
A Implementation Details

Constructing Robust Source Networks. We construct robust source networks by performing
adversarial training [21, 45]. We use projected gradient descent in order to find model parameters θ∗
that minimize the following expression:

θ∗ = argmin
θ

E(x,y)∈D[max
‖δ‖2≤ε

L(θ, x+ δ, y)],

where L(θ, x, y) represents the cross-entropy loss of a network with parameters θ evaluated on input
x with label y. We subject the adversarial examples constructed in the inner optimization procedure
to an `2 norm constraint. We will call this constraint ε the robustness parameter of a classifier, as
it represents the (`2) magnitude of the adversarial examples with respect to which the classifier is
trained to be robust. Due to the high computational cost of adversarial training, we rely on pre-trained
robust ResNet50 models that have been pre-trained on ImageNet [61]. For our experiments, we test
classifiers with robustness parameters ε ∈ {0, 0.01, 0.03, 0.05, 0.1, 0.25, 0.5, 1, 3, 5}.
Prior research has identified a number of methods for optimizing adversarial examples given a
white-box classifier f , many of which are based on the Iterative Fast Gradient Sign Method (I-FGSM)
[21, 40], in which a perturbation δi is iteratively updated to maximize the loss of the network while
obeying an `∞ norm constraint:

δi+1 = δi + α · sign∇δiL(x+ δi),

where L represents the adversarial loss function, α is a tunable step-size parameter, and x+ δn is the
final adversarial example after n steps. At each step, δi is clipped such that ‖δ‖∞ ≤ ε and x+ δi is a
valid image.

TMDI-FGSM. We adopt the state-of-the-art method recently proposed by [91], which combines
three variants of I-FGSM and optimizes over many steps:

1. Diverse Input Iterative Fast Gradient Sign Method (DI2-FGSM), which applies a random affine
transformation to the input at each step prior to computing the gradient [87],

2. Translation-Invariant Iterative Fast Gradient Sign Method (TI-FGSM), which convolves the
gradient with a Gaussian filter [14],

3. Momentum Iterative Fast Gradient Sign Method (MI-FGSM), in which a momentum term is
added to the gradient [13].

Together called TMDI-FGSM, this optimization method can be described by the following process:

g
(i)
DI = ∇δiL(Ti(x+ δi)) (DI2-FGSM)

g
(i)
TDI = N ∗ g

(i)
DI (TI-FGSM)

g
(i)
TMDI = µ · g(i−1)TMDI +

g
(i)
DI

‖g(i)DI ‖1
(MI-FGSM)

δi+1 = δi + α · sign g(i)TMDI

where L again represents the adversarial loss function, Ti represents a random affine transformation,
N represents a Gaussian convolutional filter, µ is a tunable momentum parameter, and α is a tunable
step-size parameter, and x+ δn is the final adversarial example over n steps.

For the DI2 component of the optimization algorithm, we use a random resize and crop operation
where each image is resized by a factor selected uniformly between 3/4 and 4/3, and then cropped to
be 224× 224 pixels randomly, with 0-valued padding where appropriate. Then, a random horizontal
flip is applied. This is equivalent to the PyTorch code:

transforms.Compose([
transforms.RandomResizedCrop(size=[224, 224],

scale=(3/4, 4/3),
ratio=(1., 1.)),

transforms.RandomHorizontalFlip()
])

16

For the TI component, we apply a Gaussian filter to the gradient at each step, with the filter size of
5× 5, and the standard deviation of the filter 1.

For the MI component, we use a momentum of 0.9.

For generating representation-targeted adversarial examples, we exclude the TI step, as we found that
the representation-targeted adversarial examples were less transferable when it was included.

Model Details. We use a number of models for our experiments. For all robust networks trained
on ImageNet, we use the pre-trained weights that are available on the GitHub page associated with
Salman et al. [62]. For all convolutional destination models, we use pre-trained weights that are
included with Keras [10]. For the ViT model trained on ImageNet, we use pre-trained weights from
Melas-Kyriazi [48]. For the CLIP model, we use the code and weights associated with [57].

