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ABSTRACT

Deep ensembles improve the performance of the models by taking the average
predictions of a group of ensemble members. However, the origin of these capabil-
ities remains a mystery and deep ensembles are used as a reliable “black box” to
improve the performance. Existing studies typically attribute such improvement
to Jensen gaps of the deep ensemble method, where the loss of the mean does
not exceed the mean of the loss for any convex loss metric. In this work, we
demonstrate that Jensen’s inequality is not responsible for the effectiveness of deep
ensembles, and convexity is not a necessary condition. Instead, Jensen Gap focuses
on the “average loss” of individual models, which provides no practical meaning.
Thus it fails to explain the core phenomena of deep ensembles such as their su-
periority to any single ensemble member, the decreasing loss with the number of
ensemble members, etc. Regarding this mystery, we provide theoretical analysis
and comprehensive empirical results from a statistical perspective that reveal the
true mechanism of deep ensembles. Our results highlight that deep ensembles
originate from the homogeneous output distribution across all ensemble members.
Specifically, the predictions of homogeneous models (Abe et al., 2022b) have the
distributional equivalence property – Although the predictions of independent
ensemble members are point-wise different, they form an identical distribution.
Such agreement and disagreement contribute to deep ensembles’ “magical power”.
Based on this discovery, we provide rigorous proof of the effectiveness of deep
ensembles and analytically quantify the extent to which ensembles improve perfor-
mance. The derivations not only theoretically quantify the effectiveness of deep
ensembles for the first time, but also enable estimation schemes that foresee the
performance of ensembles with different capacities. Furthermore, different from
existing studies, our results also point out that deep ensembles work in a different
mechanism from model scaling a single model, even though significant correlations
between them have been observed. The code to re-implement all the experiments
is open source at https://github.com/yipei-wang/DeepEnsembleDemystified.

1 INTRODUCTION

In the studies of deep learning models, pursuing high performance is always one of the ultimate
goals, where an enormous body of approaches regarding model architecture, training regimes or
data augmentations, etc. have been proposed (Krogh & Hertz, 1991; Dietterich, 2000; Mnih et al.,
2013; Simonyan & Zisserman, 2014; Kingma & Ba, 2014; Lee et al., 2015; He et al., 2016; Vaswani
et al., 2017; Tolstikhin et al., 2021). Among these approaches, ensembling a group of models has
been demonstrated very effective in improving the performance of models (Schapire, 1990; Breiman,
1996; 2001; Chen & Guestrin, 2016; Ganaie et al., 2022). Different from traditional boosting/bagging
methods, deep ensembles, on the other hand, form the ensemble of models where the differences
between ensemble members are only caused by the randomness of the stochastic gradient descent
(SGD) optimizations, i.e., the random initialization of models and the order of the presence of training
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data. (Lee et al., 2015; Huang et al., 2017; Lakshminarayanan et al., 2017). This approach is not only
simple but also very effective in improving the performance of models (Fort et al., 2019; Kondratyuk
et al., 2020) and the robustness (Chen et al., 2023; Huang et al., 2023). It also sheds light on various
applications such as bioinformatics (Cao et al., 2020), geoscience (Zeng et al., 2023), etc.

However, effective and powerful as it is, the source of the capability of deep ensembles still remains
a mystery. Many existing works thereby aim at exploring the true mechanisms of the deep ensemble
method. Some studies focus on the mechanisms of deep ensembles via the relations among ensemble
members, including their diversities, agreements, etc. (Fort et al., 2019; Theisen et al., 2023).
Mathematical modeling for the relation between the calibrated negative log-likelihood (NLL) and the
number of ensemble members is also proposed (Lobacheva et al., 2020). Discouragingly, in recent
work, it is discovered that the ensemble diversity is neither responsible for improved uncertainty
quantification nor the improved robustness (Abe et al., 2022b). Their findings conclude that deep
ensembles still remain a reliable “black-box” method to improve the performance of DNNs. Whether
the performance of large single models and an ensemble of smaller models originate from the same
source remains unknown, too (Lakshminarayanan et al., 2017; Fort et al., 2019; Lobacheva et al.,
2020; Kondratyuk et al., 2020; Abe et al., 2022a;b).

Different from existing work, we study this problem from a statistical, and global perspective. Model
Distribution: Because of the over-parameter nature, modern DNNs are capable of overfitting the
training set (Goodfellow et al., 2014; Allen-Zhu et al., 2019; Nakkiran et al., 2021). Given a fixed
model structure, stochastically trained models form specific distributions over the functional space.
Training single models is then equivalent to uniformly drawing samples (i.e. trained models) from
this distribution (Lakshminarayanan et al., 2017; Gawlikowski et al., 2023). As a consequence,
deep ensembles, by taking the mean of the predictions of all M ensemble members, are implicitly
estimating the expectation over such distributions. Different models make different predictions given
the same samples, resulting in performance improvement in their means. Data Distribution: On the
other hand, predictions for different samples also differ for a given model, forming a distribution of
predictions over the output space. Existing work focuses on the diversity brought by the models, but
overlooks the importance of the distribution caused by the stochasticity in the data distribution. The
resulting point-wise evaluation of the model diversity VarF [F (x)] fails to reveal the true mechanism
of deep ensembles. We consider the stochasticity from the joint distribution of both models and data
and how the output distributions are affected. Through this approach, we provide a rigorous and
theoretical analysis of deep ensembles. Beyond the derivations, we point out that existing studies
suffer from insufficient sample size (i.e. the number of ensemble members) in studying the statistics
of high-dimensional and complex distributions. To resolve this issue and provide a comprehensive
empirical validation of theoretical results, we study deep ensembles via M = 100 ensemble members
across various datasets and model structures. We also incorporate the long-standing debate between
the effectiveness of deep ensembles and large single models (Lakshminarayanan et al., 2017; Fort
et al., 2019; Lobacheva et al., 2020; Kondratyuk et al., 2020; Abe et al., 2022a;b).

Previous work has attributed the improvement in deep ensembles to the Jensen gap (e.g. (Abe et al.,
2022b)), which is the difference between the loss of the ensemble (average) of individual models and
the average loss of all individual models. When the loss metric is convex (e.g. Brier score, negative
log-likelihood, etc.), this value is positive according to Jensen’s inequality, which means that the loss
of the ensemble is guaranteed to be smaller than the “average loss”. However, we argue that Jensen’s
inequality is insufficient in explaining the predictive improvement of deep ensembles. This is because
the average loss of a collection of models has no practical meaning — what makes deep ensembles
effective is the superiority to the loss of any single model instead of the average loss. And this is
not affected by the Jensen gap. Besides, it is also consistently observed that increasing the number
of ensemble members improves the performance, which is also irrelevant to the Jensen gap. In this
work, we uncover a property of trained models in deep ensembles called distributional equivalence.
That is, the homogeneous ensemble members, although differ in the predictions of every sample,
form the same distributions over the entire data distribution. We thus provide both theoretical analysis
and comprehensive empirical results to demonstrate that it is this distributional equivalence across
ensemble members that contributes to all the observed behaviors of deep ensembles. The paper is
organized as follows. In section 2, we first review the recent efforts in uncovering the mechanism of
deep ensembles and summarize their differences with our work. Then we introduce the setups and
summarize the deficiency of existing understanding of deep ensembles in section 3. Afterward, we
introduce the main theoretical findings of distributional equivalence in sections 4 and 5 and delve
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into the essence of deep ensembles. For the compactness, all proofs are deferred to appendix B. The
main contributions of this work can be summarized as follows:

• We focus on understanding the mechanism of deep ensembles, and point out the problems
of the existing approach that is based on Jensen’s inequality.

• We reveal the distributional equivalence property of trained models and provide a theoreti-
cally proven explanation for the effectiveness of deep ensembles.

• Our theoretical findings provide schemes to accurately estimate the ensemble performance
regarding the number of ensemble members and to use only two models to foresee the
asymptotic loss of deep ensembles with infinite capacity.

• All theoretical findings are verified through extensive experiments carried out in this work.

2 RELATED WORK

Intrigued by the simplicity of implementations and the impressive performance, many studies have
been carried out focusing on the internal mechanism of deep ensembles and trying to explore the
reason why it works. We hereby summarize these most related works and how our approach and
discovery are connected to and different from them.

Lobacheva et al. (2020) focus on the pattern of the negative log-likelihood (NLL) of deep ensembles
in classification tasks regarding the number of ensemble members. An empirically verified power
law is proposed for the calibrated NLL. The power law provides a guideline for designing the
ensemble system and determining the most efficient number of ensemble members. However, one
drawback of this work is that it’s fully empirical, which can give rise to trustworthiness issues in the
results. Abe et al. (2022a;b) provide insightful studies of deep ensembles on the improved uncertainty
quantification (UQ) and the improved robustness. However, it is concluded that the Jensen gap
measures the expected predictive improvement through ensembling, which we demonstrate in the
later section is insufficient. Besides, Abe et al. (2022b) also admits that deep ensemble is still a
“reliable ‘black box’ ” to improve the performance of DNNs. Another similar but slightly different
ensembling scheme is through majority vote (Masegosa et al., 2020; Theisen et al., 2023), where
the final prediction is obtained by the vote of all ensemble members instead of the average of them.
However, the theoretical studies for this variant are limited by its generality — when all the ensemble
members are considered general functions, the conclusions become very weak. For example, Theisen
et al. (2023) point out that the theoretical error of the majority vote classifier can be even worse than
the average error rate, which is far from the empirical observations. This indicates that important
conditions satisfied by the distribution of the ensemble members and the data are overlooked, which
we highlight in this work. As for the empirical study, the majority vote typically requires training a
larger number of ensemble members compared with standard deep ensembles.

