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1 DATASET PROPROCESSING
Our method aims to generate faces of exceptional fidelity using au-
dio references. While previous datasets such as VoxCeleb [4] and
VoxCeleb2 [1] have successfully gathered a large number of videos,
themajority of the collected faces suffer from issues like blurriness,
low resolution (128×128), and noise, which ultimately result in sub-
par quality outcomes. Consequently, our foremost challenge lies in
curating a dataset of audio face pairs that exhibits superior quality
and fidelity.

Celeb-ID, introduced by Dolhansky et al. [3], serves as a bench-
mark dataset for eye inpainting tasks. It comprises approximately
17,000 identities and more than 100,000 images, boasting a signif-
icantly higher resolution of 300 × 300. Although Celeb-ID lacks
audio recordings, we fortuitously discover that there is a partial
overlap in identities between Celeb-ID and VoxCeleb. Leveraging
this intersection, we assemble a top-tier dataset named VoxCeleb-
ID, which combines audio from VoxCeleb with face images from
Celeb-ID, resulting in a collection of high-quality audio face pairs.
VoxCeleb-ID encompasses 953 unique identities, 7,080 face images,
and an impressive 117,551 audio recordings.

In addition to VoxCeleb-ID, we also process two exceptional
talking video datasets: FaceForensics++ [5] and HDTF [8]. These
datasets are primarily employed for tasks such as fake face detec-
tion and talking face generation. We download a total of 761 and
358 videos, respectively, from the provided URLs, ensuring that
they maintain a resolution of either 720p or 1080p. To prepare the
data, we utilize the FaceXlib open-source tool to detect, align, and
crop the faces in each video frame. All faces are subsequently re-
sized to a standardized resolution of 256 × 256.

For audio recordings in the three datasets, we set the sampling
rate to 16 kHz, the channel number to one, and cut them into 6-
second audio segments. If the audio is not long enough, we repeat
it to ensure a minimum duration of 6 seconds. Following the estab-
lished methodology outlined in [7], we presently remove silence
regions of each segment using a voice activity detector and ex-
tract 64-dimensional log mel-spectrograms using a Hann window
of 255mm, 100ms hop, and 1024 FFT frequency bands. Addition-
ally, we perform mean and variance normalization of each mel-
frequency bin. Given that the number of audio segments signifi-
cantly exceeds the number of corresponding face images, we ran-
domly sample at most 20 audio segments for each identity. Con-
versely, in the cases of FaceForensics++ and HDTF, where facial
appearances remain largely consistent across different frames, we
randomly select 10 faces for each video to maintain diversity and
prevent redundancy.

Moreover, in the implementation of our method, we disregard
the audio content and prioritize the visual aspect. Hence, we presently
overlook the changes in lip movements in the FaceForensics++ and
HDTF datasets. Instead, we manually choose standard faces that
exhibit frontal views and are free from noticeable lip changes. For

each selected standard face, we compute a VGG-Face feature us-
ing a ResNet-50 model pre-trained on the VGGFace2 dataset.These
VGG-Face features serve as the face identity labels for our dataset.

2 TRAINING DETAILS
We commence the training process by training the audio face de-
coder on the FaceForensics++ and HDTF datasets. Throughout the
training, we randomly select a face and an audio segment from
the same identity. The audio segment is then passed through a pre-
trained speaker recognition network to extract an audio embed-
ding. It is important to note that the speaker recognition network
remains fixed during the training process. To enhance robustness,
we normalize the embedding and introduce Gaussian noise as per-
mutations. Subsequently, we feed the modified audio embedding
into the audio face decoder, which reconstructs the corresponding
faces. The maximum number of training iterations is set to 100k.

Moving forward, we train our complete method using the stan-
dardized faces from all three datasets. During training, we ran-
domly resize and flip the faces to augment the training data. The
batch size is set to 4, and the learning rate is set to 2e-4.We train the
model for a maximum of 600,000 iterations. To calculate the loss
within the mask region, we multiply the generated result with the
correspondingmask. Furthermore, we introduce a discriminator to
compute the GAN loss, with the learning rate set to 2e-4.

3 RESULTS
We present additional visual results in Figure 1 and report the Cos-
Face [6] distance below the corresponding images. Our audio faces
successfully learn fundamental identity attributes such as gender,
age, and facial shape from the audio inputs, which effectively guide
our method to generate high-quality faces while preserving the
identity. In comparison to other methods, our approach achieves
the smallest CosFace score, indicating superior performance in iden-
tity preservation.

