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Abstract

When training a machine learning model with differential privacy, one sets a privacy1

budget. This uniform budget represents an overall maximal privacy violation that2

any user is willing to face by contributing their data to the training set. We argue3

that this approach is limited because different users may have different privacy4

expectations. Thus, setting a uniform privacy budget across all points may be5

overly conservative for some users or, conversely, not sufficiently protective for6

others. In this paper, we capture these preferences through individualized privacy7

budgets. To demonstrate their practicality, we introduce a variant of Differentially8

Private Stochastic Gradient Descent (DP-SGD) which supports such individualized9

budgets. DP-SGD is the canonical approach to training models with differential10

privacy. We modify its data sampling and gradient noising mechanisms to arrive at11

our approach, which we call Individualized DP-SGD (IDP-SGD). Because IDP-12

SGD provides privacy guarantees tailored to the preferences of individual users13

and their data points, we empirically find it to improve privacy-utility trade-offs.14

1 Introduction15

Machine learning (ML) models are known to leak information about their training data. Such leakage16

can result in attacks that determine whether a specific data point was used to train a given ML model17

(membership inference) [29, 33, 6], infer sensitive attributes from the model’s training data [11, 35],18

or even (partially) reconstruct that training data [12, 28]. Therefore, the need to provide privacy19

guarantees to the individuals who contribute their sensitive data to train ML models is pressing.20

Approaches to train ML models with guarantees of differential privacy [8] have established themselves21

as the canonical answer to this need. In the context of ML, differential privacy bounds how much can22

be learned about any of the individual data point from the model’s training set. Take the canonical23

example of differentially private stochastic gradient descent (DP-SGD): it updates the model using24

noisy averages of clipped per-example gradients. Unlike vanilla SGD, this ensures that any single25

training point has a limited influence on model updates (due to the clipping to a pre-defined maximum26

clip norm) and that the training is likely to output a similar model should a single point be added or27

removed to the training set (due to the noisy average). As is the case for any differentially private28

algorithm, the privacy guarantees of DP-SGD are derived analytically. They are captured by a privacy29

budget ε. This budget represents the maximal privacy violation that any user contributing data to the30

training set is willing to tolerate. Lower budgets correspond to stronger privacy protection since they31

impose that the outputs of the training algorithm have to be closer for similar training sets.32

In this paper, we argue that there is a key limitation when training ML models with DP guarantees: the33

privacy budget ε is set uniformly across all training points. This implicitly assumes that all users who34

contribute their data to the training set have the same expectations of privacy. However, that is not35

true; individuals have diverse values and privacy preferences [13, 4]. Yet, because DP-SGD assumes36

a uniform privacy budget, this budget must match the individual whose privacy expectations are the37
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strongest. That is, ε has to correspond to the lowest privacy violation tolerance expressed amongst38

individuals who contributed their data. This limits the ability of DP-SGD to learn because the privacy39

budget ε together with the sensitivity of each step of the algorithm (i.e., the clip norm) define the40

scale of noise that needs to be added: the stronger the required privacy protection, the higher the noise41

scale. Thus, implementing privacy protection according to the lowest privacy violation tolerance in42

the training dataset comes at a significant cost in model accuracy.43

We are the first to propose two variants of the DP-SGD algorithm to enforce different privacy44

budgets for each training point.1 First, our modified sampling mechanism (Sample) samples data45

points proportionally to their privacy budgets: points with higher privacy budgets are sampled more46

frequently during training. It is intuitive that the more a training point is analyzed during training,47

the more private information can leak about this point. Second, with our individualized scaling48

mechanism (Scale), we rescale the noise added to gradients based on the budget specified for each49

training point. Naively, one would implement Scale by changing the scale of added noise per50

individual data point. However, for efficiency, current implementations of DP-SGD typically noise51

the sum of the per-example clipped gradients over an entire mini-batch, hence, adding the same52

amount of noise to all gradients. Yet, within the context of this implementation, we note that we can53

effectively adapt the scale of noise being added on an individual basis by adjusting the sensitivity (i.e.54

the clip norm) of each example by a multiplier. Because clipping is performed on a per-example55

basis, this approach enables the efficient implementation of our proposed Scale method.56

To summarize our contributions:57

• We introduce two novel individualized variants of the DP-SGD algorithm, where each data58

point can be assigned its desired privacy budget. This allows individuals who contribute data59

to the training set to specify different privacy expectations. We refer to our individualized60

DP-SGD algorithm as IDP-SGD.61

• We provide a theoretical analysis of our two mechanisms to derive how the privacy parame-62

ters (e.g., noise multipliers and sample rates) should be set to meet individual data points’63

privacy guarantees and provide a thorough privacy analysis for Sample and Scale.64

• We carry out an extensive empirical evaluation on MNIST, SVHN, and CIFAR10. Our65

results are summarized in Table 7 for the reader’s convenience. They highlight the utility66

gain of our methods for different distributions of privacy expectations among users.67

Ethical considerations. We need to ensure that our individualized privacy assignment does not harm68

individuals by disclosing too much of their sensitive information. We, therefore, suggest implementing69

our methods in a controlled environment where privacy risks are openly communicated [32, 7, 10], and70

where a regulatory entity is in charge of ensuring that even the individuals with lowest expectations71

regarding their privacy obtain a sufficient degree of protection. We further discuss the ethical72

deployment of our Individualized DP-SGD (IDP-SGD) in Appendix A.73

2 Background and Related Work74

2.1 Differential Privacy and DP-SGD75

Algorithm M satisfies (ε, δ)(ε, δ)(ε, δ)-DP, if for any two datasets D,D′ ⊆ D that differ in any one record and76

any set of outputs R77

P [M(D) ∈ R] ≤ eε · P [M(D′) ∈ R] + δ. (1)

Since the possible difference in outputs is bounded for any pair of datasets, DP bounds privacy leakage78

for any individual. The value ε ∈ R+ specifies the privacy level with lower values corresponding to79

stronger privacy guarantees. The δ ∈ [0, 1] offers a relaxation, i.e., a small probability of violating80

the guarantees. See Appendix B.1 for a more thorough introduction of (ε, δ)-DP.81

Another relaxation of DP is based on the Rényi divergence [20], namely (α, ε)(α, ε)(α, ε)-RDP, which for the pa-82

rameters as described above and an order α ∈ (1,∞) is defined as follows: Dα (M(D) ∥M(D′)) ≤83

ε. Due to its smoother composition properties, it is employed for privacy accounting in ML with84

1In the rest of this paper, we assume without loss of generality that each training point is contributed by a
different individual.
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DP-SGD. Yet, it is possible to convert between the two notions: If M is an (α, ε)-RDP mechanism,85

it also satisfies (ε+ log 1/δ
α−1 , δ)-DP for any 0 < δ < 1 [20].86

DP-SGD extends standard SGD with two additional steps, namely clipping and noise addition.87

Clipping each data point’s gradients to a pre-defined clip norm c bounds their sensitivity to ensure88

that no data point causes too large model updates. Adding noise from a Gaussian distribution,89

N (0, (σc)2I), with zero mean and standard deviation according to the sensitivity c and a pre-defined90

noise multiplier σ introduces privacy. We formally depict DP-SGD as Algorithm 3 in Appendix B.1.91

To yield tighter privacy bounds, DP-SGD implements privacy amplification through subsampling [3]92

(line 3 in Algorithm 3) where training data points are sampled into mini-batches with a Poisson93

sampling,2 rather than assigning each data point from the training dataset to a mini-batch before94

an epoch starts. DP-SGD hence implements a Sampled Gaussian Mechanism (SGM) [21] where95

each training data point is sampled independently at random without replacement with probability96

q ∈ (0, 1] over I training iterations. As shown by Mironov et al. [21], an SGM with sensitivity of97

c = 1, satisfies (α, ε)-RDP where98

ε ≤ I · 2q2 α

σ2
. (2)

Equation (2) highlights that the privacy guarantee ε depends on the noise multiplier σ, the sample99

rate q, the number of training iterations I , and the RDP order α.100

2.2 Individualized Privacy101

Individualized privacy is a topic of high importance given that society consists at least of three102

different groups of individuals, demanding either strong, average, or weak privacy protection for103

their data, respectively [13, 4]. Furthermore, some individuals inherently require higher privacy104

protection, given their personal circumstances and the degree of uniqueness of their data. However,105

without individualization, when applying DP to datasets that hold data from individuals with different106

privacy requirements, the privacy level ε has to be chosen according to the lowest ε encountered107

among all individuals, which favors poor privacy-utility trade-offs. Prior work on individualized108

privacy guarantees focused mainly on standard data analyses without considering ML [2, 15, 19, 24].109

However, some of the underlying ideas inspired the design of our IDP-SGD variants.110

Our Sample method relies on a similar idea as the sample mechanism proposed by Jorgensen et al.111