Many existing works also point out the similarity between performance improvement from (1) increas-
ing the capacity of a single model and (2) ensembling many small models (e.g. (Lakshminarayanan
et al., 2017; Abe et al., 2022b), etc.), where empirical comparisons between them are carried out.
Geiger et al. (2020); Kobayashi et al. (2021) carry out empirical studies and discover a specific bias-
variance trade-off curve for deep ensembles, where increasing the number of ensemble members after
the optimal ensemble underscores the ensemble performance. This phenomenon is also explained by
the distributional equivalence property highlighted in our work.

3 DEFICIENCIES IN EXISTING STUDIES

3.1 SETUPS

Notations. In this work, we focus on the classification problem with the dataset D = X × Y ,
where X ⊂ Rd and Y = {1, · · · , c}. Here d, c denote the input dimension and the number of
classes, respectively. Let f : Rd → ∆c−1 denote the model that maps from the input space
to the standard (c − 1)-simplex. Such models are optimized stochastically with the objective
minθ E(x,y)∈Xtrain×YtrainL(fθ(x), y), where θ denotes the weights of f and is omitted for simplification.
Specifically, let fy : Rd → [0, 1] denote the predicted probability of the target class, where the
subscript y is omitted in notations for compactness. Based on the model f , the metrics are defined
as ϕ : (0, 1) → R+, which is determined by the specific type of metrics. For example, the
Brier score is defined as ϕB(f(x)) = (1 − f(x))2 1. And for negative log-likelihood (NLL),

1The original Brier score is defined over the entire prediction as ∥f(x) − 1y∥22. Here we focus on the
attribute to the target class. The differences are discussed in appendix B.10
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(a) Non-Monotonic Metric vs Monotonic Metric. (b) Point-Wise LG vs JG

Figure 1: (a) An illustration of JG vs LG in the M = 2 scenario. Since JG(x) ≥ 0 always holds, it
provides no insights into how deep ensembles work. On the other hand, LG(x) ≤ 0 is possible only
for non-monotonic metrics. (b) The point-wise prediction of the best single model (blue), ensemble
(orange), and the average error (green). Samples are sorted by the ensemble predictions. The results
are generated from the CNN model with k = 10 and CIFAR-10.

ϕnll(f(x)) = − log f(x). The models are evaluate on Xtest,Ytest throughout the paper. Thus for
brevity, we omit the subscripts.

Homogeneous Ensembles. The deep ensemble approach is implemented by taking the average
of a group of independently optimized models as the final predictions. Homogeneous ensembles
further refer to the variant where all ensemble members have identical structures and training hyper-
parameters and only differ in the training stochasticity. Therefore, a trained ensemble member
F ∼ pF follows a distribution pF , which is a probability measure over the functional space F . And
supp(pF ) ⊆ F denotes the support of pF . Formally, homogeneous ensembles take a set of M
models {F = f (i)}Mi=1, which are considered i.i.d. in pF , and predict in the following way:

f̄(x) = EF∼pF
[F (x)]; f̄(x;M) =

1

M

∑M

i=1
f (i)(x). (1)

Surprisingly, such a simple scheme can drastically improve the performance (i.e., decrease the loss
value). Since all members of the ensemble share an identical structure, the optimization process can
be viewed as random sampling from the model distribution pF .

Experiment Setups. To empirically validate our theoretical findings, we carry out comprehensive
experiments, which are presented along with theoretical results. Each model structure determines
a model family F and the distribution pF over F . Varying the model architectures in CNNs and
ResNets and capacities in width determined by k ∈ {10, 20, 40, 80, 160}, we include a total of 10
pF in our experiments. For each pF , we train M = 100 models for three datasets: CIFAR-10/100
and TinyImagenet. i.e., a total of 2× 5× 3×M = 3000 trained models. The training parameters
follow the suggestions in Nakkiran et al. (2021). The setup for experiments is detailed in appendix A.

3.2 UNDERSTANDING DEEP ENSEMBLES THROUGH JENSEN’S INEQUALITY

Existing analysis regarding deep ensembles attributes the improvement to the Jensen Gap. Let x ∈ X
be an input data. Then given the functional distribution pF of the homogeneous models and a convex
metric ϕ, it is according to Jensen’s inequality that

ϕ
(
EF∼pF

[F (x)]
)
≤ EF∼pF

[
ϕ(F (x))

]
(2)

That is, for any single input X ∼ pX , the “error” of the ensemble is no greater than the average
error among all the members of the ensemble. Then the Jensen gap JG(x) = EF∼pF

[ϕ(F (x))]−
ϕ(EF∼pF

[F (x)]) ≥ 0 is used as a measurement for the “predictive improvement” of the ensemble
scheme. For example, Abe et al. (2022b) point out that for Brier score ϕB , the Jensen gap is equivalent
to the point-wise variance of the model distribution pF at X = x.

3.3 THE FAILURE OF EVALUATING THE “AVERAGE LOSS”

While eq. (2) provides a seemingly reasonable and plausible explanation for the effectiveness of
the deep ensemble scheme, it fails in practice. An important deficiency is that the average loss
EF∼pF

[ϕ(F (x))] does not possess any practical meaning, and thus having lower loss values than
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Table 1: A demonstration of the three explanations for the effectiveness of deep ensembles. The
point-wise Jensen gap always holds, but has no practical meaning. The point-wise lower gap being
positive can be strong evidence for the effectiveness of deep ensembles. However, it never holds. The
global gap defines why deep ensembles are always preferred. And it is proved in this work.

Types Formula Positivity Significance Feasibility

Jensen Gap EF∼pF
[ϕ(F (x))] − ϕ(EF∼pF

[F (x)]) Always ≥ 0 × ✓
Lower Gap minf∈F{ϕ(f(x)} − ϕ(EF∼pF

[F (x)]) Always ≤ 0 ✓ ×
Global Gap minf∈F{EX [ϕ(f(x))]} − EX [ϕ(EF [F (X)])] Proved to be ≥ 0 ✓ ✓

this mean does not contribute to the success of deep ensembles. Jensen’s inequality always holds,
regardless of the instantiations of the ensemble members. Thus using Jensen Gap to explain deep
ensembles’ effectiveness suggests that for any group of models {f (i)}Mi=1, the ensemble of them
is always desired. This is trivially false. On the contrary, Jensen’s inequality eq. (2) allows the
possibility that ∃f∗ ∈ F s.t. ϕ(f∗(x)) < ϕ(EF∼pF

[F (x)]). In such scenarios, some single ensemble
members may outperform the ensemble itself. Note that an ensemble is useful only if it outperforms
all ensemble members. Therefore, in practice, what really matters is the difference between the best
individual (minimized loss) and the ensemble, which is denoted as the lower gap (LG):

LG(x) = min
f∈F

{
ϕ(f(x))

}
− ϕ

(
EF∼pF

[F (x)]
)

(3)

LG provides a more reasonable intuition for the ensemble. It suggests that deep ensembles are desired
if they outperform all individuals. This provides practical meanings compared with JG.

3.4 THE FAILURE OF POINT-WISE EVALUATION

Point-Wise Gap. Note that although LG provides a more practical understanding compared with JG,
LG(x) ≥ 0 can be an exceptionally strong condition to satisfy. In fact, LG(x) ≥ 0 is possible only
if the metric ϕ(·) is not monotonic. Formally, we prove the following proposition in appendix B.1.
Proposition 3.1. LG(x) ≤ 0 always holds for any monotonic metric ϕ. That is, given input sample
x, deep ensemble always underperforms the best individual member.

The M = 2 scenario is visualized in fig. 1 (a). It can be observed that the monotonicity of the
metric ϕ prohibits LG(x) from being positive since the average prediction is always no greater
than the highest prediction (i.e. higher loss). fig. 1(b) shows an empirical result of the NLLs of
CIFAR-10 and CNN models. The 10000 testing samples are sorted by the ensemble prediction for
better presentations. It verifies that LG(x) ≤ 0 and JG(x) ≥ 0 always hold.

Global Evaluation. Although deep ensembles always underperform at least one individual member
for any input sample, the ensemble scheme is still plausible in practice. This shows the deficiency
of the point-wise evaluation. What is always overlooked in the studies of deep ensembles is the
importance of the distributions of the data pX , whose support is X . Ensemble is desired if the Global
Gap (GG) is always positive:

GG = min
f∈F

{
EX∼pX

[ϕ(f(x))]
}
− EX∼pX

[
ϕ(EF∼pF

[F (X)])
]
≥ 0 (4)

However, universally one can only prove that both RHS and LHS are less or equal to
EX∼pX

[
Ef∼pF

[ϕ(f(x))]
]
, which means eq. (4) does not hold in the universal sense. Instead,

it is the distribution of (X,F ) ∼ pX ⊗ pF that determines whether deep ensembles are beneficial.
The three types of explanations are compared more straightforwardly in table 1.

