± 0.65 ± 0.55 ±0.63

D 54%-37%-9% 52.77 54.88 55.00

εεε 1.0-2.0-3.0 ± 0.65 ± 0.45 ± 0.65
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Figure 4: Individual Privacy Costs on MNIST for ε ∈ {1, 2, 3} with Distribution (54%, 37%, 9%).

D.2 General Applicability of our Methods621

We showcase the practical impact of individual privacy assignments on individual utility and demon-622

strate how our methods extend to many privacy groups and privacy budget distributions.623

Practical Impact. We run experiments on the CIFAR10 dataset where we assign higher or lower624

privacy budgets to one of the 10 classes. We select all data points from the class 0 as the first privacy625

group and assign to it either higher (ε = 3), the same (ε = 2), or lower (ε = 1) privacy budgets in626

comparison to all other data points from the other classes (ε = 2). Table 8 shows that the choice of627

privacy budget for a single group also impacts the other groups. We observe that by only changing628

the privacy budget for the selected group (in this case for class 0), we can flip its performance629

(its accuracy from being higher to being lower) in comparison to the accuracy of the other group630

(consisting of remaining classes). In the example of class 0, the accuracy is 67.76% when assigned631

high privacy budget (ε = 3), which is a higher accuracy than for all other classes that have an average632

accuracy of around 53.41% and assigned the privacy budget ε = 2. Then, by modifying only the633

privacy budget of class 0 and by assigning to it the low privacy budget (ε = 1), its accuracy drops634

to a mere 25.76% and is below the accuracy of 56.58% for the remaining classes. We visualize the635

impact of the chosen privacy budget on utility over all classes (instead of only the class 0) in Figure 5636

and Figure 6 for CIFAR10 and MNIST, respectively.637

More Privacy Groups. We present in Table 9 the test accuracy for ten privacy groups, correspond-638

ing to the ten classes of the CIFAR10 dataset when each of the privacy groups obtains a different639

privacy budget. We obtained these budgets by manually tuning them such that the accuracy gap be-640
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tween the privacy groups is minimized. We also visualize the accuracy over training in Figure 7. The641

figure visualizes that our methods are able to make all privacy groups converge to similar accuracies.642

Table 8: Accuracy for Subgroups. We assess the accuracy of subgroups when their privacy budgets
differ. We select a single class for a given group and assign either higher, the same, or lower privacy
budgets in comparison to groups with other classes. We change the privacy budgets only for bolded
classes in a given experiment while all other classes have the same privacy budget (ε = 2).

Classes
Privacy Budget

Higher (ε = 3) Same (ε = 2) Lower (ε = 1)

0 67.76 ± 2.14 55.24± 1.98 25.76± 2.52

1-9 53.41± 2.2 54.72± 2.49 56.58 ± 2.29

1 80.84 ± 1.2 72.79± 1.6 46.09± 3.91

0,2-9 51.65± 2.28 52.77± 2.53 54.59 ± 2.23

2 51.31± 3.53 36.59± 3.33 9.53± 1.41

0-1,3-9 54.26 ± 2.84 56.79± 2.34 58.87 ± 2.18

3 52.88± 2.6 32.64± 1.91 6.67± 1.09

0-2,4-9 54.62 ± 2.42 57.23± 2.5 58.75 ± 2.42

4 56.99 ± 1.87 40.06± 2.88 9.44± 1.68

0-3,5-9 54.41± 2.21 56.41± 2.39 58.18 ± 2.02

5 64.11 ± 2.27 51.86± 2.21 15.04± 2.31

0-4,6-9 53.28± 2.16 55.1± 2.46 57.54 ± 2.49

6 73.54 ± 2.36 65.8± 4.25 40.6± 4.18

0-5,7-9 52.05± 2.21 53.55± 2.23 56.06 ± 2.33

7 68.22 ± 1.17 61.15± 1.99 41.08± 2.75

0-6,8-9 52.5± 2.43 54.07± 2.49 56.01 ± 2.76

8 77.39 ± 1.24 68.53± 2.34 37.42± 3.37

0-7,9 51.51± 2.54 53.25± 2.45 55.28 ± 2.37

9 72.82 ± 1.48 63.08± 1.9 32.79± 2.73

1-8 52.05± 2.32 53.85± 2.5 56.06 ± 2.52

D.3 Additional Results for MIA643

Membership inference success for a single target model of our Sample and Scale methods is shown644

in Figure 8. In Figure 9, we present the results over for 5 different target models for Sample. The645

figure highlights that over all target models, the two privacy groups’ privacy risk is different: the646

group with higher protection ε = 10 constantly has a lower AUC than the group with lower protection647