[15] where data points with stronger privacy requirements are sampled with a lower probability than112

data points that agree to contribute more of their information. The most significant difference between113

the sample mechanism and our approach is that the former performs sampling as a pre-processing114

step independent of the subsequent algorithm. In contrast, we perform subsampling within every115

iteration of our IDP-SGD training and show how to leverage the sampling probability of DP-SGD to116

obtain individual privacy guarantees. Based on this difference, we could not build on how Jorgensen117

et al. [15] compute the sampling probabilities and had to propose an original mechanism to derive118

sampling probabilities for individualized privacy in IDP-SGD.119

In a similar vein to our Scale method, Alaggan et al. [2] scale up data points individually before120

the noise addition to increase their sensitivity in their stretching mechanism. As a consequence, the121

signal-to-noise ratios of data points that are scaled with large factors will be higher than the ones of122

data points that are scaled with small factors. In contrast to Alaggan et al. [2], we do not scale the data123

points themselves, but the magnitude of noise added to them relative to their individual sensitivity.124

Our new interesting observation is that data points’ individual clip norms can be used to indirectly125

scale the noise added to a mini-batch of data in DP-SGD per data point.126

Closest work to ours [5] proposes two mechanisms for an individualized privacy assignment within the127

framework of Private Aggregation of Teacher Ensembles (PATE) [26]. Their upsampling duplicates128

training data points and assigns the duplicates to different teacher models according to the data points’129

privacy requirements, while their weighting changes the aggregation of the teachers’ predicted labels130

to reduce or increase the contribution of teachers according to their respective training data points’131

privacy requirements. PATE’s approach for implementing ML with DP differs significantly from DP-132

SGD: PATE relies on privately training multiple non-DP models on the sensitive data and introducing133

2In DP-SGD, the concept of an epoch does not exist and training duration is measured in iterations. Due to
the Poisson sampling, training mini-batches can contain varying numbers of data points.
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DP guarantees during a knowledge transfer to a separately released model. The approaches for134

individualized privacy in PATE, therefore, are non-applicable to DP-SGD. See Appendix B.4 for135

details on the PATE algorithm and its individualized extensions.136

Relationship to Individualized Privacy Accounting. An orthogonal line of research that comes137

closest to providing individualized guarantees for DP-SGD focuses on individualized privacy account-138

ing; the idea is to learn more from points that consume less of the privacy budget over training [9, 34].139

Jordon et al. [14] propose a personalized moments’ accountant to compute the privacy loss on a140

per-sample basis. Yu et al. [34] perform individualized privacy accounting within DP-SGD based141

on the gradient norms of the individual data points. Feldman and Zrnic [9] introduce RDP filters to142

account for privacy consumption per data point and train as long as there remain data points that do143

not exceed the global privacy level. Yet, it has been shown that the data points that consume little144

privacy budget and therefore remain in the training are the ones that already incur a small training145

loss [34]. Training more on them will not significantly boost the model accuracy. While privacy146

assignment and accounting are concerned with improving privacy-utility trade-offs within DP, they147

operate under different setups. Privacy accounting (in the above three methods) assumes a single148

fixed privacy budget assigned over the whole dataset. In contrast, our privacy assignment is concerned149

with enabling different individuals to specify their respective privacy preferences. Since individual150

accounting and assignment are two independent methods, we experimentally show their synergy by151

applying individual assignment to individual accounting [9], which yields higher model utility than152

individual accounting alone.153

3 Our Individualized Privacy Assignment154

3.1 Formalizing Individualizing Privacy155

Setup and Notation. Given a training dataset D with points {x1, . . . , xN} which each have156

their own privacy preference (or budget), we consider data points with the same privacy budget εp157

together as a privacy group Gp. This notation is aligned with [13, 4] that identified different groups158

of individual privacy preferences within society. We denote with ε1 the smallest privacy budget159

encountered in the dataset. Standard DP-SGD needs to set ε = ε1 to comply with the strongest160

privacy requirement encountered within the data. For all εp, p ∈ [2, P ], it follows that εp > ε and161

we arrange the groups such that εp > εp−1. Note that following [2], we argue that the privacy162

preferences themselves should be kept private to prevent leakage of sensitive information which163

might be correlated with them. If there is a necessity to release individual privacy preferences, this164

should be done under the addition of noise to obtain DP guarantees for the privacy preferences. This165

can for instance be done through a smooth sensitivity analysis, as done in prior work, e.g. [27].3166

Individualized Privacy. Following [15], our methods aim at providing data points xi ∈ Gp with167

individual DP guarantees according to their privacy budget εp as follows: The learning algorithm M168

satisfies (εp, δ)-DP if for all datasets D xi∼ D′ which differ only in xi and for all outputs R ⊆ R169

P [M(D) ∈ R] ≤ eεp · P [M(D′) ∈ R] + δ . (3)

Without loss of generality, we assume that all individual data points have privacy preferences with the170

same δ. Note that other notions of DP (e.g., RDP) can analogously be generalized to enable per-data171

point privacy guarantees. The key difference between Equation (3) and the standard definition of172

DP (Equation (1)) does not lie in the replacement of ε with εp. Instead, the key difference is about173

the definition of neighboring datasets. For standard DP, neighboring datasets are defined as D ∼ D′174

where D and D′ differ in any random data point (given that it is standard DP, every data point has175

privacy ε). In contrast, in our work, following [15] the neighboring datasets are defined as D xi∼ D′176

where D and D′ differ in any arbitrary data point xi which has a privacy budget of (εp, δ). This177

yields to the individualized notion of DP.178

3In general, we find that it is not necessary to release the privacy budgets: To implement IDP-SGD, only the
party who trains the ML model on the individuals’ sensitive data needs to know their privacy budgets to set the
respective privacy parameters accordingly during training. Given that this party holds access to the data itself,
this does not incur any additional privacy disclosure for the individuals. Other parties then only interact with the
final private model (but not with the individuals’ sensitive data or their associated privacy budgets).
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Algorithm 1: Finding Sample Parameters.
The subroutine getSampleRate is equivalent
to Opacus’ function get_noise_multiplier [25].
We sketch its implementation in Algorithm 4
in Appendix C.3.
Require: Per-group target privacy budgets
{ε1, . . . , εP }, target δ, iterations I , number of total
data points N and per-privacy group data points
{|G1|, . . . , |GP |}.

1: init σsample: σsample ← σ
2: init {q1, . . . , qP } where for p ∈ [P ]:
3: qp ← getSampleRate(εp, δ, σsample, I)
4: while q ̸≈ 1

N

∑P
p=1 |Gp|qp:

5: σsample ← siσsample {scaling factor: si < 1}
6: for p ∈ [P ]:
7: qp ← getSampleRate(εp, δ, σsample, I)
8: Output σsample, {q1, . . . , qP }

Algorithm 2: Finding Scale Parameters.
The subroutine getNoise corresponds to Opa-
cus’ function get_noise_multiplier [25]. We
sketch its implementation in Algorithm 5 in
Appendix C.3.
Require: Per-group target privacy budgets
{ε1, . . . , εP }, target δ, iterations I , number of
total data points N and per-privacy group data
points {|G1|, . . . , |GP |}, default clip norm c,
sample rate q

1: init {σ1, . . . , σP } where for p ∈ [P ]:
2: σp ← getNoise(εp, δ, q, I)
3: init σscale: σscale ← ( 1

N

∑P
p=1

|Gp|
σp

)−1 {see
derivation of σscale in Appendix C.2}

4: for p ∈ [P ]:
5: cp ← σscalec

σp

6: Output σscale, {c1, . . . , cP }

We formalize the relationship between the individualized notion of DP (which we denote by179

({ε1, ε2, . . . , εP }, δ)-DP) and standard (ε, δ)-DP in the following two theorems over the learning180

algorithm M . The proofs are included in Appendix G.181

Theorem 3.1. An algorithm M that satisfies (ε1, δ)-DP also satisfies ({ε1, ε2, . . . , εP }, δ)-DP.182

Theorem 3.2. An algorithm M that satisfies ({ε1, ε2, . . . , εP }, δ)-DP also satisfies (εP , δ)-DP.183

3.2 From Individualized Privacy Preferences to Privacy Parameters184

From the individual privacy preferences and the total given privacy distribution over the data, i.e.,185

the number of different privacy budgets P , their values εp, and the sizes of the respective privacy186

groups |Gp|, we derive individual privacy parameters for IDP-SGD such that all data points within187

one privacy group (same privacy budget) obtain the same privacy parameters, and such that all privacy188

groups are expected to exhaust their privacy budget at the same time, after I training iterations.189

Table 1: (Individualized) Privacy Bounds.
DP-SGD SAMPLE SCALE

ε ≤ I · 2q2 α
σ2 εp ≤ I · 2qp2 α

σSAMPLE
2 εp ≤ I · 2q2 α

σp2

The individualized parameters for our190

Sample are the individual sample rates191

{q1, . . . , qP }, and a respective noise mul-192

tiplier σsample—common to all privacy193

groups—which we derive from the privacy194

budget distribution as described in Sec-195

tion 3.3. In Scale, the individualized parameters are noise multipliers {σ1, . . . , σP } with their196

respective clip norms {c1, . . . , cP }, as we explain in Section 3.4. Our individual bounds per privacy197

group are depicted in Table 1. We omit α from consideration since its optimal value is selected as an198

optimization parameter when converting from RDP to (ε, δ)-DP.199

3.3 Our Sample Method200

Our Sample method relies on sampling data points with different sample rates {q1, . . . , qP } de-201

pending on their individual privacy budgets. In this case, the noise multiplier σsample is fixed. Data202

points with higher privacy budgets (weaker privacy requirements) are assigned higher sampling rates203

than those with lower privacy budgets. This modifies the Poisson sampling for DP-SGD (line 3 in204