Furthermore, we showcase retrieval results in Figure 2. The top
5 results retrieved by our outputs from the image gallery consis-
tently correspond to the same identity as the ground truth, thus
demonstrating the effectiveness of our method in preserving iden-
tity accurately.

4 ABLATION STUDY
In Table 1, we present the results of our ablation studies conducted
on the three datasets.The configuration labeled asBase +AudioEmb
denotes the inclusion of an audio embedding network, where the
high-dimensional audio embedding is fused with the intermediate
face feature in the face branch. However, we observe a decrease
in performance with this configuration. We attribute this decline
to the limited capacity of a single face decoder to effectively de-
code such a complex feature. The introduction of the audio face de-
coder leads to a slight improvement in performance, particularly
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0.2607 0.3118 0.2983 0.3342 0.2435

CSA RFR MISF VQFR Ours Audio Face GTInput CSA RFR MISF VQFR Ours Audio Face GTInput

Figure 1: Visual results comparsion with the state-of-the-arts. We show the best result in red.

GT Ours Retrieved Top 5 Results

Figure 2: Top 5 image retrieval results.
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Figure 3: Visual results of ablation study. CosFace[6] distance are blow the image.

Methods FaceForensics++
↑ PSNR ↑ SSIM ↓ LPIPS ↓ CosFace ↓ ArcFace

Base 28.1665 0.9154 0.0495 0.2329 3.8796
Base + AudioEmb 28.1596 0.9155 0.0497 0.2332 3.9130
Base + AudioDec + Concat 28.1401 0.9150 0.0492 0.2350 3.9080
Base + AudioDec + AVFF 28.1833 0.9164 0.0466 0.2299 3.8547
Base + AudioDec + AVFF + L𝑖𝑑𝑒 28.1886 0.9151 0.0492 0.2311 3.8441
Base + AudioDec + AVFF + L𝑖𝑑𝑒 + L𝑖𝑑𝑐 28.2354 0.9166 0.0463 0.2278 3.7988

Methods HDTF
↑ PSNR ↑ SSIM ↓ LPIPS ↓ CosFace ↓ ArcFace

Base 28.4092 0.9083 0.0564 0.2289 3.8604
Base + AudioEmb 28.3743 0.9078 0.0552 0.2270 3.8627
Base + AudioDec + Concat 28.4239 0.9085 0.0549 0.2268 3.8309
Base + AudioDec + AVFF 28.3729 0.9086 0.0526 0.2266 3.8199
Base + AudioDec + AVFF + L𝑖𝑑𝑒 28.6179 0.9119 0.0543 0.2245 3.7319
Base + AudioDec + AVFF + L𝑖𝑑𝑒 + L𝑖𝑑𝑐 28.7509 0.9156 0.0514 0.2184 3.6453

Methods VoxCeleb-ID
↑ PSNR ↑ SSIM ↓ LPIPS ↓ CosFace ↓ ArcFace

Base 25.9169 0.8942 0.0592 0.2176 3.6722
Base + AudioEmb 25.8960 0.8947 0.0574 0.2164 3.6477
Base + AudioDec + Concat 25.8909 0.8944 0.0577 0.2167 3.6461
Base + AudioDec + AVFF 25.8292 0.8938 0.0548 0.2156 3.6446
Base + AudioDec + AVFF + L𝑖𝑑𝑒 25.9368 0.8956 0.0568 0.2137 3.6291
Base + AudioDec + AVFF + L𝑖𝑑𝑒 + L𝑖𝑑𝑐 25.9633 0.8963 0.0544 0.2122 3.6084

Table 1: Quantitative results of ablation study on three
datasets.

in the HDTF dataset. Nevertheless, we identify the misalignment
between the features from the face decoder and the audio face de-
coder as a bottleneck hindering further performance improvement.

After applying the Audio-Visual Feature Fusion (AVFF) module,
we observe a significant decrease in the face identity loss, as mea-
sured by the CosFace [6] and ArcFace [2] metrics. However, the
intermediate features of the audio decoder encompass not only
identity information but also noises, resulting in a decline in PSNR
and SSIM scores. To address this issue, we introduce an identity
embedding loss and an identity consistency loss. The identity em-
bedding loss constrains the completed identity embedding to align

with the ground truth, while the identity consistency loss ensures
consistency between the final results and the audio faces. To pro-
vide further insights into the performance, we present additional
visual results in Figure 3.
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