ε = 20. The test statistics over the different privacy groups’ Lira likelihood scores for all five target648

models are shown in Table 10.649

D.4 Comparison to Individualized Privacy with IPATE650

We present the comparison between our IDP-SGD and IPATE [5] in Table 11. In PATE, accuracy651

refers to the student model accuracy. The results in Table 11 are averaged over three experiments652

for IPATE and ten runs for IDP-SGD. Note that the accuracies we report for IPATE differ from the653

accuracy values reported by [5] in Table 1, since they report average voting accuracy (i.e., how correct654

are individual teacher model votes), whereas we report the resulting student model accuracies, which655

corresponds to the final performance of the method. Note that IPATE does not apply the performance656

improvements suggested by Papernot et al. [27] (e.g.,virtual adversarial training) or MixMatch which657

could increase the student model’s performance.658
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Figure 5: CIFAR10: Accuracy Changes for Subgroups. We assess how the test Accuracy of a
Class of interest changes in comparison to the Baseline Accuracy (standard DP-SGD with ε = 2)
when we, during training, assign a lower (ε = 1) or a higher (ε = 3) privacy budget to data points
from a class (shown on the x-axis). The diagonals show that by increasing a class’ privacy budget
(lower privacy), their utility increases, while it decreases with the decrease of privacy budget (higher
privacy). Similar results for MNIST can be found in Figure 6.

D.5 Integrating Privacy Accounting and Assignment659

The main goal behind individualized accounting is to obtain tighter privacy analysis (recall our660

discussion in Section 2.2). Instead of tracking a single privacy loss estimate across all data points,661

an individual privacy loss is kept track of for each data point. Feldman and Zrnic [9] defines a new662

individual privacy filter, which drops data points that exceed the individualized privacy loss from663

further processing. However, the same privacy budget is assigned to each data point. The individual664

assignment of a privacy budget to each data point is a natural extension of individualized accounting665

and can be directly incorporated into this framework. Therefore, a given data point has its own666

privacy filter and is dropped from the analysis once the filter indicates that the data point’s privacy667

budget is exhausted.668

E Alternative Baselines669

Throughout this work, we compare our methods with Standard DP-SGD which cannot take into670

account different privacy requirements at the same time. Thus, we consider it to apply the highest671

privacy protection required to all data points equally. Nonetheless, we can think of two more ways to672

use Standard DP-SGD on data having heterogeneous privacy requirements. Those approaches have673

different benefits and drawbacks and might perform better than our chosen baseline approach in some674

scenarios.675
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(a) Sample | higher budget
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(b) Scale | higher budget
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(c) Sample | lower budget
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(d) Scale | lower budget

Figure 6: MNIST: Accuracy Changes for Subgroups. We assess how the test accuracy of a class
changes (in comparison to standard DP-SGD with ε = 2) when we, during training, assign a lower
(ε = 1) or a higher (ε = 3) privacy budget to data points from this class. The diagonals show that by
increasing a class’ privacy budget (lower privacy), their utility increases, while it decreases with the
decrease of privacy budget (higher privacy).

E.1 Exclude Lower Privacy Groups676

Instead of applying the strongest privacy protection, the deciding ML expert could entirely exclude677

data of low privacy groups from training for loosening the restrictions on the remaining data points’678

influence on model updates. In some cases, it would be worth giving up the information and privacy679

budgets of those lower privacy groups to achieve utility improvements. This approach performs poorly680

if important information is wasted, e.g., most data of one class has the highest privacy requirement.681

E.2 Learn Privacy Groups Separately682

It is also possible to make use of all privacy budgets, independent of their diversity, although only683

using Standard DP-SGD. Namely, a model can be trained on each privacy group separately one after684

another, whereby the corresponding lowest budget is regarded for each group. A drawback of this685

approach is that the model could forget its knowledge about previously learned privacy groups.686