Algorithm 3) to sample data points with higher privacy budgets within more training iterations.205

Deriving Parameters. We aim at deriving the privacy parameters that yield the specified individual206

privacy preferences. The learning hyperparameters, such as mini-batch size B or learning rate η can207

be found through hyperparameter tuning.4 For Sample, given a tuned mini-batch size B, we have to208

4We discuss in Appendix C.1 other alternatives to implement Sample if we allow changing the training
hyperparameters.
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find {q1, . . . , qP }, such that their weighted average equals q: 1
N

∑P
p=1 |Gp|qp

!
= q = B

N . This asserts209

that the Poisson sampling (line 3 in Algorithm 3) will yield mini-batches of size B in expectation. We210

also need to ensure that the privacy budgets of all groups will exhaust after I training iterations, which211

we do by deriving the adequate σsample, shared across all privacy groups. Equation (2) highlights that212

the final privacy budget ε depends on both sample rate q and noise multiplier σ. Our Sample method213

enables higher individualized privacy budgets for the different groups than the standard DP-SGD ε.214

Yet, we still require the expected average sampling rate to remain q to obtain constant mini-batch size215

B. Hence, the value of σsample has to be decreased in comparison to the initial default σ. As an effect216

of this noise reduction, Sample improves utility of the final model.217

Our concrete derivation of values for σsample and {q1, . . . , qP } is presented in Algorithm 1. We start218

from initializing σsample with σ from standard DP-SGD, the noise multiplier required for the privacy219

group G1 (strongest privacy requirement of all groups) with the smallest privacy budget ε1. This220

corresponds to instantiating σsample with the upper bound noise over all privacy groups. Then, we use221

a getSampleRate function that derives the sampling rate for the given privacy parameters based on222

approximating Equation (2). Finally, we iteratively decrease σsample by a scaling factor si slightly223

smaller than one and recompute {q1, . . . , qP } until their weighted average is (approximately) equal224

to q. In Appendix G, we present the formal proof that Sample satisfies ({ε1, ε2, . . . , εP }, δ)-DP).225

Our proof relies on Mironov et al. [21] and considers training of each privacy group as a separate226

SGM—with an individual sampling probability—that all simultaneously update the same private227

model.228

3.4 Scale229

Our Scale method adjusts the individual noise multipliers {σ1, . . . , σP } according to data points’230

individual privacy budgets and performs clipping with individualized clip norms {c1, . . . , cP }. This231

changes lines 6 and 8 in the DPSGD Algorithm (3). Data points with higher privacy budgets (weaker232

privacy requirements) obtain lower noise and higher clip norms. Since Equation (2) highlights that233

the clip norm c has no direct impact on the obtained ε, individualized privacy in Scale results from234

the individual noise multipliers {σ1, . . . , σP }. Utility gains come from the overall increase in the235

signal-to-noise ratio during training.236

Deriving Parameters. While the ultimate goal of our Scale method is to adapt individual noise237

multipliers per privacy group, we cannot implement this directly without degrading training perfor-238

mance. The reason is that whereas in DP-SGD sampling and gradient clipping are performed on a239

per-data point basis, noise is added per mini-batch, see lines 3, 6 and 8 in Algorithm 3, respectively.240

However, if we restrict mini-batches to contain only data points from the same privacy group (which241

share the same noise multiplier), we lose the gains in privacy-utility trade-offs which result from the242

subsampling (see Appendix F.1 for more details). Hence, while we rely on mini-batches containing243

data points with different privacy requirements (i.e., different noise multipliers) we can only specify244

one fixed noise multiplier σscale.245

To overcome this limitation, we do not set noise multipliers {σ1, . . . , σP } directly, but indirectly246

obtain them through individualized clip norms {c1, . . . , cP } as follows: In standard DP-SGD,247

Algorithm 3, a gradient clipped to c (line 6) obtains noise with standard deviation σc (line 8). For248

Scale, we clip gradients to cp = spc with a per-privacy group scaling factor sp and they obtain noise249

σpcp. But in practice, we add noise according to σscalec to all mini-batches. Hence, the effective scale250

σp of added noise is σscalec = σscale
cp
sp

!
= σpcp ⇒ σp = 1

sp
σscale. For data points with higher privacy251

budgets sp > 1, so their gradients are clipped to larger norms cp = spc and a smaller noise multiplier252

σp = 1
sp
σscale is assigned to them. The opposite is true for data points with lower privacy budgets.253

We find the values of σp required to obtain each privacy groups’ desired εp using the getNoise254

function (see Algorithm 2 line 1), which takes as inputs the privacy parameters εp, δ, q, I . To optimize255

utility, we want to set the individual clip norms such that their average over the dataset corresponds to256

the best clip norm c obtained through initial hyperparameter tuning: 1
N

∑P
p=1 |Gp|cp

!
= c. Given the257

interdependence of cp, σp, and σscale (cp = cσscale
σp

), this can be achieved by setting σscale as the inverse258

of the weighted average over all 1/σp as: σscale = ( 1
N

∑P
p=1

|Gp|
σp

)−1 (please see Appendix C.2 for259

the derivation of σscale). Given σscale, the required σp-s, and c found through hyperparamter tuning,260

6



the individual clip norms are calculated as cp = σscalec
σp

. We detail the derivation of the parameters in261

Algorithm 2. In Appendix G, we formally show that Scale satisfies ({ε1, ε2, . . . , εP }, δ)-DP). Similar262

to Sample, the proof is based on considering the training for all privacy groups as simultaneously263

executed SGMs with differing sensitivities.264

4 Empirical Evaluation265

For our empirical evaluation, we implement our methods in Python 3.9 and extend standard Opa-266

cus with our individualized privacy parameters and a per-privacy group accounting. We perform267

evaluation on the MNIST [18], SVHN [22], and CIFAR10 [17] dataset, using the convolutional268

architectures from Tramer and Boneh [31]. To evaluate the utility of our methods, we use the datasets’269

standard train-test splits and report test accuracies. The training and standard DP-SGD and IDP-SGD270

hyperparameters are specified in Table 4 and Table 5 in Appendix D, respectively where the noise271

multiplier σ is derived with the function get_noise_multiplier provided in Opacus [25]. It takes272

in as arguments the specified parameters δ, q, I , and target ε. For experimentation on individualized273

privacy, we assigned privacy budgets randomly to the training data points if not indicated otherwise.274

4.1 Utility Improvement and General Applicability of Individualization275

Assigning heterogeneous individual privacy budgets over the training dataset yields significant276

improvements in terms of the resulting model’s utility, as showcased in Table 2. For example, by277

following the privacy budget distribution of Alaggan et al. [2] with privacy budgets εp = {1, 2, 3} for278

strong, medium, and weak privacy requirements, our Sample method yields accuracy improvements279

of 1.06%, 2.63%, and 5.09% on MNIST, SVHN, and CIFAR10, respectively. On the CIFAR10280

dataset, our Scale even outperforms improvement with an accuracy increase of 5.26% in comparison281

to the non-individualized baseline, which would have to assign ε = 1 to the whole training set in282

order to respect each individual’s privacy preferences.283
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Figure 1: IDP-SGD vs DP-SGD.

The benefits of our individualized privacy as-284

signment also become clear in Figure 1, which285

depicts the test accuracy of our Sample and286

Scale vs. standard DP-SGD over the course of287

training. Both our methods continuously outper-288

form the non-individualized DP-SGD baseline289

with ε = 1. Additionally, the test accuracy with290

privacy budget distribution according to Alag-291

gan et al. [2] (34%, 43%, 23%) is higher than292

the one of Niu et al. [23] (54%, 37%, 9%). This293

can be explained by the fact that in this latter294

distribution, more individuals exhibit a higher295

privacy preference. With more data points choosing lower privacy protection as in Alaggan et al.296

[2], our individualization boosts the performance of the final trained model more significantly. For297

comparison, we also report results for the standard DP-SGD with ε = 3. This corresponds to the298

upper bound on utility that could have been achieved by assigning the highest privacy budget to all299

data points—which violates the privacy requirements of individuals with strong and medium privacy300

preferences. We observe that our individualized methods’ performance is close to this upper bound301

without violating data points’ privacy requirements. In Appendix E, we also discuss other possi-302

ble baselines (apart from standard DP-SGD) and empirically evaluate our individualized methods303

against them. We report our hyperparameters and the respective individualization parameters (noise304

multipliers, clip norms, and sampling rates) obtained through our methods in Appendix D. Figure 4305

highlights additionally that this privacy parameter derivation is well calibrated: all different groups306

exhaust their privacy budget simultaneously when the targeted number of iterations is reached.307

We also experimentally show that our methods are flexible and generally applicable and can extend308

to substantially more privacy groups which all have different budgets.5 The results are shown in309

Appendix D.2.310

5In principle, with our methods, each data point could have its own privacy budget.
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Table 2: Model Test Accuracy after training with Standard DP-SGD vs our Individualized
DP-SGD using Sample or Scale. The percentages of the three privacy groups are chosen according
to [2] (first setup) and [23] (second setup). Additional hyperparameters are found in Table 4 and
Table 5. We report the standard deviation over 10 trials.

