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Abstract

The scarcity of labeled data is a critical obstacle to deep learning. Semi-supervised
learning (SSL) provides a promising way to leverage unlabeled data by pseudo
labels. However, when the size of labeled data is very small (say a few labeled
samples per class), SSL performs poorly and unstably, possibly due to the low
quality of learned pseudo labels. In this paper, we propose a new SSL method called
DP-SSL that adopts an innovative data programming (DP) scheme to generate
probabilistic labels for unlabeled data. Different from existing DP methods that
rely on human experts to provide initial labeling functions (LFs), we develop a
multiple-choice learning (MCL) based approach to automatically generate LFs
from scratch in SSL style. With the noisy labels produced by the LFs, we design
a label model to resolve the conflict and overlap among the noisy labels, and
finally infer probabilistic labels for unlabeled samples. Extensive experiments
on four standard SSL benchmarks show that DP-SSL can provide reliable labels
for unlabeled data and achieve better classification performance on test sets than
existing SSL methods, especially when only a small number of labeled samples
are available. Concretely, for CIFAR-10 with only 40 labeled samples, DP-SSL
achieves 93.82% annotation accuracy on unlabeled data and 93.46% classification
accuracy on test data, which are higher than the SOTA results.

1 Introduction

The de-facto approaches to deep learning achieve phenomenal success with the release of huge labeled
datasets. However, large manually-labeled datasets are time-consuming and expensive to acquire,
especially when expert labelers are required. Nowadays, many techniques are proposed to alleviate
the burden of manual labeling and help to train models from scratch, such as active learning [1],
crowd-labeling [2], distant supervision [3], semi [4]/weak [5]/self-supervision [6]. Among them,
semi-supervised learning (SSL) is one of the most popular techniques to cope with the scarcity of
labeled data. Two major strategies of SSL are pseudo labels [7] and consistency regularization [8].
Pseudo labels (also called self-training [9]) utilize a model’s predictions as the labels to train the
model again, while consistency of regularization forces a model to make the same prediction under
different transformations. However, when the size of labeled data is small, SSL performance degrades
drastically in both accuracy and robustness. Fig. 1 shows the change of prediction error rate with
the number of labeled samples of CIFAR-10. When the number of labeled samples reduces from
250 to 40, error rates of major existing SSL methods increase from 4.74% (USADTM) to 36.49%
(MixMatch). One possible reason of performance deterioration is the quality degradation of learnt
pseudo labels when labeled data size is small. Therefore, in this paper we address this problem by
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developing sophisticated labeling techniques for unlabeled data to boost SSL even when the number
of labeled samples is very small (e.g. a few labeled samples per class).
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Figure 1: Error rate vs. #labeled samples
(CIFAR-10). Results of existing meth-
ods are from the original papers. When
only 40 labeled samples are given, all
existing SSL methods are substantially
degraded and more unstably, while our
method is still effective and robust.

Recently, data programming (DP) was proposed as a new
paradigm of weak supervision [10]. In DP, human experts
are required to transform the decision-making process into
a series of small functions (called labeling functions, abbre-
viated as LFs), thus data can be labeled programmatically.
Besides, a label model is applied to determining the correct
labels based on consensus from the noisy and conflicting
labels assigned by the LFs. Such a paradigm achieves
considerable success in NLP tasks [11–14]. In addition,
DP has also been applied to computer vision tasks [15, 16].
However, current DP methods require human experts to
provide initial LFs, which is time-consuming and expen-
sive, and it is not easy to guarantee the quality of LFs.
Furthermore, LFs specifically defined for one task usually
cannot be re-used for other tasks.

In this paper, we propose a new SSL method called DP-
SSL that is effective and robust even when the number
of labeled samples is very small. In DP-SSL, an inno-
vative data programming (DP) scheme is developed to
generate probabilistic labels for unlabeled data. Different
from existing DP methods, we develop a multiple-choice
learning (MCL) based approach to automatically generate
LFs from scratch in SSL style. To remedy the over-confidence problem with existing MCL methods,
we assign an additional option as abstention for each LF. After that, we design a label model to
resolve the conflict and overlap among the noisy labels generated by LFs, and infer a probabilistic
label for each unlabeled sample. Finally, the probabilistic labels are used to train the end model for
classifying unlabeled data. Our experiments validate the effectiveness and advantage of DP-SSL. As
shown in Fig. 1, DP-SSL performs best, and only 1.76% increase of error rate when the number of
labeled samples decreases from 250 to 40 in CIFAR-10.

Note that the pseudo labels used in existing SSL methods are quite different from the probabilistic
labels in DP-SSL, which may explain the advantage of DP-SSL over existing SSL methods. On the
one hand, pseudo labels are “hard” labels that indicate an unlabeled sample belonging to a certain
class or not, while probabilistic labels are “soft” labels that indicate the class distributions of unlabeled
samples. Obviously, the latter should be more flexible and robust. On the other hand, pseudo labels
are actually generated by a single model for all unlabeled samples, while probabilistic labels are
generated from a number of diverse and specialized LFs (due to the MCL mechanism), which makes
the latter more powerful in generalization as a whole.

In summary, the contributions of this paper are as follows: 1) We propose a new SSL method DP-SSL
that employs an innovative data programming method to generate probabilistic labels for unlabeled
data, which makes DP-SSL effective and robust even when there are only a few labeled samples per
class. 2) We develop a multiple choice learning based approach to automatically generate diverse and
specialized LFs from scratch for unlabeled data in SSL manner. 3) We design a label model with a
novel potential and an unsupervised quality guidance regularizer to infer probabilistic labels from the
noisy labels generated by LFs. 4) We conduct extensive experiments on four standard benchmarks,
which show that DP-SSL outperforms the state-of-the-art methods, especially when only a small
number of labeled samples are available, DP-SSL is still effective and robust.