E.3 Empirical Comparison of Baselines687

We empirically evaluate against these two additional baselines using the MNIST dataset. For688

baseline E.1, we include all data points with a privacy budget of ε ≥ 2 und use ε = 2 as the privacy689

budget for training. After hyperparameter tuning, the training on the remaining data points (43%+23%690

and 37%+9% of the total data) yields the accuracy reported in Appendix E.3.691
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Table 9: Per-class Individual Privacy Assignments. We manually optimize the per-class individual
privacy budgets for Sample such that the model achieves the same accuracy over all classes. The
resulting per-class privacy budgets yield the maximum gap ∆ between the highest and lowest accuracy
level of only 0.39% for Sample, and 0.88% for Scale. For the baseline (ε = 3 for all classes)
∆ = 2.03 is significantly higher, highlighting that our approach can successfully minimize the
accuracy gap between different privacy groups. We run the experiment on the MNIST dataset and
report average per-class test-accuracies over three separate runs. See each privacy group’s test
accuracy over training in Figure 7.

Class 0 1 2 3 4 5 6 7 8 9 ∆

Baseline (ε = 3) 98.95 99.06 98.39 98.09 97.93 98.47 98.16 98.12 97.78 97.03 2.03

Budgets 0.75 0.5 2.0 2.6 4.1 2.1 2.05 3.0 3.1 6.1 /

Sample 98.16 98.09 98.16 97.95 98.10 97.91 97.77 97.99 98.02 97.89 0.39
Scale 98.44 98.36 98.13 98.02 97.76 98.17 97.91 97.96 97.91 97.56 0.88

Table 10: Statistical differences between Privacy Groups. We conduct a student t-test to determine
if the Lira likelihood scores for data points with privacy budget ε = 10 differ from the ones of data
points with ε = 20. All results with p < 0.05 indicate statistically significant differences. Results for
Sample.

Target Model ∆ p

1 5.16 2.49e-07
2 2.41 0.016
3 1.84 0.066
4 -4.03 5.52e-05
5 2.537 0.011

For baseline E.2, we also did hyperparameter tuning and used the best noise multiplier of 2.5 for692

training. We trained the groups sequentially, always continuing training with the next group once the693

privacy budget of the previous groups was exhausted. We evaluated both starting with the privacy694

group that has loosest and strongest preferences (orders [3,2,1] and [1,2,3], respectively). Starting695

with the group that has strongest privacy requirements and ending on the group that has loosest696

privacy requirements yielded the best results which we report in Appendix E.3.697

In summary, we observe that our methods outperform the other baselines.698

F Alternative Individualization699

We present the alternative ways of individualizing privacy guarantees in DP-SGD that we considered700

in the design process of IDP-SGD and describe their drawbacks.701

F.1 Individual Per-Data Point Noise702

Individualized privacy could, in principle also be obtained by adding different amounts of noise703

to different data points. Every of the P privacy group would have their individual {σ1, . . . , σP }.704

Utility improvements would result from some data points requiring smaller amounts of added noise.705

Note however, that in DP-SGD, while clipping is performed on a per-data point basis, noise addition706

is performed on a per-mini-batch basis (line 8 in Algorithm 3). Hence, there are two possibilities707

to implement individual noise addition: either (i) by operating on mini-batch sizes of 1, or (ii) by708

implementing a two-step sampling approach which first randomly samples a privacy group for a709

given training iteration and then applies the standard Poisson sampling to obtain the mini-batch710

consisting of data points from this group. While both approaches are conceptually correct, they exhibit711

significant drawbacks. Approach (i) first slows down training performance due to more operations712

requiring to be carried out on individual data points, rather than a mini-batch. Second, due to the713

weak signal-to-noise ratio when adding noise to individual gradients, model performance is likely to714

degrade. Finally, sampling cannot be performed with Poisson anymore since with Poisson sampling,715
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(c) Scale

Figure 7: Per-class test accuracies over CIFAR10 training with Per-Class Privacy Budgets. We
manually tune the per-class privacy budgets for Sample to obtain the same per-class accuracy at
the end of training, see Table 9. Comparison with the Baseline (a) where all classes obtain ε = 3
highlight that Sample (b) and Scale (c) successfully reduce the accuracy gap between the different
classes.

it is not possible to pre-determine and specify exact mini-batch sizes, instead these depend on the716

outcome of the random sampling process. Approach (ii) could overcome the first two issues. However,717

the different groups sizes are still strictly smaller than the entire dataset and large parts of DP-SGD’s718

degrading the tight privacy bounds obtained by privacy amplification through subsampling.6 The719

privacy amplification through subsampling allows to scale down the noise σ by the factor B/N (with720