DATASET PRIVACY GROUPS PRIVACY BUDGETS DP-SGD SAMPLE SCALE

MNIST 34%-43%-23% 1.0-2.0-3.0 96.75±0.15 97.81±0.09 97.78±0.08

54%-37%-9% 1.0-2.0-3.0 96.75±0.15 97.6±0.11 97.54±0.09

SVHN 34%-43%-23% 1.0-2.0-3.0 83.26±0.31 85.89±0.14 85.57±0.24

54%-37%-9% 1.0-2.0-3.0 83.26±0.31 85.14±0.30 85.08±0.12

CIFAR10 34%-43%-23% 1.0-2.0-3.0 52.77±0.65 57.86±0.56 58.03±0.36

54%-37%-9% 1.0-2.0-3.0 52.77±0.65 56.83±0.39 56.65±0.49

4.2 Privacy Assessment via Membership Inference311

To evaluate the impact of our IDP-SGD on the privacy of individual data points, we perform312

membership inference based on the Lira attack [6]. For the reader’s convenience, we include a313

description of the attack in Appendix B.5. We experiment with CIFAR10 and train 512 shadow314

models and the target model using Sample on different subsets of 25,000 training data points each.315

Results for Scale can be found in Appendix D.3. The privacy budgets are set to ε = 10 and ε = 20316

and evenly assigned to the shadow models’ training data, resulting in 12,500 training data points per317

privacy budget. Our target model achieves a train accuracy of 68.46% on its 25,000 member data318

points, and a test accuracy of 64.89% on its 25,000 non-member data points. The lower accuracy in319

comparison to Carlini et al. [6], who achieved 100% and 92% train and test accuracy respectively,320

results from us introducing DP to the training of the shadow models. Learning with DP is known to321

reduce model performance, particularly so on small datasets.322
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Figure 2: Per-Privacy Group Lira [6]
Membership Inference Success.

We depict the membership inference risk of the target323

model’s training data per privacy budget (privacy group)324

in Figure 2. The dotted blue line represents the ROC325

curve for Lira over all CIFAR10 data points and shows326

that overall, as expected by its definition, DP protects the327

training data well against membership inference attacks.328

However, when inspecting the ROC curve separately for329

the two privacy groups (ε = 10 and ε = 20), we observe330

a significant difference between them. The privacy group331

with stronger privacy guarantees (ε = 10) is protected bet-332

ter (AUC= 0.537) than the group with the higher privacy333

budget (ε = 20, AUC= 0.581). To evaluate whether the334

difference in the Lira-likelihood scores between the two335

privacy groups is statistically significant, we perform a336

Student t-test on the likelihood score distributions over the data points with privacy budget ε = 10 vs.337

the data points with privacy budget ε = 20. We report ∆ = 2.54 with p = 0.01 < 0.05, and hence a338

statistically significant difference between the two groups exists.339

Experimental results for additional target models and detailed per-target model statistics are presented340

in Figure 9 and Table 10 in Appendix D.3. These results highlight that the individual privacy341

assignment of our IDP-SGD approach has a practical impact: it indeed protects data points with342

different levels of privacy to different degrees.343

5 Comparison to Other Methods344

Comparison to Individualized PATE. We compare against Individualized PATE [5] (IPATE),345

the only other work aiming at enabling individual privacy assignment in ML. See details of their346

method and the general PATE framework in Appendix B.4. For the comparison, we report the student347

model accuracies of IPATE for the MNIST, SVHN, and CIFAR10 datasets. The results are presented348

in Table 11 in Appendix D.4. We observe that IDP-SGD constantly outperforms IPATE with the349

same privacy budget assignment.350
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Table 3: Comparison between standard DP-SGD, individual accounting, and individual ac-
counting+assignment. We present the test accuracy (%) on MNIST for training with ε = 0.3 for
standard DP-SGD and individual accounting [9], while setting ε = 0.30 and ε = 0.31 for half of the
points each when using individual accounting and assignment. Combining individualized privacy
accounting and assignment further increases utility.

VANILLA INDIVIDUAL INDIVIDUAL ACCOUNTING
DP-SGD ACCOUNTING AND ASSIGNMENT

93.29 ± 0.49 93.64 ± 0.46 94.16 ± 0.23

Synergy between Individualized Privacy Accounting and Assignment. We show that we can351

leverage synergies between our individualized privacy assignment and the orthogonal line of work on352

privacy accounting (see Section 2.2). Therefore, we extend the approach by Feldman and Zrnic [9]353

with our method of assigning each data point its individual privacy budget through an individualized354

Renyi-filter. This filter causes the point to be excluded from training once its individually assigned355

privacy budget is exhausted. Note that in contrast, in the approach by Feldman and Zrnic [9], all data356

points obtain the same privacy budget and data points are excluded from training once they reach this357

budget. For more details, see the description in Appendix D.5.358
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Figure 3: Number of Active Data
Points Over Training.

To assess the performance of pure individual accounting, we359

assign the same privacy budget of 0.3 to all 60,000 training data360

points in MNIST, following the experimental setup by Feldman361

and Zrnic [9]. We then enable the individual privacy assignment362

and change the privacy values to ε = 0.3 for the first half of363

the points and ε = 0.31 for the second half of data points.364

We empirically observe that in this low-ε regime, the small365

change of ε for half the data points is enough to cause significant366

improvement in the accuracy of the final model, as we show367

in Table 3. Note that the differences in accuracy reported for368

standard DP-SGD on MNIST between Table 3 and Table 7 differ.369

This is because of the different privacy budgets (ε = 0.3 vs.370

ε = 1.0). Additionally, in Figure 3, we present the number371

of active data points, i.e., data points that did not yet exhaust372

their individual privacy budget, over training. We find that many373

data points are used longer during training with individualized374

assignment compared to using only individualized accounting.375

This is because the data points with a higher privacy budget376

exhaust their budget later and, thus, can be used longer. We are377

only able to run this experiment on MNIST as done in Feldman378

and Zrnic [9] since the method is based on batch gradient descent:379

gradients are computed over the whole dataset at once, which380

limits its applicability to large and high-dimensional datasets.381

6 Conclusion and Future Work382

Prior work on ML with DP guarantees assigns a uniform privacy budget ε over the entire dataset.383

This approach fails to capture that different individuals have different expectations towards privacy384

and also decreases the model’s ability to learn from the data. To overcome the limitations of a385

uniform privacy budget and to implement individual users’ privacy preferences, we propose two386

modifications to the popular DP-SGD algorithm. Our Sample and Scale mechanisms adapt training387

to yield individual per-data point privacy guarantees and boost utility of the trained models. For388

future work, we believe that our individualized privacy assignment should be closely integrated with389

a form of practical individual privacy accounting. This could enable us to obtain a fine-grained notion390

of individualized privacy guarantees that tightly meet the users’ expectations.391
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A Broader Impacts and Ethical Considerations of this Work489

The specification of an adequate privacy level ε is challenging since it does not only depend on490

the domain but also on the dataset itself. This challenge persists when assigning individual privacy491

levels over a dataset. Especially in sensitive domains, one needs to make sure that the assignment492

of individual privacy guarantees does not pose an additional risk to the individuals whose data is493

processed. Therefore, one needs to first make sure that assigning individual privacy guarantees is not494

abused. This can occur when the entity training the model violates underlying individuals’ privacy495

by nudging them into choosing inadequate privacy levels. Second, one needs to prevent individuals496

from giving up their privacy due to a lack of understanding or a wrong perception of their risk. To497

do so, IDP-SGD should not be used as a stand-alone method. Instead, following the example of498

[5], we suggest incorporating it into a whole process that involves communicating the functioning499

of DP and the risks associated with a decision to the individuals, analyzing their preferences, and500

supporting them in an informed decision-making process. There exist a growing body of work on the501

communication of DP methodology and associated risks to the public [32, 7, 10]. The most recent502

finding [10] suggests that medical risk communication formats, such as percentages or frequencies,503

are best applicable to inform about privacy risks. For the identification of privacy preferences, existing504

frameworks, such as [30] can be applied. Finally, we suggest giving individuals the choice between505

categorical privacy levels (e.g., high, medium, low) while putting a regulatory entity, such as an ethics506

committee in charge of specifying concrete numeric values of ε. This mitigates the disadvantages of507

the general limited interpretability of ε that exist independently of individualization.508

Limitations. In this work, we consider a setup where individuals indicate their privacy preferences.509

We acknowledge that not all individuals are aware of their own privacy preferences and might,510

therefore, provide inaccurate indications. Therefore, our framework should be always deployed511

in a protected setup as described above. While we provide theoretical privacy guarantees in the512

framework of differential privacy, we assess the practical impact of these guarantees on the individuals513

solely through membership inference attacks. Future work should investigate the practical (disparate514

per privacy-group) impact on other known privacy risks, such as data reconstruction. Due to the515

lack of sensitive-real world datasets that, in addition to individuals’ data, also capture their privacy516

preferences, we evaluate our methods on standard benchmark datasets. We, therefore, have to simulate517

a privacy preference distribution on this data according to the distribution known from society.518

B Extended Background519

B.1 Differential Privacy520

Differential Privacy (DP) [8] provides a theoretical upper bound on the influence that a single data521

point can have on the outcome of an analysis over the whole dataset.522

The most commonly applied instantiation of DP is (ε, δ)-DP which is defined as follows:523