2 Related Work

Here we briefly review the latest advances in multiple choice learning, semi-supervised learning, and
data programming, which are related to our work. Detailed information is available in [17–21].
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2.1 Multiple Choice Learning

Multiple choice learning (MCL) [22] was proposed to overcome the low diversity problem of models
trained independently in ensemble learning. For example, stochastic multiple choice learning [23] is
for training diverse deep ensemble models. However, a crucial problem with MCL is that each model
tends to be overconfident, which results in poor final prediction. To solve this problem, [24] forces
the predictions of non-specialized models to meet a uniform distribution, so that the final decision is
summed over diverse outputs. [25] proposes an additional network to estimate the weight of each
specialist’s output. In this paper, we develop an improved MCL based scheme to automatically
generate diverse and specialized labeling functions (LFs) from scratch in an SSL manner. These LFs
are used to generate preliminary (usually noisy) labels for unlabeled data.

2.2 Semi-supervised Learning

Semi-supervised learning (SSL) has been extensively studied in image classification [26], object
detection [27], and semantic segmentation [28]. Two popular SSL strategies for image classification
are pseudo labels [7] and consistency regularization [8]. Pseudo-label methods generate artificial
labels for some unlabeled images and then train the model with these artificial labels, while consistency
regularization tries to obtain an artificial distribution/label and applied it as a supervision signal with
other augmentations/views. These two strategies have been adopted by a number of recent SSL
works [4, 8, 29–39]. For example, FixMatch [4] proposes a simple combination of pseudo labels
and consistency regularization. [36] employs unsupervised learning and clustering to determine the
pseudo labels. In this paper, we propose a new SSL method that is effective and robust even when
the size of labeled data is very small. Our method employs an innovative data programming alike
method to automatically generate probabilistic labels for unlabeled data.

2.3 Data Programming

Data programming [10] is a weak supervision paradigm proposed to infer correct labels based on
the consensus among noisy labels from labeling functions (LFs), which are modules embedded with
decision-making processes for generating labels programmatically. Following the DP paradigm,
Snorkel [12] and Snuba [40] were proposed as rapid training data creation systems. Their LFs are
built with various weak supervision sources, like pattern regexes, heuristics, and external knowledge
base etc. Recently, more works are reported in the literature [11, 13–16, 21, 41–48]. Among
them, [11, 13, 14, 45–47] focus on the adaption of label model in DP. For example, [21] aims to
reduce the computational cost and proposes a closed-formed solution for training the label model.
[15, 16, 41–43] apply DP to computer vision. Concretely, [16, 42, 43] heavily rely on the pretrained
models. [41] combines crowdsourcing, data augmentation, and DP to create weak labels for image
classification. [15] presents a novel view for resolving infrequent data in scene graph prediction
training datasets via image-agnostic features in LFs. However, all these methods cannot be directly
applied to training models from scratch with a small number of labeled samples. Thus, in this paper
we extend DP by exploring both MCL and SSL to generate arbitrary labeling functions.

3 Method

For a C-class SSL classification problem, assume that all training data X are divided into labeled data
Xl and unlabeled Xu, and test data are denoted as Xt. Following the notation in [4, 36], {xl, xwl } ∈
Xl are the paired labeled samples with labels yl ∈ {1, . . . , C}, and {xu, xwu , xsu} ∈ Xu are the triple
unlabeled samples. Here, xl and xu represent the raw images without any transformations. xwl , x

w
u ,

and xsu are the images based on the weak and strong augmentation strategies, respectively. In this
paper, weak augmentation uses a standard flip-and-shift strategy, and strong augmentation uses the
RandAugment [49] strategy with Cutout [50] augmentation operation.

3.1 Background

FixMatch. In the FixMatch [4] algorithm, apart from basic cross-entropy on labeled samples,
consistency regularization with pseudo labels on unlabeled samples is represented as:

LFM (xwu , x
s
u) = 1(max(p(y|xwu )) ≥ ε) ·H(ŷwu , p(y|xsu)), (1)
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Figure 2: Framework of the DP-SSL method with four LFs.

where H is the cross-entropy, τ is the pre-defined threshold, p represents the output probability of the
model, and ŷwu := argmax(p(y|xwu )) is the pseudo label from the weakly augmented predictions.

Multiple Choice Learning. Stochastic Multiple Choice Learning (sMCL) [23] aims to specialize
each individual model on a subset of data, by minimizing the loss as follows:

LsMCL(xl, yl) = min
k∈{1,··· ,K}

H(yl, pk(y|xl)), (2)

where pk is the output probability of the k-th model. For a training sample (xl, yl), sMCL feeds the
data to allK models but only chooses the most accurate model to do back-propagation. Consequently,
each model performs better on some classes than the other models, i.e., each model becomes a
specialist on some particular classes.

3.2 Framework

Fig. 2 shows the framework of our DP-SSL method, which works in three major steps as follows:

• Step 1. We employ an MCL based approach to automatically generate K LFs from scratch
in an SSL style. Here, each LF is trained on a subset of C classes in the training set based on
MCL. As shown in Fig 2, the 2nd LF is trained with samples of classes “horse” and “dog”,
and abstains from predicting when facing monkey images.