4 DEMYSTIFYING DEEP ENSEMBLES

4.1 THE DISTRIBUTIONAL EQUIVALENCE PROPERTY

We start the investigation of pX ⊗ pF by introducing the distributional equivalence property, where
the prediction forms identical distributions. Since F ∼ pF , X ∼ pX , the predicted probability
ℓ = F (X) is also a random variable ℓ ∼ pℓ. Distributional equivalence refers to the property that
for any two models f (1), f (2) ∈ F , the conditional variable ℓ|F = f (1) and ℓ|F = f (2) follow the
same distribution. In fig. 2(a), the kernel density estimation of ℓ|F = f (i) for all 10000 samples of
CIFAR-10 are visualized. There are 100 individual models, distinguished by the colors of curves. It
can be qualitatively observed that P (ℓ|F = f (i)) ≈ P (ℓ|F = f (j)) for any f (i), f (j) ∈ F .
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Figure 2: The demonstration of (a) the distributional equivalence property and (b) the point-wise
distinction property. The kernel density estimations ℓ|F = f (i), i = 1, · · · ,M for M = 100 models
are plotted in (a). Conditioning on different models results in the identical distribution of predictions.
The point-wise predictions are presented in (b), where 10000 testing samples are arranged according
to the prediction of the ensemble (black curve). The point-wise predictions of the first 5 individual
models are plotted in different colors. Each point represents a specific prediction f (i)(xj). It is
demonstrated clearly that although models tend to agree on certain samples, the point-wise predictions
vary significantly. The models are all CNN with k = 40, and the dataset is CIFAR-10.
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Figure 3: The quantitative results in validating the distributional equivalence property.
(
100
2

)
= 4950

model pairs are evaluated. (a) shows the joint distribution of the p-values and KS statistics, where
the red dashed line shows the level of p = 0.05. (b) shows the distribution of the 4950 Wasserstein
distances between model pairs.

We employ two metrics to validate the distributional property of ℓ|F = f . The Kolmogorov-Smirnov
test evaluates the null hypothesis that the conditional distributions ℓ|F = f (1) and ℓ|F = f (2)

are drawn from the same underlying distribution. While the KS test is powerful, it’s important to
note that the null hypothesis becomes overly strong with the increases in sample size, potentially
leading to statistically significant results for practically insignificant differences in large datasets. To
complement this, we carry out the KS test over the first 1000 testing samples and also utilize the
Wasserstein distance to quantify the minimal cost of transforming one probability distribution into
another. This metric provides a continuous measure of dissimilarity between distributions, offering
a more nuanced comparison of the conditional distributions than the binary outcome of the KS
test. The results are presented in fig. 3. Based on M = 100 models sampled from pF , there are(
100
2

)
= 4950 pairs in KS tests and Wasserstein distances. It is observed from (a) that the statistics are

all extremely small, with almost all p-values greater than 0.05. From (b), the Wasserstein distances
are very small compared with the domain of probability [0, 1]. Both (a)(b) verifies the assumption
that P (ℓ|F = f (i)) ≈ P (ℓ|F = f (j)) for any f (i), f (j) ∈ F . These results demonstrate that within
a fixed model distribution pF (i.e. fixed training data and stochastic training schemes), the trained
models have the same predicted distribution ℓ|F = f . This is weaker than point-wise equivalence,
but much stronger than the equivalence under metrics (e.g. NLLs, Brier scores, etc.).

Point-Wise Distinction. Note that distributional equivalence does not imply point-wise equivalence.
On the contrary, the point-wise diversity VarF∼pF

(F (x)) among ensemble members is always
considered an important factor (Fort et al., 2019; Abe et al., 2022a; Theisen et al., 2023). As the
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point-wise diversity approaches zero, all the ensemble members become point-wise identical and thus
the ensemble becomes equivalent to each model. Therefore, it is the point-wise distinction and the
distributional equivalence together that contribute to ensembles’ power. The point-wise predictions
are visualized in fig. 2(b). The 10000 testing samples are sorted by the predicted probability of the
target class, where the black curve represents the ensemble prediction. The scatter points represent
the predictions of 5 individual ensemble members. It is observed that different models have distinct
point-wise predictions but share similar trends. More figures are shown in appendix D.

4.2 THE DISTRIBUTION OF MODELS

Although point-wise diversity plays an important role in ensembles, being fixated on a single x ∈ X
fails to explore the true mechanism of ensembles. This is because globally, the distributions of
ℓ = f(X) are always affected by the neural collapse phenomenon. According to the overfitting
property of modern deep models, a trained model f ∼ pF achieves 100% accuracy on the training
set and the training loss becomes sufficiently small. The studies of Neural Collapse (NC) further
demonstrate that in the terminal phase of training, discriminative models tend to collapse to the exact
dimension of the target space (Papyan et al., 2020). For classification tasks, the predicted probability
collapses and converges to either zeros or ones as the model becomes overconfident in both correct
and wrong predictions (Hein et al., 2019).

As a result, we consider the trained model distribution pF under complete neural collapse. That is,
F̂ = {f̂(x) = 1{argmax f(x)=y}|f ∈ F}. The corresponding distribution defined on F̂ is written as
p̂F (F = f̂) = pF ({f ∈ F|1{argmax f(X )=Y} = f̂}). This can be seen as an approximation of the
limit of pF as the training procedure continues infinitely. Due to the infeasibility of the continuous
distribution of ℓ = F (X), we utilize p̂F as a surrogate to pF in some theoretical derivations. It should
be noted that this does not sacrifice the practicality of the theoretical analysis because of the high
resemblance between pF and p̂F . In fact, all empirical results are carried out using pF , demonstrating
the transferability between pF and p̂F . The ensemble under the complete neural collapse is defined as

¯̂
f(x) = EF∼p̂F

[F (x)] = EF∼pF
[1argmaxF (x)=y] (5)

Thus for the collapsed approximation p̂F of models, the conditional distributions of the prediction un-
der fixed sample x or fixed model f̂ can collapse to Bernoulli distributions: ℓ|F = f̂ ∼ Bernoulli(ρ),
ℓ|X = x ∼ Bernoulli( ¯̂f(x)). As a result, the point-wise diversity can be written as

VarF∼p̂F
(F (x)) =EF∼p̂F

[F (x)2]− EF∼p̂F
[F (x)]2 (6)

=EF∼p̂F
[F (x)]− EF∼p̂F

[F (x)]2 =
¯̂
f
(
x)(1− ¯̂

f(x)
)

(7)

This shows that for modern DNNs with neural collapse, the point-wise diversity is minimized either
when most models make the correct prediction or when most models make the wrong prediction.
Without considering the distributions pF ⊗ pX , such strong correlation between point-wise diversity
and point-wise prediction cannot be discovered and the analysis on point-wise diversity deviates from
the practice. For example, Abe et al. (2022a) discovered that the point-wise diversity equals to the
Jensen gap of the Brier score, which falls short due to the drawbacks discussed in section 3. It has
been demonstrated in section 4.1 that ℓ|F = f are identical regardless of f . We thus assume the
following condition throughout the derivations.

• Distributional Equivalence: ∀f (i), f (j) ∈ F , P (ℓ|F = f (i)) = P (ℓ|F = f (j)).

This leads to the distributional equivalence of p̂F : ∀f̂ (i), f̂ (j) ∈ F̂ , P (ℓ|F = f̂ (i)) = P (ℓ|F = f̂ (j)).

4.3 THE DISTRIBUTION OF DATA

According to the distributional equivalence across models, we note that the point-wise difference
can be mitigated when we consider the entire data distribution pX . All the models have the same
expected predictions over the entire dataset. Based on this, we then prove the following theorem that
explains the improvement of ensembles.
Theorem 4.1. (Guaranteed Improvement) Given a convex metric ϕ, we have:

EX∼pX

[
ϕ
(
EF∼p̂F

[
F (X)

])]
≤ min

f̂∈F̂

{
EX∼pX

[
ϕ
(
f̂(X)

)]}
(8)
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Figure 4: The estimation (regions) and the empirical results (solid curves) of the Brier score of
original models. The x-axis represents the number of ensemble members (a.k.a. ensemble capacity),
and the y-axis represents the Brier score of the ensemble. Dashed lines represent the standard
deviations. The tested model is CNN.

The proof is presented in appendix B.3. This shows the condition eq. (4) where deep ensembles
are preferred under neural collapse. It demonstrates that deep ensembles always outperform any
individual ensemble members (instead of the average loss).

4.4 THE FACTORS OF THE ENSEMBLE IMPROVEMENT

Although it has been proved above that deep ensembles are guaranteed to outperform any single
member, the extent to which the improvement is and what factors contribute to the improvement
remains unknown. Therefore, we delve deep into the quantification analysis of the improvement.

Instantiating ϕ to the Brier score ϕB , we have the following theorem to bound the performance shift.
Theorem 4.2. (The Brier Score Improvement) The ensemble performance improvement of the Brier
score is determined by:

∆B = min
f̂∈F̂

EX∼pX

[
ϕB

(
f̂(X)

)]
− EX∼pX

[
ϕB

(
EF∼p̂F

[F (X)]
)]

= ρ− ρ2 −VarpX
[
¯̂
f(X)] (9)

where ρ = EX∼pX
[f̂(X)] for ∀f̂ ∈ F̂ . ∆B = 0 holds if and only if point-wise equivalence holds.

∆B = ρ− ρ2 holds if and only if the ensemble ¯̂
f predicts constantly for all samples.

The proof is deferred to appendix B.5. The result shows that when the expected prediction of p̂F is
determined (as ρ), then the global diversity VarX∼pX

[
¯̂
f(X)] is responsible for the improvement.