Definition B.1. Let D,D′ ⊆ D be two neighboring datasets, i.e., datasets that differ in exactly one524

data point. Let further M : D∗ → R be a mechanism that processes an arbitrary number of data525

points. M satisfies (ε, δ)-DP if for all datasets D ∼ D′, and for all result events R ⊆ R526

P [M(D) ∈ R] ≤ eε · P [M(D′) ∈ R] + δ . (4)

In the definition, the privacy level is specified by ε ∈ R+, while δ ∈ [0, 1] offers a relaxation, i.e., a527

small probability of violating the guarantees.528

In Algorithm 3, we highlight the DP-SGD algorithm that allows to train ML models with DP529

guarantees.530

B.2 Differential Privacy Accounting in Machine Learning531

Privacy accounting in DP-SGD is most commonly implemented by the moments accountant which532

keeps track of a bound on the moments of the privacy loss random variable at outcome R, defined by533

c(R;M, aux, D,D′) = log
Pr[M(aux, D) ∈ R]

Pr[M(aux, D′) ∈ R]
. (5)

for D,D′,M and R as above, and an auxiliary input aux.534
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Algorithm 3: Differentially Private SGD [1]
Require: Training dataset D with data points {x1, . . . , xN}, loss function l, learning rate η, noise

multiplier σ, sampling rate q, clip norm c, number of training iterations I .
1: Initialize θ0 randomly
2: for t ∈ [I] do
3: Poisson Sampling: Sample mini-batch Lt with per-point probability q from D.
4: For each i ∈ Lt, compute gt(xi)← ∇θt l(θt, xi)
5: 1. Gradient Clipping
6: ḡt(xi)← gt(xi)/max

(
1, ∥gt(xi)∥2

c

)
7: 2. Noise Addition
8: g̃t ← 1

|Lt|
(∑

i ḡt(xi) +N (0, (σc)2I)
)

9: θt+1 ← θt − ηg̃t
10: end for
11: Output θT , privacy cost (ε, δ) computed using a privacy accounting method.

B.3 Formalizing Individualized Privacy535

Individualized privacy guarantees with DP can be formalized as follows [15]:536

Definition B.2. Let d ∈ D be a data point. M satisfies (εd, δd)-DP if for all datasets D d∼ D′, and537

for all result events R ⊆ R538

P [M(D) ∈ R] ≤ eεd · P [M(D′) ∈ R] + δd . (6)

Note that other notions of DP (e.g., RDP) can analogously be generalized to enable per-data point539

privacy guarantees.540

B.4 PATE Algorithm541

The Private Aggregation of Teacher Ensembles (PATE) algorithm [26] represents an alternative to DP-542

SGD for training ML models with privacy guarantees. This ensemble-based algorithm implements543

privacy guarantees through a knowledge transfer from the ensemble to a separate student model. More544

concretely, in PATE, the private training data is split into non-overlapping subsets and distributed545

among several teacher models. Once each teacher is trained on their own data subset, they perform a546

privacy-preserving knowledge transfer by jointly labeling an additional unlabeled public dataset. To547

implement DP guarantees, noise is added to the labeling process. On completion, an independent548

student model is trained on the public dataset using the generated labels, and thereby incorporating549

knowledge about the original training data without ever requiring access to it.550

Individualized PATE. The individualized PATE variants by [5] are Upsample and Weight. Upsam-551

ple duplicates data points and distributes them to different teachers in the PATE ensemble. Utility552

increase in this method result from the availability of more training data points for the teachers.553

Since the sensitivity for a duplicated data point increases (it can change the votes of all the teachers554

that are trained on its duplicates), privacy consumption of that data point is higher. Since each data555

point can be duplicated individually, this method allows for a fine-grained individualization. In556

contrast, the weight method allows for a per-teacher model privacy individualization. Data points557

with the same privacy budget are assigned to the same teacher model(s) and the impact of that teacher558

model’s weight on the final vote is weighted according to its training data points’ privacy preferences.559

Teachers that are trained on data points with low privacy requirements are weighted higher, increasing560

the privacy consumption of their training data.561

B.5 The Lira Membership Inference Attack562

The Lira membership inference attack [6] proceeds in three steps to determine which data points563

from a dataset D = {x1, . . . , xN} were used to train a target model f : (1) First, multiple shadow564

models, similar to f , are trained on different subsets of D. (2) Then, the mean and variance of two565

loss distributions N (µin, σin) and N (µout, σout) are estimated per data point xi. Both distributions566
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are calculated from the logits of xi at the target class yi—the former one over the shadow models567

that xi is a member of, the latter one on shadow models that xi is not a member of. (3) Finally, the568

likelihood of a new data point x of class y being a member of the target model f is calculated as569

Λ =
p(f(x)y | N (µin,σ

2
in))

p(f(x)y | N (µout,σ2
out))

.570

C Details on the Methods571

C.1 Sample572

Leveraging Higher Sampling Rates for Increased Utility. With higher sampling rates for certain573

data points, utility could, in principle be increased in several ways. (1) Larger sampling rates can be574

used to obtain higher mini-batch sizes B (while keeping the number of training iterations I constant).575

Line 3 in Algorithm 3 shows that noise is added to the aggregate of all gradients. Hence, with larger576

mini-batches, the signal-to-noise ratio is higher, which can improve training. (2) Alternatively, the577

mini-batch size B can be kept constant while increasing the number of training iterations I . Longer578

training can increase model performance. However, these two approaches result in a change of core579

training hyperparamters (mini-batch size and number of iterations). As we discuss in Section 3,580

changing training hyperparameters would require a separate fine-tuning, for example, to adapt the581

learning rate for larger mini-batches, as in (1) or longer training as in (2). Since the training parameters582

would change according to the privacy budgets encountered in the private training dataset, and the583

ratios of these budgets over the training data points, the hyperparameter-tuning would have to be584

repeated whenever the dataset is updated, individuals change their privacy preferences, or decide to585

withdraw their consent for leveraging their data for the ML model alltogether, yielding significant586

overheads. We, therefore, implement our Sample according to the third option (3), described587

in Section 3.3 which leverages higher sampling rates for improved utility by reducing the noise588

multiplier of the added noise σ. This allows us to perform an apple to apple comparison between589

both our methods and to the standard DP-SGD.590

C.2 Scale591

Deriving Noise Multiplier σscaleσscaleσscale. Given the desired clip norm c found through hyperparameter592

tuning of the standard DP-SGD, we set the individual clip norms such that their weighted average593

yields c as c = 1
N

∑P
p=1 |Gp| · cp. So, we derive the σscale in the following way:594

c =
1

N

P∑
p=1

|Gp| · cp (7)

c =
1

N

P∑
p=1

|Gp| ·
(
c
σscale

σp

)
(8)

c = cσscale
1

N

P∑
p=1

|Gp|
σp

(9)

σscale =

(
1

N

P∑
p=1

|Gp|
σp

)−1

(10)

From (7) to (8), we use the equality between the scale of added noise σscalec = σpcp. In (9), we595

extract terms that are independent of the privacy groups (c and σscale) before the summation.596

C.3 Algorithmic Details597

We specify our used sub-routines used for determining a sample rate or noise multiplier based on598

given privacy parameters in Algorithm 4 and Algorithm 5, respectively.599
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Algorithm 4: Subroutine getSampleRate. Is the equivalent to Opacus’ function
get_noise_multiplier [25] for deriving an adequate sample rate for given paramteters.
Require: Target ε, target δ, iterations I , noise multiplier σ, precision γ = 0.01

1: init εhigh: εhigh ←∞
2: init qlow, qhigh: qlow ← 1e−9, qhigh ← 0.1
3: while εhigh > ε do
4: qhigh ← 2qhigh

5: εhigh ← I · 2q2high
1
σ2 {approximate epsilon according to Equation (2), we suppress α for

simplicity}
6: end while
7: while ε− εhigh > γ do
8: q ← (qlow + qhigh)/2
9: εtemp ← I · 2q2 1

σ2 {approximate epsilon according to Equation (2), we suppress α for
simplicity}

10: if εtemp < ε then
11: qhigh ← q
12: εhigh ← εtemp
13: else
14: qlow ← q
15: end if
16: end while
17: Output qhigh

Algorithm 5: Subroutine getNoise. Implements Opacus’ function get_noise_multiplier [25].
Require: Target ε, target δ, iterations I , sample rate q, precision γ = 0.01

1: init εhigh: εhigh ←∞
2: init σlow, σhigh: σlow ← 0, σhigh ← 10
3: while εhigh > ε do
4: σhigh ← 2σhigh

5: εhigh ← I · 2q2 1
σ2

high
{approximate epsilon according to Equation (2), we suppress α for

simplicity}
6: end while
7: while ε− εhigh > γ do
8: σ ← (σlow + σhigh)/2
9: εtemp ← I · 2q2 1

σ2 {approximate epsilon according to Equation (2), we suppress α for
simplicity}

10: if εtemp < ε then
11: σhigh ← σ
12: εhigh ← εtemp
13: else
14: σlow ← σ
15: end if
16: end while
17: Output σhigh

D Additional Empirical Evaluation600

We report the hyperparameters found for our individualized methods in Table 5. The training and601

standard DP-SGD hyperparameters are specified in Table 4. The performance of our individualized602

methods when using the hyperparameters of standard DP-SGD is presented in Table 7. Already when603

using these (non-individually tuned) hyperparameters, our methods yield a significant performance604

increase in comparison to standard DP-SGD. For MNIST, individual hyperparameter for our methods605

and individual setups did not yield significant improvements, therefore the results presented in Table 7606

and Table 2 are identical for MNIST.607

15



Computing Resources. The implementation of our methods does not increase computation time608

over the standard implementation of DP-SGD apart from the derivation of the privacy parameters that609

is performed once at the beginning of training. Hence, to run all experiments around our methods and610

their evaluation, we required, in total less than 16h of GPU time on a standard GeForce RTX 2080611

Ti. We ran the experiment on combining individualized privacy assignment and accounting on the612

same machines RTX 2080Ti and the total compute time is also around 2h. To train all the shadow613

models for our membership inference attack and run inference on them, we ran on an A100 GPU and614

required a total runtime of roughly 32 hours.615

Table 4: DP-SGD Hyperparameters. LR: learning rate, B: expected mini-batch size, I: number
of iterations, C: clip norm, σ: noise multiplier in DP-SGD derived from the desired privacy budget
ε = 1. Default target δ = 0.00001.