• Step 2. A graphical model is developed as the label model to aggregate the noisy labels and
produce probabilistic labels for unlabeled training data. The label model is learned in an
SSL manner with an additional regularizer.

• Step 3. The end model is trained with both provided labels and probabilistic labels generated
from Step 2. Finally, we verify the performance of the end model on the test data.

3.3 Labeling Function

In Step 1 of our method, LFs are exploited to generate noisy labels for each unlabeled image. In
previous DP works for computer vision, LFs are built via external image-agnostic knowledge [15]
or pretrained models [16, 42, 43]. However, it is difficult to explicitly describe the rules of image
classification. Instead, here we innovatively explore MCL and SSL for automatic LF generation.

As shown in Fig. 2, we share the same backbone (Wide ResNet [51] in this paper) to extract features
of images for multiple prediction heads (called LFs in this paper). To promote the diversity of LFs,
we transform the features and feed each LF with different transformed features as follows:

fk =

HW∑
j=1

e−βkdis(f [j],ck)∑K
k′=1 e

−βk′dis(f [j],ck′ )
(f [j]− ck). (3)

In this paper, K is the number of LFs, f ∈ RHW×D denotes the feature map of input image x before
global average pooling of backbone, f [j] ∈ RD is the feature vector at the spatial position j of f .
ck ∈ RD is the learnable clustering center of the k-th LF, βk is the learnable variable of the k-th
cluster, dis(A,B) represents the distance between A and B. Thus, fk corresponds to the feature fed
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to the k-th LF, and describes the k-th aggregated pattern of f among the K centers, it can also be
considered as a learnable weighted spatial pooling for feature f . Then, supposing Fk is the classifier
in the k-th LF, which would output the probability Fk(fk) as prediction. For clarity, in the following
we denote pk(y|x) := Fk(fk) of the k-th LF with the input image x.

As depicted in [23], the classifiers lack diversity of prediction even trained with different protocols.
Therefore, we adopt MCL to assign a subset of labeled data for each classifier automatically to
improve diversity. However, it is intuitive to observe that in Eq. (2) each category can only be
assigned to one LF, and no consensus can be exploited. Therefore, we increase the proportion of
selected models in Eq. (2) to do back-propagation, which is formulated as

LMCL
l (xwl , yl) = min

M⊂{H(yl,pk(y|xw
l )}Kk=1

|M|=ρ·K

1

ρ ·K

ρ·K∑
k′=1

Mk′ , (4)

whereMk′ indicates the k′-th element in the setM, and ρ ∈ [1/K, 1] is a designed parameter to
represent the ratio of specialist LFs. When bρ ·Kc is equal to 1, Eq. (4) becomes the traditional MCL
in Eq. (2). In contrast, if bρ ·Kc is equal to K, it deteriorates to the basic ensemble learning, where
all K classifiers are trained with the same data.

Based on MCL, each LF is a specialist for some classes, so it can get high accuracy for samples
in these classes. While for samples from other classes not specialized by the LF, it fails to predict
due to over-confidence. Thus, we take only the probabilities of specialized categories as predictions,
and allow each LF to abstain from some samples in the dataset. Formally, we denote ‘0’ as the
abstention label, and the specialized category set of the k-th LF as τk = {τ1

k , . . . , τ
|τk|
k }. Then, the

output label of the k-th LF ŷk satisfies ŷk ∈ {0}∪ τk, e.g., the output of the 1st LF in Fig. 2 is among
“monkey”, “deer” and “abstention” because its specialized category set τ1 = {monkey, deer}. Then,
we denote the probability over the specialized category set τk and “abstention” option as p̄k(y|x),
where p̄k(y|x) ∈ R|τk|+1. The objective function over labeled samples with abstention option is

Ll(xwl , yl) =

K∑
k=1

(
1(yl ∈ τk)H(yl, p̄k(y|xwl )) + 1(yl /∈ τk)H(0, p̄k(y|xwl ))

)
, (5)

Then, for the unlabeled training data, we follow the settings in FixMatch [4], where unlabeled data
are supervised by the pseudo labels ŷw,ku of weak augmentation data xwu . Thus,

Lu(xwu , x
s
u) =

K∑
k=1

1(max(p̄k(y|xwu )) ≥ ε)
(
1(ŷw,ku ∈ τk)H(ŷw,ku , p̄k(y|xsu))+

1(ŷw,ku /∈ τk)H(0, p̄k(y|xwu ))
)
,

(6)

where ŷw,ku := argmax(p̄k(y|xwu )). Specifically, we only keep samples whose largest probability
(including the abstention option) is above the predefined threshold ε (0.95 in our paper), and train the
model on the kept data with pseudo label ŷw,ku . Accordingly, the training in this step is to minimize
the objective function as follows:

L(xwl , yl, x
w
u , x

s
u) = µMCL

l LMCL
l (xwl , yl) + µlLl(xwl , yl) + µuLu(xwu , x

s
u), (7)

where µMCL
l , µl and µu are hyper-parameters. In our implementation, we first set µMCL

l = 1 and
µl = µu = 0, then adjust µMCL

l to 0 and µl = µu = 1 after the convergence of LMCL
l .

Generally, in Step 1, MCL is expected to generate specialized class sets τ for LFs, with which samples
are more easily discriminated by SSL classifiers even there are a few labeled samples. Besides, the
abstention option is for addressing the over-confidence problem of samples from non-specialized sets.