To our best knowledge, previous work has been focusing on point-wise diversity (i.e. variance over
pF ) while the importance of the global diversity (i.e. variance over pX ) has not been recognized
before. Now it suffices to determine how the global diversity changes regarding the joint distribution
pX ⊗ pF . Recall from eq. (7) that if individual models tend to agree more on each sample, the
point-wise predictions become closer to either 0 or 1. This will lead to a higher global diversity
since the ensembled predictions are deviated from the center. Such agreement can be measured by
the probability measure of the shared correct prediction between two models. In fact, We have the
following theorem proved in appendix B.6:
Theorem 4.3. Let F−1(1) = {x ∈ X |F (x) = 1} denote the subset of X that F can predict
correctly, then VarX∼pX

[
¯̂
f(X)] = EF1,F2∼F̂

[
pX(F−1

1 (1) ∩ F−1
2 (1))

]
− ρ2

This quantifies that the global diversity of p̂F decreases with ρ and increases with the expected
agreement across models. We emphasize that this is not counterintuitive since the globalness is
regarding pX instead of pF . One important significance of theorem 4.3 is that due to the distributional
equivalence property, trained models F ∼ pF demonstrate great symmetry, leading to very small
variance in pX(F−1

1 (1) ∩ F−1
2 (1)). Thus it can be estimated by only two models with small errors.

As a result, we can foresee how the ensemble will perform with only two models. Besides, due to
the associative and commutative nature of multiplication, theorem 4.3 can be migrated to the original
function space F . We prove the following theorem in appendix B.7:
Theorem 4.4. The Brier score of the ensemble f̄ can be estimated by

EX∼pX
[ϕB(f̄(X))] = EF1,F2∼pF

[
EX∼pX

[F1(X)F2(X)]
]
− 2EF∼pF

[EX∼pX
[F (X)]] + 1 (10)
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Due to the distributional equivalence across all models, we can estimate this by f (1), f (2) ∈ F :

EX∼pX
[ϕB(f̄(X))] ≈ EX∼pX

[f (1)(x)f (2)(x)]− 2EX∼pX
[f (1)(x)] + 1 (11)

This is verified empirically in fig. 4 by using all 9900 possible pairs to estimate the ensemble
performance. The mean and standard deviation of the estimation are visualized as the regions, while
the solid curves represent the loss of the ensembles. Therefore, we can use only two models to
accurately estimate the asymptotic loss of deep ensembles. Using this scheme, practitioners can make
judicious and efficient choices in the application of deep ensembles and balance the trade-off between
training budget and performance requirements.

0.2 0.4 0.6 0.8
= X[f(X)]

0.06

0.08

0.10

0.12

0.14

0.16

Va
r X

[f(
X)

]

CNN, CIFAR-10
CNN, CIFAR-100
CNN, TinyImagenet
ResNet, CIFAR-10
ResNet, CIFAR-100
ResNet, TinyImagenet

Figure 5: An illustration of the
relation between EX [f̄(X)] and
VarX [f̄(X)]. All six structure-
dataset combinations are tested
here. ρ is controlled by the single-
model capacity k of ensemble
members. For each curve, ρ in-
creases as the width parameter k.

Bias-Variance Trade-Off of Ensembles. Another intriguing
yet unsolved phenomenon of deep ensembles is its bias-variance
trade-off as the single-model capacity of each ensemble member
increases (Geiger et al., 2020; Kobayashi et al., 2021). Note that
the ensemble performance under the Brier score can be written
as a function of ρ = EX [f(X)] for any f ∈ F as S(ρ) =
EX [f̄(X)2]− 2EX [f̄(X)] + 1 = ρ2 − 2ρ+ 1 + VarX [f̄(X)].
From fig. 5, we know that VarX [f̄(X)] tend to increase with
ρ. Thus the Brier score S(ρ) starts increasing before ρ reaches
1 (as the single-model capacity increases). This leads to the
bias-variance trade-off observed for deep ensembles.

5 ENSEMBLES OF LIMITED BUDGETS.

In practice, an approximation with M models is utilized. It has
been observed in many existing works that the loss decreases
as M increases. This phenomenon has not been understood ei-
ther. Previous work simply terms M as the “ensemble capacity”,
which does not contribute to the understanding of the internal
mechanism given the M models are trained completely indepen-
dently. It is also observed that increasing the ensemble capacity
yields similar performance improvement compared with increas-
ing the capacity of a single model, as shown in fig. 6 (More
results are shown in appendix E).

To determine the efficiency of ensembles regarding M , and also to unveil the connection between
single-model capacity and ensemble capacity, we prove the following theorem in appendix B.8:
Theorem 5.1. The expected Brier score loss of M ensemble members is determined by

EF1,··· ,FM∼p̂F

[
ϕB

( 1

M

M∑
i=1

Fi(X)
)]

=EX∼pX

[
ϕB(

¯̂
f(X))

]
+

EX∼pX

[
VarF∼p̂F

(F (x))
]

M
(12)

=
M + 1

M
EX∼pX

[
¯̂
f(X)2]− ρ2

M
− 2ρ+ 1 (13)

The expected NLL of M ensemble members is estimated by

EF1,··· ,FM∼p̂F

[
ϕnll

( 1

M

M∑
i=1

Fi(X)
)]

≈ EX∼pX

[
ϕnll(

¯̂
f(X))

]
+ EX∼pX

[1− ¯̂
f(X)

2
¯̂
f(X)

] 1

M
(14)

This theorem explains the constantly observed phenomenon where increasing the number of en-
sembles results in improved performance. Demonstrated by eqs. (12) and (14), the loss can be
decomposed to the loss of the convergence result of the population means and another positive term
controlled by M . Thus the loss decreases in an inverse-proportional manner as we increase the
number M of ensemble members, i.e. the ensemble capacity. As M → ∞, the loss converges to
the global loss of the population ensemble. Note that all values are determined by pF except for
the ensemble budget M . As a consequence, this theorem presents a closed-form expression for the
performance of deep ensembles. On the other hand, as demonstrated in appendix D, scaling up a
single model changes ρ instead, i.e., the prediction of a single model. This theoretically verifies that
both single-model capacity and ensemble capacity contribute to performance improvement but in
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Figure 6: The performance comparison between the scaling of a single model (black dashed curves)
and increasing the number of ensemble members (colorful solid curves). In each ensemble (i.e. each
colorful curve), M varies from 1 to 100. The results are generated using CNN models.
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Figure 7: The verification of theorem 5.1. The theoretical results (dashed curves) are compared with
the empirical results of ensembles using M models for (a)(b) the Brier score and (c)(d) the negative
log-likelihood. The ensemble curves are computed using pF . Results are generated using CNNs.

completely distinct ways. We validate these theoretical results in fig. 7, where the empirical loss and
the theoretical decomposition are compared. Note that although the theorems are derived for F̂ with
complete neural collapse, it generalizes to F due to the already existing neural collapse nature in
trained models. Therefore the experiments are also carried out for F to demonstrate the practical
significance. It is observed that the curves almost completely overlap. The estimation of NLL deviates
a little at the beginning due to Taylor’s expansion approximation. Here we clip (1− ¯̂

f(X))/(2
¯̂
f(X))

by an upper bound of 5 to avoid explosion caused by difficult samples to avoid overflow issues.

Besides, inspired by theorem 4.4, the Brier score can be rewritten as eq. (13), where the first term can
be estimated by the agreement between two single models. We thus estimate the entire curve using
only two models, and plot the standard deviation as the colorful regions in fig. 7(a)(b). This provides
even further and deeper understanding compared with fig. 4.

6 CONCLUSIONS

In this work, we focus on the important problem of demystifying the “mysterious effectiveness” of
deep ensembles. We diagnose and demonstrate the problem of existing ways of understanding deep
ensembles and the inconsistency in practice. Then we reveal the distributional equivalence property
of model distributions through comprehensive experimental results. Based on such a property, we
provide theoretical analysis with rigorously proved theorems to (1) demonstrate the guarantee of deep
ensembles’ effectiveness; (2) propose a scheme to accurately estimate the asymptotic performance
of infinitely many models using only two models; and (3) lucidly uncover the essence of increasing
the ensemble capacity and scaling up a single model. In conclusion, our work discloses the true
mechanism of mysterious deep ensembles for the first time. The derivations also provide valuable
insights into the understanding of the behaviors of models through the perspective of the joint
distribution between data and models. We admit that the distributional equivalence property is an
observational conclusion. It remains an intriguing question why the probability measure of the testing
data mastered by any single model retains an identical level across different models. We deduce it’s
due to certain properties of distribution shift and leave that for future explorations.
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A EXPERIMENT SETUPS

To carry out empirical demonstration simultaneously with the theoretical analysis, we introduce the
detailed experimental setup here. Experiments are carried out on Intel(R) Xeon(R) Gold 6226R CPU
@ 2.90Hz with NVIDIA RTX A5000 GPUs.