DATASET LR B I C σ

MNIST 0.6 512 9375∼80 EPOCHS 0.2 3.42529
SVHN 0.2 1024 2146∼30 EPOCHS 0.9 2.74658

CIFAR10 0.7 1024 1465∼30 EPOCHS 0.4 3.29346

Table 5: DP-SGD Hyperparameters (Individually Tuned). LR: learning rate, B: expected mini-
batch size, I: number of iterations, C: clip norm, σ. Default target δ = 0.00001. Setup A is for
privacy budgets ε = {1.0, 2.0, 3.0} and their respective distribution of 34%-43%-23%. Setup B is
for the same privacy budgets but with their distributions 54%-37%-9%.

DATASET METHOD SETUP LR B I C σ

MNIST SAMPLE A 0.6 512 9375∼80 EPOCHS 0.2 3.42529
SVHN SAMPLE A 0.2 1024 5723∼80 EPOCHS 0.6 2.53261

CIFAR10 SAMPLE A 0.2 1024 2929∼60 EPOCHS 1.0 2.65712
MNIST SAMPLE B 0.6 512 9375∼80 EPOCHS 0.2 3.42529
SVHN SAMPLE B 0.1 1024 3577∼50 EPOCHS 0.6 2.41421

CIFAR10 SAMPLE B 0.1 1024 2929∼60 EPOCHS 1.8 3.14049
MNIST SCALE A 0.6 512 9375∼80 EPOCHS 0.2 3.42529
SVHN SCALE A 0.1 1024 3577∼50 EPOCHS 2.0 2.09719

CIFAR10 SCALE A 0.2 1024 3418∼70 EPOCHS 1.1 2.88335
MNIST SCALE B 0.6 512 9375∼80 EPOCHS 0.2 3.42529
SVHN SCALE B 0.1 1024 3577∼50 EPOCHS 1.6 2.45703

CIFAR10 SCALE B 0.1 1024 2929∼60 EPOCHS 1.8 3.17792

We present the individualized privacy parameters identified for our methods in Table 6.

Table 6: Individualization Parameters Computed by our Methods for Table 7. We report
the individualized privacy parameters identified for our Scale and Sample by Algorithm 2 and
Algorithm 1, respectively. The parameters are obtained on the MNIST, SVHN, and CIFAR10 datasets
when using the privacy budget distributions of Table 7 with ε = {1.0− 2.0− 3.0}

DP-SGD SCALE SAMPLE
DATASET SETUP σσσ ccc qqq σSCALEσSCALEσSCALE {σ1, . . . , σP }{σ1, . . . , σP }{σ1, . . . , σP } {c1, . . . , cP }{c1, . . . , cP }{c1, . . . , cP } σSAMPLEσSAMPLEσSAMPLE {q1, . . . , qP }{q1, . . . , qP }{q1, . . . , qP }

MNIST 34%-43%-23% 3.425 0.2 0.008 2.063 {2.189, 1.310, 1.032} {0.129, 0.216, 0.274} 2.024 {0.005, 0.009, 0.013}

54%-37%-9% 3.425 0.2 0.008 2.418 {2.189, 1.310, 1.032} {0.148, 0.248, 0.315} 2.376 {0.006, 0.011, 0.016}

SVHN 34%-43%-23% 2.747 0.9 0.014 1.896 {2.747, 1.589, 1.214} {0.561, 0.970, 1.270} 1.667 {0.008, 0.015, 0.021}

54%-37%-9% 2.747 0.9 0.014 2.180 {2.747, 1.589, 1.214} {0.651, 1.125, 1.472} 1.937 {0.009, 0.018, 0.025}

CIFAR10 34%-43%-23% 3.293 0.4 0.020 2.244 {3.294, 1.868, 1.399} {0.244, 0.430, 0.574} 1.965 {0.012, 0.022, 0.031}

54%-37%-9% 3.293 0.4 0.020 2.594 {3.294, 1.868, 1.399} {0.285, 0.502, 0.671} 2.300 {0.014, 0.026, 0.037}

616

D.1 Privacy Consumption of our Methods617

We track privacy consumption of our methods over the course of training in Figure 4. The figure618

highlights the good calibration of our methods which causes all privacy groups to exhaust their budget619

after the pre-specified number of training iterations.620
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Table 7: Model Test Accuracy after training with Standard DP-SGD vs our Individualized
DP-SGD using Sample or Scale. D is the distribution of privacy groups (percentages) and εεε the
privacy budget for a given group. The percentages of the three privacy groups are chosen according
to Alaggan et al. [2] (first setup) and [23] (second setup). We used the hyperparameters found for
standard DP-SGD, see Table 4 and report the standard deviation over 10 trials.

DATASET SETUP DP-SGD SAMPLE SCALE

MNIST

D 34%-43%-23% 96.75 97.81 97.78
εεε 1.0-2.0-3.0 ± 0.15 ± 0.09 ± 0.08

D 54%-37%-9% 96.75 97.6 97.54
εεε 1.0-2.0-3.0 ± 0.15 ± 0.11 0.09

SVHN

D 34%-43%-23% 83.26 84.56 84.48
εεε 1.0-2.0-3.0 ±0.31 ±0.25 ±0.25

D 54%-37%-9% 83.26 84.32 84.31
εεε 1.0-2.0-3.0 ±0.31 ±0.31 ±0.26

CIFAR10

D 34%-43%-23% 52.77 54.89 54.92
εεε 1.0-2.0-3.0 ± 0.65 ± 0.55 ±0.63

D 54%-37%-9% 52.77 54.88 55.00
εεε 1.0-2.0-3.0 ± 0.65 ± 0.45 ± 0.65
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Figure 4: Individual Privacy Costs on MNIST for ε ∈ {1, 2, 3} with Distribution (54%, 37%, 9%).

D.2 General Applicability of our Methods621

We showcase the practical impact of individual privacy assignments on individual utility and demon-622

strate how our methods extend to many privacy groups and privacy budget distributions.623

Practical Impact. We run experiments on the CIFAR10 dataset where we assign higher or lower624

privacy budgets to one of the 10 classes. We select all data points from the class 0 as the first privacy625

group and assign to it either higher (ε = 3), the same (ε = 2), or lower (ε = 1) privacy budgets in626

comparison to all other data points from the other classes (ε = 2). Table 8 shows that the choice of627

privacy budget for a single group also impacts the other groups. We observe that by only changing628

the privacy budget for the selected group (in this case for class 0), we can flip its performance629

(its accuracy from being higher to being lower) in comparison to the accuracy of the other group630

(consisting of remaining classes). In the example of class 0, the accuracy is 67.76% when assigned631

high privacy budget (ε = 3), which is a higher accuracy than for all other classes that have an average632

accuracy of around 53.41% and assigned the privacy budget ε = 2. Then, by modifying only the633

privacy budget of class 0 and by assigning to it the low privacy budget (ε = 1), its accuracy drops634

to a mere 25.76% and is below the accuracy of 56.58% for the remaining classes. We visualize the635

impact of the chosen privacy budget on utility over all classes (instead of only the class 0) in Figure 5636

and Figure 6 for CIFAR10 and MNIST, respectively.637

More Privacy Groups. We present in Table 9 the test accuracy for ten privacy groups, correspond-638

ing to the ten classes of the CIFAR10 dataset when each of the privacy groups obtains a different639

privacy budget. We obtained these budgets by manually tuning them such that the accuracy gap be-640
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tween the privacy groups is minimized. We also visualize the accuracy over training in Figure 7. The641

figure visualizes that our methods are able to make all privacy groups converge to similar accuracies.642

Table 8: Accuracy for Subgroups. We assess the accuracy of subgroups when their privacy budgets
differ. We select a single class for a given group and assign either higher, the same, or lower privacy
budgets in comparison to groups with other classes. We change the privacy budgets only for bolded
classes in a given experiment while all other classes have the same privacy budget (ε = 2).