3.4 Label Model

In Step 2 of our method, we utilize a graphical model to specify a single prediction by integrating
noisy labels provided by K LFs. For simplification, we assume that the K LFs are independent (as
shown in Fig. 2). Then, suppose that ŷ = (ŷ1, · · · , ŷK)ᵀ ∈ RK is the vectorized form of the
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predictions from K LFs, the joint distribution of the label model can be described as:

P (y, ŷ) =
1

Z

K∏
k=1

φ(y, ŷk) (8)

where Z is the normalizer of the joint distribution, φ is the potential that couples the target y and noisy
label ŷk. In this paper, we extend the dimension of parameters θ in label model to K × C to support
multi-class classification. Set eky := exp(θky), which is the exponent of parameters θky. Now we
are to construct the potential function φ. Due to the specialized LFs, the potential φ should benefit
the final prediction when a noisy label agrees with the target. That is, we should have φ(y, ŷk) > 1.
Thus, we set φ as 1 + eky for this case. On the contrary, the potential φ should negatively impact the
final prediction when a noisy label conflicts with the target label in the specialized category set, i.e.,
we should have φ(y, ŷk) < 1. Therefore, for this case we set φ to 1/(1 + eky). For the other cases,
we follow the design in [52]. In summary, the potential φ is defined as follows:

φ(y, ŷk) =


1 + eky, if y ∈ τk, ŷk ∈ τk, ŷk = y

1/(1 + eky), if y ∈ τk, ŷk ∈ τk, ŷk 6= y

eky, if y /∈ τk, ŷk ∈ τk, ŷk 6= y

1. otherwise

(9)

With the potential above, the normalizer Z of the joint distribution in Eq. (8) can be obtained by
summarizing over y and ŷk:

Z =
∑
y∈Y

K∏
k=1

∑
ŷk∈{0}∪τk

φ(y, ŷk)

=
∑
y∈Y

K∏
k=1

(
1(y ∈ τk)(2 + eky +

|τk| − 1

1 + eky
) + 1(y /∈ τk)(1 + |τk|eky)

)
.

(10)

Then, the objective function of the label model can be expressed in an SSL manner as follows:

L(ŷl, yl, ŷu) =
∑
xl

H(yl, P (y, ŷl))︸ ︷︷ ︸
labeled samples

+ (−
∑
xu

log
∑
y∈Y

P (y, ŷu))︸ ︷︷ ︸
unlabeled samples

+R(θ, ŷu), (11)

where the first part is the cross-entropy loss, the second is the negative log marginal likelihood on the
observed noisy labels ŷu, and the third is a regularizer. In our method, the regularizer is utilized to
guide the label model with statistical information (the accuracy of each LF). However, the accuracy
of each LF on noisy labels is unavailable, while the accuracy on labeled training is almost 100% due
to over-fitting. Thus, we have to estimate the accuracy of each LF with the observable noisy labels ŷ,
which will be presented in Sec. 3.5. After training, the label model produces probabilistic labels π by
computing the joint distribution in Eq. (8) with the noisy labels ŷ.

3.5 Accuracy Estimation

Now, we formally describe our method for estimating the accuracy of LFs. We transform the multi-
class problem into C one-versus-all tasks. For the i-th (i ∈ [1, · · · , C]) one-versus-all task, we denote
the unobserved ground-truth labels as zi ∈ {±1} (zi = +1 means y = i, and zi = −1 represents
y 6= i), noisy labels of the k-th LF as ẑki ∈ {±1, 0},

ẑki =

 1 if ŷk = i,
0 if ŷk = 0,
−1 otherwise.

(12)

Then, we can write E[ẑki zi] as

E[ẑki zi] = P(ẑki zi = 1)− P(ẑki zi = −1)

= P(ẑki zi = 1)− (1− P(ẑki zi = 1)− P(ẑki zi = 0))

= 2P(ẑki = zi) + P(ẑki = 0)− 1.

(13)
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Assume that ẑji ⊥⊥ ẑki |zi for distinct j and k, then

E[ẑji ẑ
k
i ] = E[ẑji z

2
i ẑ
k
i ] = E[ẑji zi]E[ẑki zi] (14)

with the fact that z2
i = 1. In Eq. (14), Ê[ẑji ẑ

k
i ] = 1

|xu|
∑
xu
ẑji ẑ

k
i is observable, which can be derived

from the noisy labels of the j-th and k-th LFs, while E[ẑji zi] and E[ẑki zi] remain to be solved due to
true label zi is unavailable. Next, we introduce a third labeling result from the l-th LF as ẑli, such that
Ê[ẑji ẑ

l
i] and Ê[ẑki ẑ

l
i] are observable. Then, |Ê[ẑji zi]|, |Ê[ẑki zi]|, |Ê[ẑlizi]| can be solved by a triplet

method as follows:

|Ê[ẑji zi]| =
√
|Ê[ẑji ẑ

k
i ] · Ê[ẑji ẑ

l
i]/Ê[ẑki ẑ

l
i]|,

|Ê[ẑki zi]| =
√
|Ê[ẑji ẑ

k
i ] · Ê[ẑki ẑ

l
i]/Ê[ẑji ẑ

l
i]|,

|Ê[ẑlizi]| =
√
|Ê[ẑji ẑ

l
i] · Ê[ẑki ẑ

l
i]/Ê[ẑji ẑ

k
i ]|.