The experiments are carried out on three datasets, CIFAR-10/100 (Krizhevsky et al., 2009) and
TinyImagenet (Deng et al., 2009). For different model architectures, following a similar setup
(Nakkiran et al., 2021), we consider both CNNs and ResNets(He et al., 2016). On the one hand,
for each pF , M models are trained to obtain a comprehensive understanding of the influence of the
ensemble size. The empirical studies of the properties of distributions of models require a large
number of samples (i.i.d. trained models) due to the high nonlinearity and dimensions. However,
in previous work, this has not been effectively addressed with a sufficiently large population (e.g.
M = 4 in (Lee et al., 2015), M = 5 in (Abe et al., 2022b), M = 14 in (Fort et al., 2019), etc.).
To study the distribution of a homogeneous ensemble of models, we train M = 100 models with
distinct random seeds. On the other hand, note that increasing the ensemble size and increasing the
capacity of single models both contribute to an improved performance. However, the relation between
the mechanisms of these two distinct approaches remains unknown. Some empirical studies on the
correlations even suggest that their mechanisms agree with each other. As a result, we set multiple
different capacities for each architecture. Specifically, we use a factor k to control the capacity
through the width. CNNs contain a 4-layer convolutional layer with output channels [k, 2k, 4k, 8k],
each of which is followed by a batch normalization layer and a ReLU activation. We also add a
max-pooling layer after the 2k, 4k, 8k convolutional layer, with strides 2, 2, 8. (For TinyImagenet,
we use 2, 4, 8 instead.) Finally, a linear classification head takes the 8k-dimensional embedding and
maps it to the output space. Regarding ResNets, we scaled the width of ResNet-18 as suggested
by (Nakkiran et al., 2021). The channel of each layer is linearly determined by k, where k = 64
results in the original ResNet-18. In order to explore the influence of model capacities, we train
DNNs with k ∈ K, where K = {10, 20, 40, 80, 160}. Note that for single model capacities, the
number of trainable parameters increases quadratically with respect to the factor k, while the trainable
parameters of the entire ensemble increases only linearly with respect to the number of ensembles M .

As suggested by the essence of deep ensembles, SGD is used as the solver with no momentum or
data augmentation. Let t denote the number of epochs; we use the learning rate λ(t) = λ0√

t
, where

λ0 = 0.1 is the initial learning rate.

B PROOFS

B.1 PROOF OF PROPOSITION 3.1

Proposition 3.1. LG(x) ≤ 0 always holds for any monotonic metric ϕ. That is, given input sample
x, deep ensemble always underperforms the best individual member.

Proof. When ϕ is monotonically increasing. Then

min
f∈F

{ϕ(f(x))} = ϕ(min
f∈F

{f(x)}) (15)

Since minf∈F{f(x)} ≤ EF∼pF
[F (x)] and ϕ is monotonically increasing, we have

ϕ(min
f∈F

{f(x)}) ≤ ϕ(EF∼pF
[F (x)]) (16)

Combining them results in

min
f∈F

{ϕ(f(x))} ≤ ϕ(EF∼pF
[F (x)]) (17)

Therefore

LG(x) = min
f∈F

{ϕ(f(x))} − ϕ(EF∼pF
[F (x)]) ≤ 0 (18)

In the opposite, when ϕ is monotonically decreasing. Then

min
f∈F

{ϕ(f(x))} = ϕ(max
f∈F

{f(x)}) (19)
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Since maxf∈F{f(x)} ≥ EF∼pF
[F (x)] and ϕ is monotonically decreasing, we have

ϕ(max
f∈F

{f(x)}) ≤ ϕ(EF∼pF
[F (x)]) (20)

Combining them results in

min
f∈F

{ϕ(f(x))} ≤ ϕ(EF∼pF
[F (x)]) (21)

Therefore

LG(x) = min
f∈F

{ϕ(f(x))} − ϕ(EF∼pF
[F (x)]) ≤ 0 (22)

This proves the proposition.□

B.2 LEMMA B.1

For the model f̂ ∼ F̂ with complete collapse, the prediction is either 0 or 1. Thus we have the
following lemma:

Lemma B.1. (Prediction Distributional Equivalence) ∃ρ ∈ [0, 1] s.t. ∀f̂ ∈ F̂ , let U = {x ∈ X ⊂
Rd|f̂(x) = 1} = f̂−1(1), then pX(U) ≡ ρ.

Proof. According to the distributional equivalence condition, for arbitrary f̂ , ĝ ∈ F̂ , P (f̂(x)) =

P (ĝ(x)) holds for ∀x ∈ X , and thus EX∼pX
[f̂(X)] = EX∼pX

[ĝ(X)]. Therefore, ∃ρ ∈ [0, 1] s.t.
for an arbitrary f̂ ∈ F̂ , EX∼pX

[f̂(X)] = ρ. Then∫
Ui

pX(x)dx =

∫
Ui

1 · pX(x)dx+

∫
X\Ui

0 · pX(x)dx (23)

=

∫
X
f̂ (i)(x)pX(x)dx = EX∼pX

[f̂ (i)(X)] = ρ (24)

This proves the lemma.

B.3 PROOF OF THEOREM 4.1

Theorem 4.1 (Guaranteed Improvement) Given a convex metric ϕ, we have:

EX∼pX

[
ϕ
(
EF∼p̂F

[
F (X)

])]
≤ min

f̂∈F̂

{
EX∼pX

[
ϕ
(
f̂(X)

)]}
(25)

Proof. It suffices to show that for an arbitrary ĝ ∈ F̂ ,

EX∼pX

[
ϕ
(
EF∼p̂F

[F (X)]
)]

≤ EX∼pX

[
ϕ(ĝ(X))

]
(26)

Note that according to theorem B.1

RHS =

∫
X
ϕ(ĝ(x))pX(x)dx (27)

=

∫
U

pX(x)ϕ(1)dx+

∫
V

pX(x)ϕ(0)dx (28)

=ϕ(1)ρ+ ϕ(0)(1− ρ) (29)
≥ϕ(1 · ρ+ 0 · (1− ρ)) = ϕ(ρ) (30)

On the other hand, the LHS can be written as

LHS =EX∼pX

[
ϕ
(
EF∼p̂F

[F (X)]
)]

(31)

≤ϕ
(
EX∼pX

[
EF∼p̂F

[F (X)]
])

(32)

=ϕ
(
EF∼p̂F

[
EX∼pX

[f̂(X)]
])

= ϕ(ρ) = RHS (33)

Therefore, the statement is proven.
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This result shows that for any individual model f drawn from pF , subspace U of correctly predicted
samples have the probability measure ρ under pX . And such a measure is irrelevant to f or U . Instead,
it is determined by the global view of pX ⊗ pF .

B.4 LEMMA B.2

Distributional equivalence ensures not only the identical mean prediction but also identical average
loss under any metric ϕ. Formally, we have:

Lemma B.2. (Performance Equivalence under Metrics) ∀ϕ ∈ C([0, 1]), then (i) ∀f̂ , ĝ ∈ F̂ ,
EX∼pX

[ϕ(f̂(X))] = EX∼pX
[ϕ(ĝ(X))]. (ii) ∀f, g ∈ F , EX∼pX

[ϕ(f(X))] = EX∼pX
[ϕ(g(X))].

Proof. (i) The equivalence of performance for two random models f̂ , ĝ with complete collapse can
be proved as:

EX∼pX
[ϕ(f̂(X))] =

∫
X
ϕ(f̂(x))pX(x)dx (34)

=

∫
Uf

pX(x)ϕ(1)dx+

∫
X\Uf

pX(x)ϕ(0)dx (35)

=ρϕ(1) + (1− ρ)ϕ(0) (36)

=

∫
Ug

pX(x)ϕ(1)dx+

∫
X\Ug

pX(x)ϕ(0)dx (37)

=

∫
X
ϕ(ĝ(x))pX(x)dx = EX∼pX

[ϕ(ĝ(X))] (38)

(ii) Let f, g ∈ F be two arbitrary model. According to the distributional equivalence property,
we have P (ℓ|F = f) = P (ℓ|F = g). Let µf be a pushforward measure such that ∀I ⊆ [0, 1],
µf (I) = P (f(V ) ∈ I), µg is defined similarly. According to the distributional equivalence condition,
∀I ∈ [0, 1], µf (I) = µg(I). Therefore:

EX∼pX
[ϕ(f(X))] =

∫
X
ϕ(f(x))pX(x)dx (39)

=

∫ 1

0

ϕ(t)µf (dt) (40)

=

∫ 1

0

ϕ(t)µg(dt) = EX∼pX
[ϕ(g(X))] (41)

As a result, all individual models have identical performance under arbitrary metric ϕ.

B.5 PROOF OF THEOREM 4.2

Theorem 4.2 (The Brier Score Improvement) The ensemble performance improvement of the
Brier score is tightly bounded by:

0 ≤ min
f̂∈F̂

EX∼pX

[
ϕB

(
f̂(X)

)]
− EX∼pX

[
ϕB

(
EF∼p̂F

[F (X)]
)]

≤ ρ− ρ2 (42)

where ρ = EX∼pX
[f̂(X)] for ∀f̂ ∈ F̂ . ∆B = 0 holds if and only if point-wise equivalence holds.

∆B = ρ − ρ2 holds if and only if the ensemble ¯̂
f predicts constantly for all samples. Besides,

VarX∼pX
[
¯̂
f(X)] is responsible for the performance improvement.

Proof. From theorem B.2, all individual models have identical performance. Thus ∀f̂ ∈ F̂ ,

min
ĝ∈F̂

EX∼pX
[ϕ(ĝ(X))] = EX∼pX

[ϕ(f̂(X))] (43)
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Therefore, the ensemble performance improvement in Brier score is

∆B =EX∼pX
[ϕ(f̂(X))]− EX∼pX

[ϕ(EF∼p̂F
[F (X)])] (44)

=(1− ρ)ϕ(0) + ρϕ(1)− EX∼pX
[(1− ¯̂

f(X))2] (45)

=1− ρ− EX∼pX
[
¯̂
f(x)2 − 2

¯̂
f(x) + 1] (46)

=2EX∼pX
[
¯̂
f(x)]− EX∼pX

[
¯̂
f(x)2]− ρ (47)

=2EX∼pX
[
¯̂
f(x)]− EX∼pX

[
¯̂
f(x)2]− EX∼pX

[
¯̂
f(x)] (48)

=EX∼pX
[
¯̂
f(x)]− EX∼pX

[
¯̂
f(x)2] (49)

=EX∼pX
[
¯̂
f(x)(1− ¯̂

f(x))] ≥ 0 (50)

This proves the lower bound. And the lower bound holds if and only if ∀x ∈ X , ¯̂
f(x)(1− ¯̂

f(x)) ≡ 0.
This means that for any x ∈ X , ¯̂

f(x) is either 0 or 1. As a result, ∀x ∈ X , either ∀f̂ ∈ F̂ , f̂(x) = 0

or ∀f̂ ∈ F̂ , f̂(x) = 1. Therefore, the point-wise equivalence hold.