Classes Privacy Budget

Higher (ε = 3) Same (ε = 2) Lower (ε = 1)

0 67.76 ± 2.14 55.24± 1.98 25.76± 2.52

1-9 53.41± 2.2 54.72± 2.49 56.58 ± 2.29

1 80.84 ± 1.2 72.79± 1.6 46.09± 3.91

0,2-9 51.65± 2.28 52.77± 2.53 54.59 ± 2.23

2 51.31± 3.53 36.59± 3.33 9.53± 1.41

0-1,3-9 54.26 ± 2.84 56.79± 2.34 58.87 ± 2.18

3 52.88± 2.6 32.64± 1.91 6.67± 1.09

0-2,4-9 54.62 ± 2.42 57.23± 2.5 58.75 ± 2.42

4 56.99 ± 1.87 40.06± 2.88 9.44± 1.68

0-3,5-9 54.41± 2.21 56.41± 2.39 58.18 ± 2.02

5 64.11 ± 2.27 51.86± 2.21 15.04± 2.31

0-4,6-9 53.28± 2.16 55.1± 2.46 57.54 ± 2.49

6 73.54 ± 2.36 65.8± 4.25 40.6± 4.18

0-5,7-9 52.05± 2.21 53.55± 2.23 56.06 ± 2.33

7 68.22 ± 1.17 61.15± 1.99 41.08± 2.75

0-6,8-9 52.5± 2.43 54.07± 2.49 56.01 ± 2.76

8 77.39 ± 1.24 68.53± 2.34 37.42± 3.37

0-7,9 51.51± 2.54 53.25± 2.45 55.28 ± 2.37

9 72.82 ± 1.48 63.08± 1.9 32.79± 2.73

1-8 52.05± 2.32 53.85± 2.5 56.06 ± 2.52

D.3 Additional Results for MIA643

Membership inference success for a single target model of our Sample and Scale methods is shown644

in Figure 8. In Figure 9, we present the results over for 5 different target models for Sample. The645

figure highlights that over all target models, the two privacy groups’ privacy risk is different: the646

group with higher protection ε = 10 constantly has a lower AUC than the group with lower protection647

ε = 20. The test statistics over the different privacy groups’ Lira likelihood scores for all five target648

models are shown in Table 10.649

D.4 Comparison to Individualized Privacy with IPATE650

We present the comparison between our IDP-SGD and IPATE [5] in Table 11. In PATE, accuracy651

refers to the student model accuracy. The results in Table 11 are averaged over three experiments652

for IPATE and ten runs for IDP-SGD. Note that the accuracies we report for IPATE differ from the653

accuracy values reported by [5] in Table 1, since they report average voting accuracy (i.e., how correct654

are individual teacher model votes), whereas we report the resulting student model accuracies, which655

corresponds to the final performance of the method. Note that IPATE does not apply the performance656

improvements suggested by Papernot et al. [27] (e.g.,virtual adversarial training) or MixMatch which657

could increase the student model’s performance.658
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Figure 5: CIFAR10: Accuracy Changes for Subgroups. We assess how the test Accuracy of a
Class of interest changes in comparison to the Baseline Accuracy (standard DP-SGD with ε = 2)
when we, during training, assign a lower (ε = 1) or a higher (ε = 3) privacy budget to data points
from a class (shown on the x-axis). The diagonals show that by increasing a class’ privacy budget
(lower privacy), their utility increases, while it decreases with the decrease of privacy budget (higher
privacy). Similar results for MNIST can be found in Figure 6.

D.5 Integrating Privacy Accounting and Assignment659

The main goal behind individualized accounting is to obtain tighter privacy analysis (recall our660

discussion in Section 2.2). Instead of tracking a single privacy loss estimate across all data points,661

an individual privacy loss is kept track of for each data point. Feldman and Zrnic [9] defines a new662

individual privacy filter, which drops data points that exceed the individualized privacy loss from663

further processing. However, the same privacy budget is assigned to each data point. The individual664

assignment of a privacy budget to each data point is a natural extension of individualized accounting665

and can be directly incorporated into this framework. Therefore, a given data point has its own666

privacy filter and is dropped from the analysis once the filter indicates that the data point’s privacy667

budget is exhausted.668

E Alternative Baselines669

Throughout this work, we compare our methods with Standard DP-SGD which cannot take into670

account different privacy requirements at the same time. Thus, we consider it to apply the highest671

privacy protection required to all data points equally. Nonetheless, we can think of two more ways to672

use Standard DP-SGD on data having heterogeneous privacy requirements. Those approaches have673

different benefits and drawbacks and might perform better than our chosen baseline approach in some674

scenarios.675
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Figure 6: MNIST: Accuracy Changes for Subgroups. We assess how the test accuracy of a class
changes (in comparison to standard DP-SGD with ε = 2) when we, during training, assign a lower
(ε = 1) or a higher (ε = 3) privacy budget to data points from this class. The diagonals show that by
increasing a class’ privacy budget (lower privacy), their utility increases, while it decreases with the
decrease of privacy budget (higher privacy).

E.1 Exclude Lower Privacy Groups676

Instead of applying the strongest privacy protection, the deciding ML expert could entirely exclude677

data of low privacy groups from training for loosening the restrictions on the remaining data points’678

influence on model updates. In some cases, it would be worth giving up the information and privacy679

budgets of those lower privacy groups to achieve utility improvements. This approach performs poorly680

if important information is wasted, e.g., most data of one class has the highest privacy requirement.681

E.2 Learn Privacy Groups Separately682

It is also possible to make use of all privacy budgets, independent of their diversity, although only683

using Standard DP-SGD. Namely, a model can be trained on each privacy group separately one after684

another, whereby the corresponding lowest budget is regarded for each group. A drawback of this685

approach is that the model could forget its knowledge about previously learned privacy groups.686

E.3 Empirical Comparison of Baselines687

We empirically evaluate against these two additional baselines using the MNIST dataset. For688

baseline E.1, we include all data points with a privacy budget of ε ≥ 2 und use ε = 2 as the privacy689

budget for training. After hyperparameter tuning, the training on the remaining data points (43%+23%690

and 37%+9% of the total data) yields the accuracy reported in Appendix E.3.691
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Table 9: Per-class Individual Privacy Assignments. We manually optimize the per-class individual
privacy budgets for Sample such that the model achieves the same accuracy over all classes. The
resulting per-class privacy budgets yield the maximum gap ∆ between the highest and lowest accuracy
level of only 0.39% for Sample, and 0.88% for Scale. For the baseline (ε = 3 for all classes)
∆ = 2.03 is significantly higher, highlighting that our approach can successfully minimize the
accuracy gap between different privacy groups. We run the experiment on the MNIST dataset and
report average per-class test-accuracies over three separate runs. See each privacy group’s test
accuracy over training in Figure 7.

Class 0 1 2 3 4 5 6 7 8 9 ∆

Baseline (ε = 3) 98.95 99.06 98.39 98.09 97.93 98.47 98.16 98.12 97.78 97.03 2.03
Budgets 0.75 0.5 2.0 2.6 4.1 2.1 2.05 3.0 3.1 6.1 /

Sample 98.16 98.09 98.16 97.95 98.10 97.91 97.77 97.99 98.02 97.89 0.39
Scale 98.44 98.36 98.13 98.02 97.76 98.17 97.91 97.96 97.91 97.56 0.88

Table 10: Statistical differences between Privacy Groups. We conduct a student t-test to determine
if the Lira likelihood scores for data points with privacy budget ε = 10 differ from the ones of data
points with ε = 20. All results with p < 0.05 indicate statistically significant differences. Results for
Sample.

Target Model ∆ p

1 5.16 2.49e-07
2 2.41 0.016
3 1.84 0.066
4 -4.03 5.52e-05
5 2.537 0.011

For baseline E.2, we also did hyperparameter tuning and used the best noise multiplier of 2.5 for692

training. We trained the groups sequentially, always continuing training with the next group once the693

privacy budget of the previous groups was exhausted. We evaluated both starting with the privacy694

group that has loosest and strongest preferences (orders [3,2,1] and [1,2,3], respectively). Starting695

with the group that has strongest privacy requirements and ending on the group that has loosest696

privacy requirements yielded the best results which we report in Appendix E.3.697

In summary, we observe that our methods outperform the other baselines.698

F Alternative Individualization699

We present the alternative ways of individualizing privacy guarantees in DP-SGD that we considered700

in the design process of IDP-SGD and describe their drawbacks.701

F.1 Individual Per-Data Point Noise702

Individualized privacy could, in principle also be obtained by adding different amounts of noise703

to different data points. Every of the P privacy group would have their individual {σ1, . . . , σP }.704

Utility improvements would result from some data points requiring smaller amounts of added noise.705

Note however, that in DP-SGD, while clipping is performed on a per-data point basis, noise addition706

is performed on a per-mini-batch basis (line 8 in Algorithm 3). Hence, there are two possibilities707

to implement individual noise addition: either (i) by operating on mini-batch sizes of 1, or (ii) by708

implementing a two-step sampling approach which first randomly samples a privacy group for a709

given training iteration and then applies the standard Poisson sampling to obtain the mini-batch710

consisting of data points from this group. While both approaches are conceptually correct, they exhibit711

significant drawbacks. Approach (i) first slows down training performance due to more operations712

requiring to be carried out on individual data points, rather than a mini-batch. Second, due to the713

weak signal-to-noise ratio when adding noise to individual gradients, model performance is likely to714

degrade. Finally, sampling cannot be performed with Poisson anymore since with Poisson sampling,715
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Figure 7: Per-class test accuracies over CIFAR10 training with Per-Class Privacy Budgets. We
manually tune the per-class privacy budgets for Sample to obtain the same per-class accuracy at
the end of training, see Table 9. Comparison with the Baseline (a) where all classes obtain ε = 3
highlight that Sample (b) and Scale (c) successfully reduce the accuracy gap between the different
classes.