(15)

We can obtain the estimated accuracy of each LF by resolving the sign of E[ẑki zi] [21]. Let âki :=

P̂(ẑki = zi|ẑki 6= 0) be the estimated accuracy of the k-th LF on the i-th category. Therefore, the
regularizer of R(θ, ŷu) can be formulated as

R(θ, ŷu) =

C∑
i=1

K∑
k

âki logPθ(ẑ
k
i = zi|ẑki 6= 0) + (1− âki ) log(1− Pθ(ẑ

k
i = zi|ẑki 6= 0)) (16)

where Pθ(ẑ
k
i = zi|ẑki 6= 0) can be computed in closed form by marginalizing over all the other

variables in the model in Eq. (8). Details of Pθ can be referred to Appendix A.3.

3.6 End Model

In Step 3, probabilistic labels are used to train an end model under any network architecture. We
utilize noise-aware empirical risk expectation as the objective function to take annotation errors into
account. Accordingly, the final objective function is as follows:

L(xl, yl, xu, π) =
∑
xl

H(yl, p(y|xl))︸ ︷︷ ︸
labeled samples

+
∑
xu

Ey∼πH(y, p(y|xu))︸ ︷︷ ︸
unlabeled samples with probabilistic label

(17)

where p(y|xl) and p(y|xu) are the predicted distributions of xl and xu, π is the distribution produced
by the label model in Sec. 3.4.

4 Experiments

4.1 Implementation Details

In the training phase, we follow the settings of previous works [4, 35, 36], augment data in weak (a
standard flip-and-shift strategy) and strong forms (RandAugment [49] followed by Cutout [50]
operation), and utilize a Wide ResNet as the end model for a fair comparison. In our framework,
the batch size for labeled data and unlabeled data is set to 64 and 448, respectively. Besides, we use
the same hyperparameters (K = 50, ρ = 0.2, ε = 0.95) for all datasets. We compare DP-SSL with
major existing methods on CIFAR-10 [53], CIFAR-100 [53], SVHN [54] and STL-10 [55]. We also
analyze the effect of annotation and conduct ablation study in Sec. 4.4 and Sec. 4.5 respectively. All
experiments are implemented in Pytorch v1.7 and conducted on 16 NVIDIA RTX3090s.

4.2 Datasets

CIFAR-10 and CIFAR-100 [53] contain 50,000 training examples and 10,000 validation examples.
All images are of 32x32 pixel size and fall in 10 or 100 classes, respectively.

SVHN [54] is a digital image dataset that consists of 73,257, 26,032 and 531,131 samples in the
train, test, and extra folders. It has the same image resolution and category number as CIFAR-10.
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Table 1: Results of error rate on CIFAR-10, CIFAR-100 and SVHN for different existing SSL methods
(Π-Model [29], Pseudo-Labeling [7], Mean Teacher [32], MixMatch [31], UDA [34], ReMixMatch
[35], FixMatch [4] and USADTM [36]) and our DP-SSL method.

CIFAR-10 CIFAR-100 SVHN

Method 40 labels 250 labels 4000 labels 400 labels 2500 labels 10000 labels 40 labels 250 labels 1000 labels

Π -Model - 54.26±3.97 14.01±0.38 - 57.25±0.48 37.88±0.11 - 18.96±1.92 7.54±0.36
Pseudo-Labeling - 49.78±0.43 16.09±0.28 - 57.38±0.46 36.21±0.19 - 20.21±1.09 9.94±0.61
Mean Teacher - 32.32±2.30 9.19±0.19 - 53.91±0.57 35.83±0.24 - 3.57±0.11 3.42±0.07
MixMatch 47.54±11.50 11.05±0.86 6.42±0.10 67.61±1.32 39.94±0.37 28.31±0.33 42.55±14.53 3.98±0.23 3.50±0.28
UDA 29.05±5.93 8.82±1.08 4.88±0.18 59.28±0.88 33.13±0.22 24.50±0.25 52.63±20.51 5.69±2.76 2.46±0.24
ReMixMatch 19.10±9.64 5.44±0.05 4.72±0.13 44.28±2.06 27.43±0.31 23.03±0.56 3.34±0.20 2.92±0.48 2.65±0.08
USADTM 9.54±1.04 4.80±0.32 4.40±0.15 43.36±1.89 28.11±0.21 21.35±0.17 3.01±1.97 2.11±0.65 1.96±0.05

FixMatch (RA) 13.81±3.37 5.07±0.65 4.26±0.05 48.85±1.75 28.29±0.11 22.60±0.12 3.96±2.17 2.48±0.38 2.28±0.11
FixMatch (CTA) 11.39±3.35 5.07±0.33 4.31±0.15 49.95±3.01 28.64±0.24 23.18±0.11 7.65±7.65 2.64±0.64 2.36±0.19
DP-SSL (ours) 6.54±0.98 4.78±0.26 4.23±0.20 43.17±1.29 28.00±0.79 22.24±0.31 2.98±0.86 2.16±0.36 1.99±0.18

Fully Supervised 2.74 16.84 1.48

Table 2: Results of error rate on STL-10.
STL-10

Method 1000 labels Method 1000 labels Method 40 labels 250 labels 1000 labels

Π -Model 26.23±0.82 UDA 7.66±0.56 USADTM 9.63±1.35 6.85±1.09 4.01±0.59
Pseudo-Labeling 27.99±0.80 ReMixMatch 5.23±0.45 DP-SSL (ours) 9.32±0.91 6.83±0.71 4.97±0.42
Mean Teacher 21.43±2.39 FixMatch (RA) 7.98±1.50 Fully Supervised 1.48
MixMatch 10.41±0.61 FixMatch (CTA) 5.17±0.63

STL-10 [55] is a dataset for evaluating unsupervised and semi-supervised learning. It consists of
5000 labeled images and 8000 validation samples of 96x96 size from 10 classes. Besides, there are
100,000 unlabeled images available, including odd samples.