We train robust CIFAR-10 models with the Robustness library [17]. We train for 100 epochs using a
batch size of 128. We include data augmentation. We optimize using standard stochastic gradient
descent with momentum, using a learning rate of 0.01 and a momentum parameter of 0.9, as well
as a weight decay of 0.0001. For adversarial training, we generate each adversarial example with 7
steps, using a step-size of 0.3× ε for the given robustness parameter of ε. For the ViT model trained
on CIFAR-10, we use pre-trained weights associated with Dosovitskiy et al. [16] and finetune on
CIFAR-10 for 10 epochs.

All convolutional destination CIFAR-10 models were finetuned for 20 epochs from the pre-trained
ImageNet weights that are included with Keras [10].

B Extended ImageNet Data

In this section, we present extended data from the ImageNet.

Untargeted Adversarial Examples. We use the 1000 transferable adversarial examples generated
to transfer to ImageNet classifiers and plot the transfer success rate when we treat the adversarial
examples as untargeted, i.e., we consider every adversarial example which is misclassified by the
destination classifier as a success (Figure 4). In addition, we include analogous results for adversarially
trained models (Figure 5).

Additional Tested Source-Network Robustness Parameters. In the main paper, we exclude
certain values of ε in the figures that illustrate the transferability of adversarial examples for clarity,
so that the results from slightly-robust networks could be more easily seen. We include the extended
results for both targeted and untargeted adversarial examples (Figures 6 and 7). We observe a decrease
in transfer performance as robustness increases past the optimal point. We speculate that this arises
from the fact that as robustness increases, smaller features on which non-robust neural networks rely
are gradually thrown away, thus reducing transfer performance.

17

0.0 0.5 1.0
0.0

0.5

1.0
Xception

0.0 0.5 1.0

VGG16

0.0 0.5 1.0

ResNet50V2

0.0 0.5 1.0

InceptionV3

0.0 0.5 1.0

MobileNetV2

0.0 0.5 1.0

DenseNet121

0.0 0.5 1.0
0.0

0.5

1.0
NasNetLarge

0.0 0.5 1.0

EfficientNetB4

0.0 0.5 1.0

ViT

0.0 0.5 1.0

LeViT

0.0 0.5 1.0

CCT

0.0 0.5 1.0

CLIP

0.0 0.2 0.4 0.6 0.8 1.0
Source model -robustness

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r r
at

e
on

 u
nt

ar
ge

te
d

at
ta

ck
s

Destination networks

Maximum perturbation size: 8 12 16 24 Baseline transfer rate

Figure 4: Error rate of destination networks (ImageNet classifiers) evaluated on untargeted transferable
adversarial examples using ε-robust ResNet50 source models with perturbation size ‖δ‖∞ ≤ 16/256.
Higher is a more successful attack. Baseline refers to the misclassification rate of unperturbed images.
(Best viewed in color.)

0 2 4
0.0

0.5

1.0
DenseNet161, = 3

0 2 4

VGG16, = 3

0 2 4

MobileNetV2, = 3

0 2 4

ResNeXT50, = 3

0 2 4

ShuffleNetV2, = 3

0.0 0.2 0.4 0.6 0.8 1.0
Source model -robustness

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r r
at

e
on

un
ta

rg
et

ed
 a

tta
ck

s

Perturbation size: 8 12 16 24 Baseline

Figure 5: Error rate of destination (ε = 3)-robust ImageNet classifiers evaluated on untargeted
adversarial examples using ε-robust ResNet50 source networks with perturbation size ‖δ‖∞ ≤ 16/256.
Higher is a more successful attack. Baseline refers to the misclassification rate of unperturbed images.
(Best viewed in color.)