6Note that there exist other, less popular approaches to implement DP in ML than the DP-SGD algorithm,
such as Differentially Private Follow-the-Regularized-Leader (DP-FTRL) which do not rely on subsampling but
instead obtain tighter privacy bounds from adding correlated noise over the training iterations. However, since
DP-FTRL under-performs DP-SGD for high-privacy regimes, and unfolds it advantages mainly in FL scenarios
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(a) Sample
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Figure 8: True-Positive rate vs. False-Positive Rate of Lira Membership Inference Attacks Per
Privacy-Budget. We follow the same setup as in Figure 2. We show the single target model for both
(a) Sample and (b) Scale methods.

B being the expected mini-batch size, N the total number of data points, and B ≪ N ) while still721

ensuring the same ε as with σ [16]. This privacy amplification is crucial to the practical performance722

(privacy-utility trade-offs) of DP-SGD. Hence, by using the P privacy groups of sizes {N1, . . . , NP }723

with Ni ≪ N , the factors B/Ni ≪ B/N for all i{1, . . . , P}. This effect cancels out, or in the worst724

case even inverts the privacy-utility benefits that should arise from assigning individual data points725

less noise based on their privacy preference in our individualization.726

F.2 Duplicating Data Points727

When duplicating data points in the training dataset, similar to the Upsampling mechanism in728

IPATE [5], the DP-SGD algorithm itself does not need to be adapted. Instead, different privacy levels729

of different data points stem from their individual number of replication within the training data. This730

approach offers a very fine-grained control on individual privacy levels, since, in principle, each731

data point could be replicated a different number of times. Utility gain would result from the larger732

training dataset. However, this type of upsampling opens the possibility for the same data point to be733

present multiple times in the mini-batch used for training in a given iteration. This stands in contrast734

where the same data is only learned from once, or with a small number of epochs, we consider the approach
outside of the scope of this work.
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Figure 9: True-Positive rate vs. False-Positive Rate of Lira Membership Inference Attacks Per
Privacy-Budget. We follow the same setup as in Figure 2. We run the experiment for five different
target models and aggregate the results with the error bars for the Sample method.

Table 11: Comparison between IDP-SGD and Individualized PATE (IPATE). We select the
weighting mechanism from IPATE that performs better than the upsampling method. The Setup
indicates the size (in %) of privacy groups. We present the accuracy (%) for training with ε =
{1.0, 2.0, 3.0} privacy budgets, respectively to the order of the privacy groups.

DATASET SETUP BASELINE PATE IPATE SAMPLE SCALE

MNIST
34%-43%-23%

91.17± 1.25
95.27 ± 0.33 97.81 97.78

54%-37%-9% 95.74 ± 0.43 97.6 97.54

SVHN
34%-43%-23%

22.46 ± 5.19
41.45 ± 1.69 84.56 84.48

54%-37%-9% 44.64 ± 0.55 84.32 84.31

CIFAR10
34%-43%-23%

24.83 ± 1.56
33.20 ± 0.94 54.89 54.92

54%-37%-9% 35.59 ± 0.73 54.88 55.00

Table 12: Empirical evaluation against other baselines. We report the obtained test accuracy
obtained with our two methods vs. two other baselines for individualized privacy on the MNIST
dataset. Similar to Table 7, we use ε = 1, 2, 3. Both our Sample and Scale outperform the other
baselines.

Setup DP-SGD E.1 Baseline E.2 Baseline Sample Scale

34%-43%-23% 96.75 97.6 97.4 97.81 97.78
54%-37%-9% 96.75 97.1 97.3 97.6 97.54

to the original DP-SGD, where participation of each data point for training at a given iteration is735

determined by an independent Bernoulli trial, and hence, a data point can be either included once or736

not at all in a mini-batch. The possibility for a data point to be included multiple times n inside the737

same mini-batch changes the sensitivity of the mechanism from c to nc. According to [20], when738

noise is added according to σ, a mechanism with sensitivity nc is (α, 2(nc)2

2σ2 )-RDP. The quadratic739

influence of the sensitivity to privacy bound results in a severe increase in the RDP ε, making the740

approach suboptimal in terms of privacy-utility guarantees. Additionally, upsampling leads to an741

effective increase in a data point’s the sample-rate which further increases privacy costs.742