4.3 Comparison with Existing SSL Methods

For a fair comparison, we conduct experiments with the codebase of FixMatch and cite the results on
CIFAR-10, CIFAR-100, SVHN and STL-10 from [4, 36]. We utilize the same network architecture
(a Wide ResNet-28-2 for CIFAR-10 and SVHN, WRN-28-8 for CIFAR-100, and WRN-37-2 for
STL-10) and training protocol of FixMatch, such as optimizer and learning rate schedule. Unlabeled
data are generated by the scripts in FixMatch. Results of DP-SSL and existing methods in Tab. 1 and
Tab. 2 are presented with the mean and standard deviation (STD) of accuracy on 5 pre-defined folds.

As shown in Tab. 1, our method achieves the best performance in most cases, especially when
there are only 4 labeled samples per class. Specifically, our method achieves a 93.46% accuracy on
CIFAR-10 with 4 labeled samples per category, which is 3.3% higher than that of USADTM — the
state-of-the-art method. Again on STL-10, our method surpasses USADTM and achieves the best
performance when there are 4 and 25 labeled samples per class.

On CIFAR-100, our method performs the best for 400 labels case and the 2nd for 2500 and 10,000
labels cases. We also notice that DP-SSL has relatively large STDs for 2500 and 10,000 labels
cases, which is due to the coarse accuracy estimation. In fact, even if triplet mean is adopted in
estimation, the triplet selection in Eq. (15) still impacts accuracy estimation and regularizer a lot,
especially when E[ẑki zi] is close to 0 or sign recovery of E[ẑki zi] is wrong. Actually, there are some
advanced approaches to unsupervised accuracy estimation [56–58] that can replace the naive triplet
mean estimation. Ideally, if we can obtain the exact accuracy of each class b̂ki := P̂(ẑki = zi|ẑki = 1)

and regularize it as R(θ, ŷu) =
∑C
i=1

∑K
k b̂

k
i logPθ(ẑ

k
i = zi|ẑki = 1) + (1− b̂ki ) log(1− Pθ(ẑ

k
i =

zi|ẑki = 1)), we will get an end model with (27.92± 0.23)% error rate for 2500 labeled samples.

Comparing with USADTM, our method does not perform well enough when more labeled data
available. For USADTM, apart from the proxy label generator, unsupervised representation learning
contributes a lot for its performance. As shown in the ablation study of [36], USADTM without
unsupervised representation learning achieves around 5.73% and 4.99% error rate for 250 and 4000
labeled samples in CIFAR-10, while our method DP-SSL obtains 4.78% and 4.23% error rate.
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Table 3: The macro Precision/Recall/F1 Score/Coverage of the annotated labels on CIFAR-10,
CIFAR-100, and SVHN for our method and two typical existing label models.

CIFAR-10 CIFAR-100 SVHN

Method Metrics 40 labels 250 labels 4000 labels 400 labels 2500 labels 10000 labels 40 labels 250 labels 1000 labels

Majority Vote F1 Score 85.96 94.23 95.77 49.97 69.81 76.03 90.86 95.38 96.14
FlyingSquid[21] F1 Score 90.25 94.99 95.85 48.90 69.73 74.12 93.92 97.24 97.70

DP-SSL (ours)

Precision 93.47 95.30 95.89 55.62 71.91 75.12 95.20 97.65 97.79
Recall 93.82 95.33 95.91 56.86 72.01 78.35 96.78 97.64 97.94
F1 Score 93.61 95.19 95.90 54.42 71.89 76.36 95.95 97.59 97.81
Coverage 99.35 99.79 99.91 99.33 99.87 99.94 99.15 99.67 99.93

4.4 Analysis

Annotation performance. Intuitively, the holistic performance of the end model in our method
highly depends on the quality of annotation results. Thus, we present the macro precision/recall/F1
score and coverage of the annotated labels of our method on CIFAR-10, CIFAR-100, and SVHN
in Tab. 3. We can see that our method achieves over 99% coverage, which means that it produces
probabilistic labels for almost all unlabeled data. Comparing to the results in [36], the label model
with 40 labeled samples outperforms the proxy label generator, FixMatch and USADTM get 88.51%
and 89.48% accuracy, respectively. Furthermore, our method achieves 97.36% accuracy for unlabeled
data with the top-500 highest probabilities in each category. Meanwhile, we also present results of
Majority Voting and FlyingSquid [21] in Tab. 3 based on the noisy labels from Step 1 of our method
for comparison. Majority Voting gets bad performance because the number of LFs triggered for
different categories is not equal. For FlyingSquid, we implement it with C one-versus-all models to
support multi-class tasks, and the large C in CIFAR-100 results in the worst performance.

Barely supervised learning. We conduct experiments to test the performance (accuracy and STD)
of our method on CIFAR-10 for some extreme cases (10, 20 and 30 labeled samples) to verify
the effectiveness of our method. Here, we select the labeled data through the scripts of FixMatch
with 5 different random seeds. As claimed in FixMatch, it reaches between 48.58% and 85.32%
test accuracy with a median of 64.28% for 10 labeled samples, while our method obtains accuracy
from 61.32% to 83.7%. As for 20 and 30 labeled samples, our method gets (85.29 ± 3.14)% and
(89.81± 1.59)% accuracy respectively, which have much smaller STDs than that reported in [37].

4.5 Ablation Study

Table 4: Annotation performance for
different configurations on CIFAR-10
with 40 and 250 labels. K and ρ are set
to 50 and 0.2 by default.