it is not possible to pre-determine and specify exact mini-batch sizes, instead these depend on the716

outcome of the random sampling process. Approach (ii) could overcome the first two issues. However,717

the different groups sizes are still strictly smaller than the entire dataset and large parts of DP-SGD’s718

degrading the tight privacy bounds obtained by privacy amplification through subsampling.6 The719

privacy amplification through subsampling allows to scale down the noise σ by the factor B/N (with720

6Note that there exist other, less popular approaches to implement DP in ML than the DP-SGD algorithm,
such as Differentially Private Follow-the-Regularized-Leader (DP-FTRL) which do not rely on subsampling but
instead obtain tighter privacy bounds from adding correlated noise over the training iterations. However, since
DP-FTRL under-performs DP-SGD for high-privacy regimes, and unfolds it advantages mainly in FL scenarios
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(a) Sample
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(b) Scale

Figure 8: True-Positive rate vs. False-Positive Rate of Lira Membership Inference Attacks Per
Privacy-Budget. We follow the same setup as in Figure 2. We show the single target model for both
(a) Sample and (b) Scale methods.

B being the expected mini-batch size, N the total number of data points, and B ≪ N ) while still721

ensuring the same ε as with σ [16]. This privacy amplification is crucial to the practical performance722

(privacy-utility trade-offs) of DP-SGD. Hence, by using the P privacy groups of sizes {N1, . . . , NP }723

with Ni ≪ N , the factors B/Ni ≪ B/N for all i{1, . . . , P}. This effect cancels out, or in the worst724

case even inverts the privacy-utility benefits that should arise from assigning individual data points725

less noise based on their privacy preference in our individualization.726

F.2 Duplicating Data Points727

When duplicating data points in the training dataset, similar to the Upsampling mechanism in728

IPATE [5], the DP-SGD algorithm itself does not need to be adapted. Instead, different privacy levels729

of different data points stem from their individual number of replication within the training data. This730

approach offers a very fine-grained control on individual privacy levels, since, in principle, each731

data point could be replicated a different number of times. Utility gain would result from the larger732

training dataset. However, this type of upsampling opens the possibility for the same data point to be733

present multiple times in the mini-batch used for training in a given iteration. This stands in contrast734

where the same data is only learned from once, or with a small number of epochs, we consider the approach
outside of the scope of this work.
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Figure 9: True-Positive rate vs. False-Positive Rate of Lira Membership Inference Attacks Per
Privacy-Budget. We follow the same setup as in Figure 2. We run the experiment for five different
target models and aggregate the results with the error bars for the Sample method.

Table 11: Comparison between IDP-SGD and Individualized PATE (IPATE). We select the
weighting mechanism from IPATE that performs better than the upsampling method. The Setup
indicates the size (in %) of privacy groups. We present the accuracy (%) for training with ε =
{1.0, 2.0, 3.0} privacy budgets, respectively to the order of the privacy groups.

DATASET SETUP BASELINE PATE IPATE SAMPLE SCALE

MNIST 34%-43%-23% 91.17± 1.25 95.27 ± 0.33 97.81 97.78
54%-37%-9% 95.74 ± 0.43 97.6 97.54

SVHN 34%-43%-23% 22.46 ± 5.19 41.45 ± 1.69 84.56 84.48
54%-37%-9% 44.64 ± 0.55 84.32 84.31

CIFAR10 34%-43%-23% 24.83 ± 1.56 33.20 ± 0.94 54.89 54.92
54%-37%-9% 35.59 ± 0.73 54.88 55.00

Table 12: Empirical evaluation against other baselines. We report the obtained test accuracy
obtained with our two methods vs. two other baselines for individualized privacy on the MNIST
dataset. Similar to Table 7, we use ε = 1, 2, 3. Both our Sample and Scale outperform the other
baselines.

Setup DP-SGD E.1 Baseline E.2 Baseline Sample Scale

34%-43%-23% 96.75 97.6 97.4 97.81 97.78
54%-37%-9% 96.75 97.1 97.3 97.6 97.54

to the original DP-SGD, where participation of each data point for training at a given iteration is735

determined by an independent Bernoulli trial, and hence, a data point can be either included once or736

not at all in a mini-batch. The possibility for a data point to be included multiple times n inside the737

same mini-batch changes the sensitivity of the mechanism from c to nc. According to [20], when738

noise is added according to σ, a mechanism with sensitivity nc is (α, 2(nc)2

2σ2 )-RDP. The quadratic739

influence of the sensitivity to privacy bound results in a severe increase in the RDP ε, making the740

approach suboptimal in terms of privacy-utility guarantees. Additionally, upsampling leads to an741

effective increase in a data point’s the sample-rate which further increases privacy costs.742

G Additional Proofs743

G.1 Additional Proofs for Individualized Privacy744

Proof for Theorem 3.1745

Proof. First note that (ε1, δ)-DP can be considered as a special case of ({ε1, ε2, . . . , εP }, δ)-DP,746

where ∀p ∈ [1, P ] εp = ε1. We can, hence apply Equation (3) and see that an M that satisfies (ε1, δ)-747
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DP has a privacy guarantee of P [M(D) ∈ R] ≤ eε1 ·P [M(D′) ∈ R]+δ. Given that by our definition748

∀p ∈ [2, P ] it holds that εp > ε1, for all p, it holds that P [M(D) ∈ R] ≤ eε1 · P [M(D′) ∈ R] ≤749

eεp · P [M(D′) ∈ R] + δ. From this inequality, it follows that M also satisfies ({ε1, ε2, . . . , εP }, δ)-750

DP.751

Proof for Theorem 3.2752

Proof. Analogous to the previous proof, by our definition, it holds that ∀p ∈ [1, P − 1] the753

εp < εP . From an M that satisfies ({ε1, ε2, . . . , εP }, δ)-DP, it, therefore, holds that for all p754

the P [M(D) ∈ R] ≤ eεp · P [M(D′) ∈ R] + δ ≤ eεP · P [M(D′) ∈ R] + δ. This inequality shows755

that M satisfies (εP , δ)-DP.756

G.2 Privacy Proofs for our Methods757

Either of our methods can be considered as an SGM with the difference that it has different parameters758

from the point of view of each privacy group. This is because for each group, we have to examine759

neighboring datasets which differ in an arbitrary data point from that group. Our Sample method760

ensures an individual sample rate for all points of each group, while our Scale method applies an761

individual noise multiplier for all points of each group.762

Theorem G.1. Our Sample mechanism satisfies ({ε1, ε2, . . . , εP }, δ)-DP.763

Proof. We prove the bound for any particular privacy group separately. Fix p ∈ {1, . . . , P}, let764

D ⊆ D be the training dataset, and select any xi ∈ D that belongs to group Gp. We are interested765

in comparing outcomes of mechanism M on D with its outcomes on D′ = D \ {xi} where M766

represents a particular model update of Sample. We get Gaussian mixtures767

M (D′) =
∑

L⊂D

πLN
(
f (L) , σ2

sampleI
d
)

and

M (D) =
∑

L⊂D

πL

(
(1− qp)N

(
f (L) , σ2

sampleI
d
)
+ qpN

(
f (L ∪ {xi}) , σ2

sampleI
d
))

,

where f (L) is the clipped gradient of the current mini-batch L, πL is its probability, σsample > 0 is768

the noise scale, Id is the identity matrix, and 0 < qp ≤ 1 is the individual sample rate of xi and every769

other point in Gp. Note that σsample is actually multiplied by the clip norm csample > 0. Gaussian770

mechanisms are invariant regarding scaling of their sensitivity and noise scale, but instead depend on771

the relationship between sensitivity and noise scale, called the noise multiplier. Hence, we can ignore772

csample and consider f to have sensitivity 1.773

Now we can see that the Gaussian mixtures of our Sample are equivalent to those corresponding774

to the original SGM from Mironov et al. [21], Thm. 4, when we parameterize it with sample775

rate qp and noise scale σsample which are individual per group. Therefore, all RDP bounds of the776

original SGD apply, especially (α, ε̄p)-RDP with ε̄p = 2q2p
α

σ2
sample

in a particular parameter regime777

(cfg. Thm. 11 from Mironov et al. [21]). As a final step of the proof, we need to convert from778

(α, ε̄p)-RDP guarantees to (εp, δ)-DP guarantees following Mironov [20] (see Section 2.1). Note that779

our individual parameters have been selected before the start of training so that each group’s privacy780

budget is exhausted at the intended number of iterations (see Algorithm 1).781

Theorem G.2. Our Scale mechanism satisfies ({ε1, ε2, . . . , εP }, δ)-DP.782

Proof. This proof is analog to the proof of Theorem G.1 with the difference that we have a global783

sample rate q but individual noise multipliers σp and clip norms cp. Moreover, Algorithm 2 is used to784

configure parameters prior to training.785
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