As for the upper bound, note that EX∼pX
[
¯̂
f(x)] = ρ, then

∆B =EX∼pX
[
¯̂
f(x)]− EX∼pX

[
¯̂
f(x)]2 + EX∼pX

[
¯̂
f(x)]2 − EX∼pX

[
¯̂
f(x)2] (51)

=EX∼pX
[
¯̂
f(x)]− EX∼pX

[
¯̂
f(x)]2 −VarX∼pX

[
¯̂
f(x)] (52)

=ρ− ρ2 −VarX∼pX
[
¯̂
f(x)] (53)

Since VarX∼pX
[
¯̂
f(x)] ≥ 0, we have ∆B ≤ ρ − ρ2, and the equality holds if and only if

VarX∼pX
[
¯̂
f(x)] ≡ 0. That is, the ensemble predicts constantly for all input samples. Thus the

theorem is proved.

B.6 PROOF OF THEOREM 4.3

Theorem 4.3 Let F−1(1) = {x ∈ X |F (x) = 1} denote the subset of X that F can predict
correctly, then VarX∼pX

[
¯̂
f(X)] = EF1,F2∼F̂

[
pX(F−1

1 (1) ∩ F−1
2 (1))

]
− ρ2

Proof. By definition, the global diversity (LHS) can be written as follows:

VarX∼pX
[
¯̂
f(X)] =EX∼pX

[
¯̂
f(X)2]− EX∼pX

[
¯̂
f(X)]2 (54)

=EX∼pX
[
¯̂
f(X)2]− ρ2 (55)

Thus it suffices to show that EX∼pX
[
¯̂
f(X)2] = EF1,F2∼p̂F

[
pX(F−1

1 (1) ∩ F−1
2 (1))

]
. Starting from

the RHS, the expectation of the probability measure of the intersection can be re-written as:

EF1,F2∼p̂F

[
pX(F−1

1 (1) ∩ F−1
2 (1))

]
= EF1,F2∼p̂F

[ ∫
F−1

1 (1)∩F−1
2 (1)

pX(x)dx
]

(56)

Note that F−1
1 (1) = {x ∈ X |F1(x) = 1}, F−1

2 (1) = {x ∈ X |F2(x) = 1}, we have

F−1
1 (1) ∩ F−1

2 (1) ={x ∈ X |F1 = 1, F2 = 1} (57)
={x ∈ X |F1(x)F2(x) = 1} (58)
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Thus according to Fubini’s Theorem:

EF1,F2∼p̂F

[
pX(F−1

1 (1) ∩ F−1
2 (1))

]
=EF1,F2∼p̂F

[ ∫
X
F1(x)F2(x)pX(x)dx

]
(59)

=

∫
X

(
EF1,F2∼p̂F

[
F1(x)F2(x)

])
pX(x)dx (60)

=

∫
X

(
EF∼p̂F

[F (x)]2
)
pX(x)dx (61)

=

∫
X

¯̂
f(x)2pX(x)dx (62)

=EX∼pX
[
¯̂
f(x)2] (63)

Thus the theorem is proved.

B.7 PROOF OF THEOREM 4.4

Theorem 4.4 The Brier score of the ensemble f̄ can be estimated by

EX∼pX
[ϕB(f̄(X))] = EF1,F2∼pF

[
EX∼pX

[F1(X)F2(X)]
]
− 2EF∼pF

[EX∼pX
[F (X)]] + 1 (64)

Proof. The ensemble performance can be written as

EX∼pX
[ϕB(f̄(X)] =EX∼pX

[(
1− f̄(X)

)2]
(65)

=EX∼pX

[
EF∼pF

[F (X)]2
]
− 2EX∼pX

[EF∼pF
[F (X)]] + 1 (66)

=EX∼pX

[
EF1,F2∼pF

[F1(X)F2(X)]
]
− 2EF∼pF

[EX∼pX
[F (X)]] + 1 (67)

=EF1,F2∼pF

[
EX∼pX

[F1(X)F2(X)]
]
− 2EF∼pF

[EX∼pX
[F (X)]] + 1 (68)

Thus the theorem is proved.

B.8 PROOF OF THEOREM 5.1

Theorem 5.1 The expected Brier score loss of M ensemble members is determined by

EF1,··· ,FM∼p̂F

[
ϕB

( 1

M

M∑
i=1

Fi(X)
)]

=
M + 1

M
EX∼pX

[
¯̂
f(X)2]− ρ2

M
− 2ρ+ 1 (69)

The expected NLL of M ensemble members is estimated by

EF1,··· ,FM∼p̂F

[
ϕB

( 1

M

M∑
i=1

Fi(X)
)]

≈ EX∼pX

[
ϕnll(

¯̂
f(X))

]
+ EX∼pX

[1− ¯̂
f(X)

2
¯̂
f(X)

] 1

M
(70)

Proof. Let Ui = {x ∈ X |f̂ (i)(x) = 1} = pX
(
(f̂ (i))−1(1)

)
. And define an indicate Ii(x) as

Ii(x) =
{
1 if x ∈ Ui

0 if x /∈ Ui
(71)

Then the ensemble of M members can be written as

EX∼pX

[
ϕ
( 1

M

M∑
i=1

f̂ (i)(X)
)]

=

M∑
m=0

∫
Ωm

ϕ
(m
M

)
pX(x)dx =

M∑
m=0

ϕ
(m
M

)
pX(Ωm) (72)

where Ωi ⊂ X such that

Ωm =
{
x ∈ X

∣∣ M∑
i=1

Ii(x) = m
}

(73)

That is, the set of samples that exactly m members predict correctly.
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Consider M i.i.d. models F1, · · · , FM ∼ p̂F , we notice that
∑M

i=1 Ii(x) ∼ Binomial(M,
¯̂
f(x)).

Thus P (
∑M

i=1 Ii(x) = m) =
(
M
m

) ¯̂
f(x)m(1− ¯̂

f(x))M−m. As a result, the expected performance
of an ensemble of M models can be written as

EF1,··· ,FM∼p̂F

[
EX∼pX

[
ϕ
( 1

M

M∑
i=1

f̂ (i)(X)
)]]

(74)

=EF1,··· ,FM∼p̂F

[ M∑
m=0

ϕ
(m
M

)
pX(Ωi)

]
(75)

=

M∑
m=0

ϕ
(m
M

)
EF1,··· ,FM∼p̂F

[pX(Ωm)] (76)

=

M∑
m=0

ϕ
(m
M

)
EX∼pX

[(M
m

)
¯̂
f(X)m(1− ¯̂

f(X))M−m
]

(77)

=EX∼pX

[ M∑
m=0

ϕ
(m
M

)(M
m

)
¯̂
f(X)m(1− ¯̂

f(X))M−m
]

(78)

=EX∼pX

[
E

Z∼Binomial(M,
¯̂
f(X))

[
ϕ
( Z
M

)]]
(79)

For Brier score, this can be written as

EX∼pX

[
EZ

[(
1− Z

M

)2]]
=EZ

[
1− 2Z

M
+

( Z
M

)2]
(80)

=EX∼pX

[
1− 2

¯̂
f(X) +

M
¯̂
f(X)(1− ¯̂

f(X)) +M2 ¯̂f(X)2

M2

]
(81)

=EX∼pX

[
(1− ¯̂

f(X))2 +
¯̂
f(X)(1− ¯̂

f(X))

M

]
(82)

=EX∼pX

[
(1− ¯̂

f(X))2
]
+

EX∼pX

[ ¯̂
f(X)(1− ¯̂

f(X))
]

M
(83)

=EX∼pX

[
ϕB(

¯̂
f(X))

]
+

EX∼pX

[
VarF∼p̂F

(F (x))
]

M
(84)

Note that

EX∼pX
[ϕB(

¯̂
f(X))] = EX∼pX

[
¯̂
f(X)2]− 2ρ+ 1 (85)

and from theorem 4.3, we also have

VarX∼pX
[
¯̂
f(X)] = EX∼pX

[
¯̂
f(X)2]− ρ2 (86)

Thus the expected performance can be written as

EX∼pX

[
EZ

[(
1− Z

M

)2]]
=EX∼pX

[
ϕB(

¯̂
f(X))

]
+

EX∼pX

[
VarF∼p̂F

(F (x))
]

M
(87)

=EX∼pX
[
¯̂
f(X)2]− 2ρ+ 1 +

EX∼pX
[
¯̂
f(X)2]− ρ2

M
(88)

=
M + 1

M
EX∼pX

[
¯̂
f(X)2]− ρ2

M
− 2ρ+ 1 (89)

For negative log-likelihood, we have

EX∼pX

[
E

Z∼Binomial(M,
¯̂
f(X))

[
ϕ
( Z
M

)]]
= EX∼pX

[
EZ

[
− log

( Z
M

)]]
(90)
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Using Taylor’s expansion around Z ≈ M
¯̂
f(X), we have

log
( Z
M

)
≈ log(

¯̂
f(X)) +

Z −M
¯̂
f(X)

M
¯̂
f(X)

− (Z −M
¯̂
f(X))2

(M
¯̂
f(X))2

(91)

Taking the expecation over Z, we have

EX∼pX

[
EZ

[
− log

( Z
M

)]]
=EX∼pX

[
ϕnll(

¯̂
f(X))− 0

M
¯̂
f(X)

+
M

¯̂
f(X)(1− ¯̂

f(X))

(M
¯̂
f(X))2

]
(92)

=EX∼pX

[
ϕnll(

¯̂
f(X))

]
+ EX∼pX

[1− ¯̂
f(X)

2
¯̂
f(X)

] 1

M
(93)

Thus the theorem is proved.