18

0.0 2.5 5.0
0.0

0.5

1.0
Xception

0.0 2.5 5.0

VGG16

0.0 2.5 5.0

ResNet50V2

0.0 2.5 5.0

InceptionV3

0.0 2.5 5.0

MobileNetV2

0.0 2.5 5.0

DenseNet121

0.0 2.5 5.0
0.0

0.5

1.0
NasNetLarge

0.0 2.5 5.0

EfficientNetB4

0.0 2.5 5.0

ViT

0.0 2.5 5.0

LeViT

0.0 2.5 5.0

CCT

0.0 2.5 5.0

CLIP

0.0 0.2 0.4 0.6 0.8 1.0
Source model -robustness

0.0

0.2

0.4

0.6

0.8

1.0
Ta

rg
et

ed
 tr

an
sf

er
 su

cc
es

s r
at

e
Destination networks

Maximum perturbation size: 8 12 16 24 Baseline transfer rate

Figure 6: Extended ImageNet data (note extended horizontal axis in comparison with Figure 1):
Transfer success rate of destination networks (CIFAR-10 classifiers) evaluated on targeted transferable
adversarial examples using ε-robust ResNet50 source models with perturbation size ‖δ‖∞ ≤ 16/256.
Higher is a more successful attack. Baseline refers to the transfer rate of unperturbed images. (Best
viewed in color.)

0.0 2.5 5.0
0.0

0.5

1.0
Xception

0.0 2.5 5.0

VGG16

0.0 2.5 5.0

ResNet50V2

0.0 2.5 5.0

InceptionV3

0.0 2.5 5.0

MobileNetV2

0.0 2.5 5.0

DenseNet121

0.0 2.5 5.0
0.0

0.5

1.0
NasNetLarge

0.0 2.5 5.0

EfficientNetB4

0.0 2.5 5.0

ViT

0.0 2.5 5.0

LeViT

0.0 2.5 5.0

CCT

0.0 2.5 5.0

CLIP

0.0 0.2 0.4 0.6 0.8 1.0
Source model -robustness

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r r
at

e
on

 u
nt

ar
ge

te
d

at
ta

ck
s

Destination networks

Maximum perturbation size: 8 12 16 24 Baseline transfer rate

Figure 7: Extended ImageNet data (note extended horizontal axis in comparison with Figure 4). Error
rate of destination networks (CIFAR-10 classifiers) evaluated on untargeted transferable adversarial
examples using ε-robust ResNet50 source models with perturbation size ‖δ‖∞ ≤ 16/256. Higher is a
more successful attack. Baseline refers to the misclassification rate of unperturbed images. (Best
viewed in color.)

19

C CIFAR-10 Data

We extend our experiments to the CIFAR-10 dataset to confirm that our results are general. We present
the effectiveness of targeted and untargeted transferable adversarial examples (Figures 8 and 9). In
addition, we present t-SNE plots of the destination-network representations of representation-targeted
examples (Figure 10), as well as the cosine similarity between feature representations and the target
images (Table 3). For all experiments, our results are not as exaggerated as with the ImageNet data,
but nonetheless, we observe an increase in transferability of both class-targeted, untargeted, and
representation-targeted adversarial examples when we use slightly-robust source networks, confirming
that our claims generalize to networks trained on the CIFAR-10 dataset.

0.0 0.2 0.4
0.0

0.5

1.0
Xception

0.0 0.2 0.4

VGG16

0.0 0.2 0.4

ResNet50V2

0.0 0.2 0.4

InceptionV3

0.0 0.2 0.4

MobileNetV2

0.0 0.2 0.4
0.0

0.5

1.0
DenseNet121

0.0 0.2 0.4

NasNetLarge

0.0 0.2 0.4

EfficientNetB4

0.0 0.2 0.4

ViT

0.0 0.2 0.4

CLIP

0.0 0.2 0.4 0.6 0.8 1.0
Source model -robustness

0.0

0.2

0.4

0.6

0.8

1.0

Ta
rg

et
ed

 tr
an

sf
er

 su
cc

es
s r

at
e

Perturbation size: 8 12 16 24 Baseline

Figure 8: CIFAR-10 data: Transfer success rate of destination networks (CIFAR-10 classifiers)
evaluated on targeted transferable adversarial examples using ε-robust ResNet50 source models with
perturbation size ‖δ‖∞ ≤ 16/256. Higher is a more successful attack. Baseline refers to the transfer
rate of unperturbed images. (Best viewed in color.)