Experiments 40 labels 250 labels

Exp1: w.o. MCL 92.46 95.02
Exp2: MCL w.o. FT 91.61 94.98
Exp3: MCL w. FT 93.82 95.33

Exp4: w.o. Regularizer 93.19 94.94
Exp5: Regularizer 93.82 95.33

In DP-SSL, LFs and the label model are the core com-
ponents to assign probabilistic labels for training the end
model. Here, we check the effects of the following factors
in the process of producing probabilistic labels by taking
CIFAR-10 as the example. For ease of exposition, only the
accuracy of predicted labels is presented in Tab. 4.

MCL. Feature transformation (FT) described in Eq. (3)
can be regarded as a weighted spatial pooling for extracted
features. It is proposed to boost the diversity of generated
LFs. We conduct comparative experiments for three con-
figurations: 1) Exp1: w.o. MCL, 2) Exp2: MCL w.o. FT,
3) Exp3: MCL w. FT. The results are presented in Tab. 4. It
is interesting to see that Exp1 is better than Exp2 but worse
than Exp3. In fact, Exp1 is a simple ensemble model with a shared backbone, where each LF is
trained independently and predicts the labels within C categories. In Exp2, we observe that some
classifiers have never been optimized in the training phase and thus have an empty specialized set
when only a few labeled samples per class are available. Moreover, the specialized sets of many LFs
are duplicate, which incurs a negative impact on the performance. However, MCL with FT addresses
the drawbacks and helpes our method obtain versatile LFs.

Hyperparameters. K and ρ are the number of LFs and the ratio of specialists in Eq. (4). In our
ablation study, we focus on the variance of performance for differentK and ρ with 40 labeled samples
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(a) (b)

Figure 3: Plots of ablation study on CIFAR-10 with 40 labels. (a) Varying the number of LFs K. (b)
Varying the specialized ratio ρ. Here, the red dashed line indicates the error rate of DP-SSL with
default hyperparameters.

on CIFAR-10. In Fig. 3a, K=50 performs the best when 40 labeled samples are available. On the
other hand, performance reaches the best when ρ=0.2 in Fig. 3b. We present more results of ρ and K
in Appendix A.5.

Regularizer. The regularizer is proposed to impose a global guidance and improve the robustness of
the label model. As shown in Tab. 4, the regularizer does boost the accuracy, especially when facing
less labeled samples. Besides, as mentioned in Sec. 4.3, the high-quality guidance of the regularizer
also reduces the label model’s performance variance, thus improves its robustness.

5 Conclusion

In this paper, we explore the data programming idea to boost SSL when only a small number of labeled
samples available by providing more accurate labels for unlabeled data. To this end, we propose
a new SSL method DP-SSL that employs an innovative DP mechanism to automatically generate
labeling functions. To make the labeling functions diverse and specialized, a multiple choice learning
based approach is developed. Furthermore, we design an effective label model by incorporating a
novel potential and a regularizer with estimated accuracy. With this model, probabilistic labels are
inferred by resolving the conflict and overlap among noisy labels from the labeling functions. Finally,
an end model is trained under the supervision of the probabilistic labels. Extensive experiments show
that DP-SSL can produce high-quality probabilistic labels, and outperforms the existing methods to
achieve a new SOTA, especially when only a small number of labeled samples are available.

6 Limitations of This Work

In this work, we use coarse accuracy estimation as the statistic information to guide the label model
for simplicity. As described in Sec. 3.5, we estimate the accuracy Pθ(ẑ

k
i = zi|ẑki 6= 0), rather than

class-wise accuracy Pθ(ẑ
k
i = zi|ẑki = 1). Besides, we do not consider the dependency between LFs

and directly assume they are independent.
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Table 5: Glossary of variables and symbols used in this paper.
Symbol Used for

xl, yl Labeled samples and ground-truth labels
xu Unlabeled samples
xw· Weakly augmented (labeled / unlabeled) samples
xs· Strongly augmented (labeled / unlabeled) samples
Y Label space. e.g., in CIFAR-10, Y = {1, 2, · · · , 10}
C Number of categories. C = |Y|
f RHW×D, feature map before global average pooling of backbone
f(j) RD, feature vector at spatial position j of f
dis(A,B) Distance between A and B
ck RD, learnable clustering center of the k-th LF
fk RD, input feature of classifier in the k-th LF
Fk The classifier head in the k-th LF
pk(y|x) RC , output probability of the k-th LF
τk Specialized category set of the k-th LF
p̄k(y|x) R|τk|+1, output probability over specialized categories and “abstention” option
ŷk = argmax(p̄k(y|x)), predicted label of the k-th LF
ŷ = (ŷ1, · · · , ŷK)ᵀ ∈ RK , vectorized predicted laebls of K LFs
θ θ ∈ RK×|Y| is the parameters of label model
eky eky := exp(θky), exponent of parameters θky
φ(y, ŷk) Potential value with the target label y and predicted label ŷk
P (y, ŷ) Joint distribution between target label y and predicted label ŷ in the label model
Z Normalizer item of P (y, ŷ). Z =

∑
y∈Y

∑
ŷ∈τ P (y, ŷ)

R(θ, ŷu) Regularizer of unlabeled data in the Label Model

zi zi =

{
+1 yu = i

−1 yu 6= i
, latent variable of ground-truth label in the i-th one-versus-all task

ẑki ẑki =


+1 ŷk = i

0 ŷk = 0

−1 otherwise

, latent variable of ŷk in the i-th one-versus-all task

E[ẑki zi] Expectation of ẑki zi
Ê[ẑki zi] Estimated expectation of ẑki zi over all unlabeled data without ground-truch zi.
P̂ (·) Probability estimated with the observable data.
âki Precision of the k-th LF in the i-th one-versus-all classification

A Appendix

A.1 Glossary

The glossary is given in Table 5.