B.9 PROOF OF THEOREM 5.1 WITHOUT SURROGATE MODELS F̂

Here we present a brief analysis of theorem 5.1 as complementary to appendix B.8. We show that the
original distribution pF defined over the function space F also satisfies a more generalized version
of the theorem compared with p̂F . We also demonstrate why the surrogate p̂F is important in the
proof. For any X ∼ pX , we have a distribution of the prediction of the ensemble: f̄(X) ∼ pµ
where f̄(x) = EX∼pX

[EF∼pF
[F (X)]]. Then instead of the discrete Ωm, we have infinitely many

Ωr = {x ∈ X | 1
M

∑M
i=1 f

(i)(x) = r} for r ∈ [0, 1]. And thus pX(Ωr) = pµ(r).

As a result, the expected loss can be written as

EX∼pX

[
ϕ
( 1

M

M∑
i=1

Fi(X)
)]

=

∫ 1

0

∫
Ωr

ϕ(r)pX(x)dxdr (94)

=

∫ 1

0

ϕ(r)pX(Ωr)dr (95)

Taking the expectation over i.i.d. F1, · · · , FM ∼ pF , we have

EF1,··· ,FM∼pF
EX∼pX

[
ϕ
( 1

M

M∑
i=1

Fi(X)
)]

= EF1,··· ,FM∼pF

[ ∫ 1

0

ϕ(r)pX(Ωr)dr
]

(96)

=

∫ 1

0

ϕ(r)EF1,··· ,FM∼pF
[pX(Ωr)]dr (97)

It suffices to determine EF1,··· ,FM∼pF
[pX(Ωr)]. Note that for any single model f ∈ F and X ∼ pX ,

we denote by pℓ,f = pℓ the density function of f(X). According to the distribution equivalence
property, such a PDF is shared across all functions in F . Therefore, we have

EF1,··· ,FM∼pF
[pX(Ωr)] =EF1,··· ,FM∼pF

[ ∫
Ωr

pX(x)dx
]

(98)

=EF1,··· ,FM∼pF

[ ∫
X
1 1

M {
∑M

m=1 Fi(x)=r}pX(x)dx
]

(99)

=

∫
X
EF1,··· ,FM∼pF

[
1 1

M {
∑M

m=1 Fi(x)=r}
]
pX(x)dx (100)

Consider that for a given x and F ∼ pF , the random variable F (x) follows a distribution pℓ,x. And
let pM,x denote the distribution of the average of the distributions of 1

M

∑M
i=1 Fi(x). Then

EF1,··· ,FM∼pF

[
1{ 1

M

∑M
m=1 Fi(x)=r}

]
= pM,x(r) (101)

And then

EF1,··· ,FM∼pF
[pX(Ωr)] =

∫
X
pM,x(r)pX(x)dx (102)

=EX∼pX

[
pM,X(r)

]
(103)
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Substitute this back to eq. (97), we have

EX∼pX

[
ϕ
( 1

M

M∑
i=1

Fi(X)
)]

=

∫ 1

0

ϕ(r)EX∼pX

[
pM,X(r)

]
dr (104)

=EX∼pX

[ ∫ 1

0

ϕ(r)M(pℓ,X ∗ · · · ∗ pℓ,X)(Mr)dr
]

(105)

where (pℓ,X ∗ · · · ∗ pℓ,X) is the M -fold convolution of pℓ,X . Now we abuse the notation and denote
m = Mr ∈ [0,M ], then

EX∼pX

[
ϕ
( 1

M

M∑
i=1

Fi(X)
)]

=EX∼pX

[ ∫ M

0

ϕ
(m
M

)
(pℓ,X ∗ · · · ∗ pℓ,X)(m)dm

]
(106)

=EX∼pX

[
Em∼(pℓ,X∗···∗pℓ,X)

[
ϕ
(m
M

)]]
(107)

For models with neural collapse, we have pℓ,X ≈ Bernoulli. This naturally leads to the previous
results with p̂F in eq. (79). And since pℓ,X is already very close to Bernoulli distribution, theorem 5.1
the conclusions of theorem 5.1 transfer to pF without requiring any additional modifications. This
also shows the use of p̂F is purely to avoid the retractable continuous distributions — If pℓ,X is
modeled as a continuous distribution whose mass is mostly located at ℓ = 0 and ℓ = 1, the M -fold
convolution becomes infeasible to track for closed-form analysis.

B.10 TARGET-CLASS BRIER SCORES

The use of the output of the target class is based on the following reasons: (1) Because of the neural
collapse phenomenon, the predicted probability of the target class is either very close to 1 or very
close to 0. When it’s close to 1, the prediction of all other classes is naturally zeros. And when it’s
close to 0, there is usually one other dominant class. Therefore, taking the target class only is already
sufficient for the analysis. (2) Negative log-likelihood only considers the target class. Therefore, it
creates unnecessary inconsistency across the analysis. (3) Due to the softmax layer, the output of the
target class already contains information from the prediction of all classes (Wang & Wang, 2022).

Specifically, discriminative models do not directly predict the likelihood vector p ∈ [0, 1]c. Instead,
they predict the logits y ∈ Rc, and then a softmax activation is applied to y to obtain the likelihood.
Here c is the number of classes. As a result, let t denote the ground truth class, then the target-class
Brier score is

(1− pt)
2 = (

∑
i ̸=t e

yi∑c
j=1 e

yj
)2 (108)

On the other hand, the all-class Brier score is

∥y − 1t∥22 =
∑
i̸=t

p2i + (1− pt)
2 =

∑
i ̸=t

(
eyi∑c
j=1 e

yj
)2 + (

∑
i̸=t e

yi∑c
j=1 e

yj
)2 (109)

=
(
∑

i̸=t e
yi)2 + (

∑
i ̸=t e

yi)2

(
∑c

j=1 e
yj )2

(110)

The numerators are
∑

i,j ̸=t e
yiyj and

∑
i,j ̸=t e

yiyj +
∑

i ̸=t e
2yi . That is, the all-class Brier score

increases the weights of the non-target class by 1. The differentiation between them is one of extent
rather than essence.

Besides, by Cauchy-Schwartz inequality, we have

(1− pt)
2 ≤ ∥y − 1t∥22 ≤ 2(1− pt)

2 (111)

that tightly bounds the all-class Brier score with the single-class one.
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(a) Large Single - Small Single Difference vs. En-
semble - Small Single Difference

(b) Small Single - Small Single Difference vs. En-
semble - Small Single Difference

Figure 8: The comparison between the single model-single model performance difference (y-axis)
and the ensemble-single model performance difference (x-axis) for all testing data. In (1) a large
single model is used for the y-axis (large single model-small single model). In (2), two independent
small single models are used.

C ENSEMBLES VS. SINGLE MODELS

Single models and ensembles are compared by comparing the results of

ϕ(f̄(x))− ϕ(f(x)) v.s. ϕ(g(x))− ϕ(f(x)) (112)

where f are small models while g are large models in single-model capacity. Following previous
work (Abe et al., 2022b), we implement the results in fig. 8(a). The y-axis represents the difference
between a large and a small single model. The x-axis represents the difference between an ensemble
(of small models) and a small single model. Note that since the values represent the Brier score
differences, a negative value indicates a performance improvement.

Based on this result, previous work reported that the performance improvement from increasing
model capacity and ensembling are very similar. However, we argue that this should be reconsidered
carefully. Our analysis demonstrates that these results along with the high Pearson’s R values, and
almost-zero p-values, are all caused by the distributional equivalence with point-wise distinction
phenomenon revealed in our work. For a k = 160 single model g and a k = 10 single model f , we
know that g predicts correctly for a set Ug ⊂ X while f predicts correctly for Uf . We know that
|Uf | < |Ug| almost surely because of the increasing capacity. However, Uf ⊂ Ug almost never
holds because of point-wise distinction2.

Reasoning. The points in fig. 8(a) that have negative y values are those x ∈ Ug\Uf (predicted cor-
rectly by g but wrongly by f ). Given that these points are misclassified by f , due to the distributional
equivalence property, they are more likely to be predicted correctly by other fs in F , resulting in
also negative x-values. On the other hand, the points that have negative y values are those Uf\Ug

(predicted correctly by f but wrongly by g). And because they are already predicted correctly by
f , due to the distributional equivalence property, they are more likely to be predicted wrongly by
other fs in F , resulting in also positive x-values. These two scenarios lead to the positive correlation
between ϕ(f̄(x))− ϕ(f(x)) and ϕ(g(x))− ϕ(f(x)).

2Note that there are infinitely many large model gs such that Uf ⊂ Ug , but compared with G, such gs’
measure should be extremely small. For a sanity check, we compare Uf for all M = 100 CNN models with
k = 10 and Ug for all M = 100 CNN models with k = 160. No examined of (f, g) pair satisfies the subset
relationship Uf ⊂ Ug .
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Here we show a counter-example – The justification above does not require |Ug| > |Uf |. That
is, g does not have to be a larger single model compared with f . We can obtain the same positive
correlation with two k = 10 CNN models. This counterexample is shown in fig. 8(b). For the y-axis,
instead of using a large single model g, we use another small model with k = 10. We can observe
that the exact same trend holds in both fig. 8(a)(b).