20

0.0 0.2 0.4
0.0

0.5

1.0
Xception

0.0 0.2 0.4

VGG16

0.0 0.2 0.4

ResNet50V2

0.0 0.2 0.4

InceptionV3

0.0 0.2 0.4

MobileNetV2

0.0 0.2 0.4
0.0

0.5

1.0
DenseNet121

0.0 0.2 0.4

NasNetLarge

0.0 0.2 0.4

EfficientNetB4

0.0 0.2 0.4

ViT

0.0 0.2 0.4

CLIP

0.0 0.2 0.4 0.6 0.8 1.0
Source model -robustness

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r r
at

e
on

 u
nt

ar
ge

te
d

at
ta

ck
s

Perturbation size: 8 12 16 24 Baseline

Figure 9: CIFAR-10 data: Error rate of destination networks (CIFAR-10 classifiers) evaluated on un-
targeted transferable adversarial examples using ε-robust ResNet50 source models with perturbation
size ‖δ‖∞ ≤ 16/256. Higher is a more successful attack. Baseline refers to the misclassification rate
of unperturbed images. (Best viewed in color.)

21

Targets

Xc
ep

tio
n

= 0 = 0.01 = 0.03 = 0.05 = 0.1 = 0.25 = 0.5 = 1

VG
G1

6
RN

50
In

cV
3

M
NV

2
DN

12
1

NN
L

EN
B4

Vi
T

CL
IP

Figure 10: CIFAR-10 data: t-SNE plots of destination-network representations of representation-
targeted adversarial examples generated by using whitebox ResNet50 models of specified ε-robustness.
(Best viewed in color and magnified.)

22

Table 3: CIFAR-10 data: Cosine similarity between feature representations of representation-targeted
adversarial examples and the targeted original images by robustness parameter of source model.

0 0.01 0.03 0.05 0.1 0.25 0.5 1

Xception 0.609 0.633 0.665 0.667 0.655 0.608 0.552 0.494
VGG16 0.736 0.744 0.749 0.749 0.728 0.697 0.668 0.638
RN50 0.691 0.709 0.717 0.715 0.705 0.652 0.600 0.546
IncV3 0.662 0.686 0.706 0.700 0.695 0.637 0.590 0.532
MNV2 0.630 0.647 0.664 0.670 0.667 0.644 0.615 0.563
DN121 0.714 0.726 0.739 0.739 0.727 0.683 0.639 0.595
NNL 0.653 0.682 0.714 0.694 0.686 0.627 0.581 0.535
ENB4 0.483 0.509 0.545 0.548 0.536 0.484 0.424 0.353
ViT 0.269 0.324 0.375 0.370 0.362 0.295 0.211 0.134

CLIP 0.768 0.771 0.773 0.772 0.772 0.767 0.762 0.755

D Examples of Adversarial Examples

We include class- and representation-targeted adversarial examples that have a perturbation generated
with TMDI-FGSM and an `∞ constraint of 16/255 (Figures 11 and 12).

23

= 0 = 0.01 = 0.03 = 0.05 = 0.1 = 0.25 = 0.5 = 1 = 3 = 5

Figure 11: Examples of class-targeted adversarial examples, where the horizontal axis represents
the robustness of the source network used to generate the adversarial examples. The adversarial
perturbations are subject to an `∞ constraint of 16/255, and are optimized with the TMDI-FGSM
algorithm. (Best viewed in color.)

24

= 0 = 0.01 = 0.03 = 0.05 = 0.1 = 0.25 = 0.5 = 1 = 3 = 5

Figure 12: Examples of representation-targeted adversarial examples, where the horizontal axis
represents the robustness of the source network used to generate the adversarial examples. The
adversarial perturbations are subject to an `∞ constraint of 16/255, and are optimized with the
TMDI-FGSM algorithm. (Best viewed in color.)

25