G Additional Proofs743

G.1 Additional Proofs for Individualized Privacy744

Proof for Theorem 3.1745

Proof. First note that (ε1, δ)-DP can be considered as a special case of ({ε1, ε2, . . . , εP }, δ)-DP,746

where ∀p ∈ [1, P ] εp = ε1. We can, hence apply Equation (3) and see that an M that satisfies (ε1, δ)-747
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DP has a privacy guarantee of P [M(D) ∈ R] ≤ eε1 ·P [M(D′) ∈ R]+δ. Given that by our definition748

∀p ∈ [2, P ] it holds that εp > ε1, for all p, it holds that P [M(D) ∈ R] ≤ eε1 · P [M(D′) ∈ R] ≤749

eεp · P [M(D′) ∈ R] + δ. From this inequality, it follows that M also satisfies ({ε1, ε2, . . . , εP }, δ)-750

DP.751

Proof for Theorem 3.2752

Proof. Analogous to the previous proof, by our definition, it holds that ∀p ∈ [1, P − 1] the753

εp < εP . From an M that satisfies ({ε1, ε2, . . . , εP }, δ)-DP, it, therefore, holds that for all p754

the P [M(D) ∈ R] ≤ eεp · P [M(D′) ∈ R] + δ ≤ eεP · P [M(D′) ∈ R] + δ. This inequality shows755

that M satisfies (εP , δ)-DP.756

G.2 Privacy Proofs for our Methods757

Either of our methods can be considered as an SGM with the difference that it has different parameters758

from the point of view of each privacy group. This is because for each group, we have to examine759

neighboring datasets which differ in an arbitrary data point from that group. Our Sample method760

ensures an individual sample rate for all points of each group, while our Scale method applies an761

individual noise multiplier for all points of each group.762

Theorem G.1. Our Sample mechanism satisfies ({ε1, ε2, . . . , εP }, δ)-DP.763

Proof. We prove the bound for any particular privacy group separately. Fix p ∈ {1, . . . , P}, let764

D ⊆ D be the training dataset, and select any xi ∈ D that belongs to group Gp. We are interested765

in comparing outcomes of mechanism M on D with its outcomes on D′ = D \ {xi} where M766

represents a particular model update of Sample. We get Gaussian mixtures767

M (D′) =
∑

L⊂D

πLN
(

f (L) , σ2
sampleI

d
)

and

M (D) =
∑

L⊂D

πL

(

(1− qp)N
(

f (L) , σ2
sampleI

d
)

+ qpN
(

f (L ∪ {xi}) , σ
2
sampleI

d
))

,

where f (L) is the clipped gradient of the current mini-batch L, πL is its probability, σsample > 0 is768

the noise scale, Id is the identity matrix, and 0 < qp ≤ 1 is the individual sample rate of xi and every769

other point in Gp. Note that σsample is actually multiplied by the clip norm csample > 0. Gaussian770

mechanisms are invariant regarding scaling of their sensitivity and noise scale, but instead depend on771

the relationship between sensitivity and noise scale, called the noise multiplier. Hence, we can ignore772

csample and consider f to have sensitivity 1.773

Now we can see that the Gaussian mixtures of our Sample are equivalent to those corresponding774

to the original SGM from Mironov et al. [21], Thm. 4, when we parameterize it with sample775

rate qp and noise scale σsample which are individual per group. Therefore, all RDP bounds of the776

original SGD apply, especially (α, ε̄p)-RDP with ε̄p = 2q2p
α

σ2

sample

in a particular parameter regime777

(cfg. Thm. 11 from Mironov et al. [21]). As a final step of the proof, we need to convert from778

(α, ε̄p)-RDP guarantees to (εp, δ)-DP guarantees following Mironov [20] (see Section 2.1). Note that779

our individual parameters have been selected before the start of training so that each group’s privacy780

budget is exhausted at the intended number of iterations (see Algorithm 1).781

Theorem G.2. Our Scale mechanism satisfies ({ε1, ε2, . . . , εP }, δ)-DP.782

Proof. This proof is analog to the proof of Theorem G.1 with the difference that we have a global783

sample rate q but individual noise multipliers σp and clip norms cp. Moreover, Algorithm 2 is used to784

configure parameters prior to training.785
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