D ADDITIONAL FIGURES FOR DISTRIBUTIONAL EQUIVALENCE

In addition to the demonstrative figure in fig. 2, we carry out comprehensive experiments to verify
the distributional equivalence property. For model structure, we investigate the direct connection
like CNNs and the skip connection like ResNets. We test three datasets, including small models
such as CIFAR-10, and CIFAR-100 and a more complex dataset like TinyImagenet. For each
dataset and model structure, we scale the single-model capacity through a width parameter k in
{10, 20, 40, 60, 160}. As a result, there are a total of 2× 3× 5×M = 3000 models. The results for
CNNs and ResNets are presented in fig. 9 and fig. 10, respectively. It can be clearly observed that
all models satisfy the distributional equivalence property. That is, within each subplot, all M = 100
independently trained models have the equivalent distribution of the predictions for the output class.
Besides, almost all the mass of the distributions falls at two end points {0, 1}. This also provides
support for the neural collapse assumptions.

Furthermore, in each row, from left to right are an increase in the data complexity. Since the model
capacity remains the same, the prediction level ρ (i.e. EX∼pX

[f(X)]) decreases drastically. On the
other hand, in each column, from top to bottom are an increase in the model capacity, while the
dataset stays invariant. It can be observed that for the same pX , ρ increases with the single-model
capacity. This naturally leads to a performance improvement under monotonic metrics such as the
NLL or the Brier score.

Additional results of point-wise distinctions are shown in figs. 11 and 12. The criteria are identical to
the results of fig. 2(b). Only the first five models (seed from 1 to 5) are plotted for better visualization.
It can be clearly observed that models differ significantly regarding each input. Combined with figs. 9
and 10, the distributional equivalence property is comprehensively verified.

E ADDITIONAL FIGURES EMPIRICAL RESULTS

Here we show additional experiments as complementary to the manuscript. fig. 14 shows additional
results to fig. 4 on ResNet instead of CNNs. In the manuscript, figs. 6 and 7 show the results of CNNs
on CIFAR-10 and CIFAR-100. Here we present other results such as CNNs on all datasets in figs. 15
and 17. And the results of ResNets on all datasets are presented in figs. 16 and 18. In other words,
figs. 15 and 16 are the additional results to fig. 6 and figs. 17 and 18 are additional results to fig. 7.

We also plot the distributions of the testing accuracy of all models in fig. 13. he top row shows
the results of CNNs while the bottom row shows the results of ResNets. Each color represents the
distribution from models of identical width. It’s observed that when the models only differ in the
training stochasticity from SGD, their testing performances are very similar.

Besides, to further validate the discovered distributional equivalence property, we include models
trained using schemes other than the standard SGD. Here we test SGD with momentum. We set
the learning rate as lr=1e-3, and momentum as 0.9. For another variant, we further include a
weight decay at 5e-4. The results are shown in fig. 19. Here we use CNN models with k = 20 and
CIFAR-10 dataset.

We also present the error rates of all the single models and ensembles in fig. 20 as a complementary
result to figs. 6, 15 and 16.
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(a) CIFAR-10, k = 10
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(b) CIFAR-100, k = 10
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(c) TinyImagenet, k = 10
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(d) CIFAR-10, k = 20
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(e) CIFAR-100, k = 20
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(f) TinyImagenet, k = 20
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(g) CIFAR-10, k = 40
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(h) CIFAR-100, k = 40
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(i) TinyImagenet, k = 40
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(j) CIFAR-10, k = 80
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(k) CIFAR-100, k = 80
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(l) TinyImagenet, k = 80
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(m) CIFAR-10, k = 160
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(n) CIFAR-100, k = 160

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Predicted Probability of the Target Class

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

(o) TinyImagenet, k = 160

Figure 9: The demonstration of the KDE of the prediction of the target class. The density is estimated
using all testing samples. Here CNN models with different single-model capacities (widths) and three
datasets are tested. For each figure, all M = 100 models are plotted.

24



Published as a conference paper at ICLR 2025

(a) CIFAR-10, k = 10 (b) CIFAR-100, k = 10 (c) TinyImagenet, k = 10

(d) CIFAR-10, k = 20 (e) CIFAR-100, k = 20 (f) TinyImagenet, k = 20

(g) CIFAR-10, k = 40 (h) CIFAR-100, k = 40 (i) TinyImagenet, k = 40

(j) CIFAR-10, k = 80 (k) CIFAR-100, k = 80 (l) TinyImagenet, k = 80

(m) CIFAR-10, k = 160 (n) CIFAR-100, k = 160 (o) TinyImagenet, k = 160

Figure 10: The demonstration of the KDE of the prediction of the target class. The density is
estimated using all testing samples. Here ResNet models with different single-model capacities
(widths) and three datasets are tested. For each figure, all M = 100 models are plotted.
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(a) CIFAR-10, k = 10 (b) CIFAR-100, k = 10 (c) TinyImagenet, k = 10

(d) CIFAR-10, k = 20 (e) CIFAR-100, k = 20 (f) TinyImagenet, k = 20

(g) CIFAR-10, k = 40 (h) CIFAR-100, k = 40 (i) TinyImagenet, k = 40

(j) CIFAR-10, k = 80 (k) CIFAR-100, k = 80 (l) TinyImagenet, k = 80

(m) CIFAR-10, k = 160 (n) CIFAR-100, k = 160 (o) TinyImagenet, k = 160

Figure 11: The point-wise prediction of the target class. Here CNN models with different single-
model capacities (widths) and three datasets are tested. For each figure, we plot the first 5 models
(seed from 1 to 5). Each point represents a specific prediction f (i)(xj). It is demonstrated clearly
that although models tend to agree on certain samples, the point-wise predictions vary significantly.
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(a) CIFAR-10, k = 10 (b) CIFAR-100, k = 10 (c) TinyImagenet, k = 10

(d) CIFAR-10, k = 20 (e) CIFAR-100, k = 20 (f) TinyImagenet, k = 20

(g) CIFAR-10, k = 40 (h) CIFAR-100, k = 40 (i) TinyImagenet, k = 40

(j) CIFAR-10, k = 80 (k) CIFAR-100, k = 80 (l) TinyImagenet, k = 80

(m) CIFAR-10, k = 160 (n) CIFAR-100, k = 160 (o) TinyImagenet, k = 160

Figure 12: The point-wise predictions of the target class. All testing samples are presented. Here
ResNet models with different single-model capacities (widths) and three datasets are tested. For
each figure, we plot the first 5 models (seed from 1 to 5). Each point represents a specific prediction
f (i)(xj). It is demonstrated clearly that although models tend to agree on certain samples, the
point-wise predictions vary significantly.
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(a) CIFAR-10, CNN (b) CIFAR-100, CNN (c) TinyImagenet, CNN

(d) CIFAR-10, ResNet (e) CIFAR-100, ResNet (f) TinyImagenet, ResNet

Figure 13: The illustration of the distribution of the testing accuracy of all single models. The top row
shows the results of CNNs while the bottom row shows the results of ResNets. Each color represents
the distribution from models of identical width.
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Figure 14: The estimation (regions) and the empirical results (solid curves) of the Brier score of
original models. The x-axis represents the number of ensemble members (a.k.a. ensemble capacity),
and the y-axis represents the Brier score of the ensemble. Dashed lines represent the standard
deviations. The tested model is ResNet.
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Figure 15: The performance comparison between the scaling of a single model (black dashed curves)
and increasing the number of ensemble members (colorful solid curves). In each ensemble (i.e. each
colorful curve), M varies from 1 to 100. The results are generated using CNN models.
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(c) TinyImagenet
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Figure 16: The performance comparison between the scaling of a single model (black dashed curves)
and increasing the number of ensemble members (colorful solid curves). In each ensemble (i.e. each
colorful curve), M varies from 1 to 100. The results are generated using ResNet models.
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Figure 17: The verification of theorem 5.1. The theoretical results (dashed curves) are compared
with the empirical results of ensembles using M models for (a)(b)(c) the Brier score and (d)(e)(f) the
negative log-likelihood. The ensemble curves are computed using pF . Results are generated using
CNNs.
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(c) TinyImagenet
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Figure 18: The verification of theorem 5.1. The theoretical results (dashed curves) are compared
with the empirical results of ensembles using M models for (a)(b)(c) the Brier score and (d)(e)(f) the
negative log-likelihood. The ensemble curves are computed using pF . Results are generated using
ResNets.
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(a) SGD w/ momentum
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(b) SGD w/ momentum & weight decay

Figure 19: The demonstration of the KDE of the prediction of the target class. The density is
estimated using all testing samples. For each figure, all M = 100 models are plotted. The models
are CNNs trained with (1) momentum and (2) momentum & weight decay. All testing samples are
presented.
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(a) CIFAR-10+CNN
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(b) CIFAR-100+CNN
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(c) TinyImagenet+CNN
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(d) CIFAR-10+ResNet
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(e) CIFAR-100+ResNet
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(f) TinyImagenet+ResNet

Figure 20: The performance comparison between the scaling of a single model (black dashed curves)
and increasing the number of ensemble members (colorful solid curves). In each ensemble (i.e. each
colorful curve), M varies from 1 to 100. The results are generated using CNN models.
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