A.2 Label Model

Label Model in Snorkel [52] is also called as “Generative Model”, which models and integrates the
noisy labels provided byK LFs. In this paper, we suppose that theK LFs are independent. Assuming
that ŷ = (ŷ1, · · · , ŷK)ᵀ ∈ RK is the vectorized form of the predicted labels from K LFs, and ŷk is
the predicted label of the k-th model. For clarity, we denote ∅ as the “abstention” option in the LFs.
Then, following the definition of Snorkel, the label model in Snorkel can be represented as:

P (y, ŷ) =
1

Z

K∏
k=1

φ(y, ŷk), (18)
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with the potential function φ(y, ŷk):

φ(y, ŷk) =


exp(θk1 + θk2), if ŷk = y

exp(θk1), if ŷk 6= y, ŷ 6= ∅
1. if ŷk = ∅

(19)

where θ ∈ R2K . It can be observed that the potential function in Eq. (19) provides the same values
for all target categories y. However, each LF in our method specializes in multiple categories with
different performance. Thus, we extend the parameters θ toK×C to support multi-class classification.
In Eq. (19), we set exp(θk1 + θk2) to guarantee that the potential with ŷk = y is larger than that with
ŷk 6= y. Similarly, we set 1 + exp(θky) and 1/(1 + exp(θky)). Then, we have the potential function:

φ(y, ŷk) =


1 + exp(θyk), if ŷ ∈ τk, ŷk = y

1/(1 + exp(θyk)), if ŷ ∈ τk, ŷk 6= y

1. otherwise

(20)

However, the conclusion from [23, 25] tells us that MCL tends to be overconfident for the samples
whose ground-truth labels are out of the specialized set. In other words, when one LF is fed with
a sample whose ground-truth label is out of the specialized set, it may still produce a label in the
specialized set with high confidence. Although the cases of overconfidence decrease a lot due to the
introduction of the “abstention” option in Step 1, these cases still exist in our framework. Therefore,
we introduce the item exp(θyk) to represent the relationship between the predicted label ŷk and
the target label y, even when the target labels conflict with the predicted labels. Based on these
considerations, we define the four-part potential function in Eq. (9.

A.3 Regularizer

We give the complementary formulation of Pθ(ẑki = zi|ẑki 6= 0). Set Φk(y, Ŷ) :=
∑
ŷk∈Ŷ φ(y, ŷk)

for ease of exposition. We write Pθ(ẑki = zi|ẑki 6= 0) as follows:

Pθ(ẑ
k
i = zi|ẑki 6= 0)

=
Pθ(ẑ

k
i = zi = 1) + Pθ(ẑ

k
i = zi = −1)

Pθ(ẑki 6= 0)

=
Pθ(y = i, ŷk = y, ŷk 6= 0) + Pθ(y 6= i, ŷk 6= i, ŷk 6= 0)

Pθ(ŷk 6= 0)

=
φ(i, i)

∏
k′ 6=k Φk

′
(i, {0} ∪ τk′) +

∑
y 6=i(Φ

k(y, τk − {i})
∏
k′ 6=k Φk

′
(y, {0} ∪ τk′))∑

y∈Y Φk(y, τk)
∏
k′ 6=k Φk′(y, {0} ∪ τk′)

.

(21)

As mentioned in our paper, the class-wise accuracy Pθ(ẑki = zi|ẑki = 1) without negative samples
can be written as:

Pθ(ẑ
k
i = zi|ẑki = 1) ==

φ(i, i)
∏
k′ 6=k Φk

′
(i, {0} ∪ τk′)∑

y∈Y φ(y, i)
∏
k′ 6=k Φk′(y, {0} ∪ τk′)

. (22)

However, we can estimate P̂ (ẑki = zi|ẑki 6= 0) by Eq. (15) directly, but it is more difficult to estimate
the class-wise accuracy P̂ (ẑki = zi|ẑki = 1).

A.4 Model Analysis

We give an example with 40 labeled samples in Fig. 4 to illustrate why Majority Vote falls with
K = 50 and ρ = 0.2. In the extreme case, category “automobile” and category “ship” are only
specialized by 4 LFs, while 15 LFs specialize in “dog”. If an image with category “automobile”
triggers all (4) true specialized LFs but triggers 40% (5) specialized LFs with class “dog”, Majority
Vote would misclassify it into “dog”. With our label model, we can achieve 95.22% annotation
accuracy in this case.
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Figure 4: The number of specialized LFs for each category.

Table 6: Annotation performance for different ρ and K on CIFAR-10 with 40 labels
0.1 0.2 0.3 0.4 0.5 1.0

10 83.25 86.42 88.99 90.62 91.28 92.39
20 89.16 91.27 91.83 92.31 92.52 92.48
30 91.39 93.46 93.54 93.16 92.91 92.41
40 92.53 93.28 93.45 93.24 92.80 92.47
50 92.95 93.82 93.55 93.19 93.07 92.46
60 93.01 93.54 93.11 92.97 92.63 92.43

A.5 Hyperparameter ρ and K

We also present the complete experimental results with different ρ and K on CIFAR-10 with 40
labels in Tab. 6.
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