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A CLARIFICATION

Terminology and Notations. In order to minimize confusion of the terminologies, here we give
comprehensive description of visual granularity, knowledge space, and principal scene components
with figure illustration for each concept.

Visual Granularity (VG) Knowledge Space (KS) Principle Scene Components (PSC)

Visual granularity refers
to the level of detail
or scale at which visual
information is represented,
processed, or interpreted in
a hierarchical structure.
It characterizes the
segmentation or abstraction
of visual data from
fine-grained elements (e.g.,
pixels) to coarse-grained
elements (e.g., entire
scenes).

A knowledge space is
a conceptual domain
representing the structure,
scope, and relationships of
the knowledge encoded within
a specific model or system.
Each model generates its own
knowledge space, shaped by
its architecture, training
data, objectives, and use
cases. For models like
SEEM, CLIP, SigLIP, LLaMA3,
and others, these knowledge
spaces define the boundaries
and capacities of what
each model knows or can
represent.

Principle Scene Components
(PSC) refer to the minimal
and essential set of
features or representations
that define the structure,
semantics, and appearance
of a scene across multiple
views. These are analogous
to principal components
in Principal Component
Analysis (PCA), representing
the \core" information
in the scene with minimal
redundancy. The red dots in
the image above are the PSC
of the scene (blue dots).

Below are additional notations and explanations we used in the paper:
Principle Query (Qp): A variable within Gaussian primitives, designed to
encode low-rank embeddings.
Scene (V): A 3D environment observable from multiple viewpoints.
View (V⇤): A single perspective or projection of the 3D scene.
Foundation Models (F):** Large vision-language models that map views into
structured knowledge spaces.
Embeddings (E): Outputs generated by foundation models, representing
data in their respective knowledge spaces.
Raw Features (R): A comprehensive collection of embeddings produced by
foundation models, encompassing the full knowledge space.
Rendered Feature (R̂): Features derived through Gaussian splatting,
computed using Gaussian memory attention.

Gaussian Memory Attention. Gaussian Memory Attention, as defined in the main paper, is the
procedure to render the raw feature from principal query of a single view:

R̂ = Agm(QV⇤
p ) = Softmax(QV⇤

p ⇥Wm ⇥PSC
T )⇥PSC. (4)

The high level logic of Gaussian Memory Attention is to first project the principal query (QV⇤
p ),

which the the compressed representation of PSC into its original dimensionality. Then we compute
the similarity of the up-sampled principal queries (QV⇤

p ⇥Wm) with principal scene components.
Finally, according to the similarity score, we do a weighted sum of the principal scene components,
the resulted feature is the final rendered feature in-aligned with foundation model features.

In the figure below, we show the visualization of principal query, psc, raw feature and the final render
feature. All the images, including the circles ( , , , ) are directly draw by algorithm. We will
explain how each component is drawn in details:
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Principal Query: Given an image with size [h,w], the rendered principal queries of the given
view is [c, h, w]. We compute the umap of the principal query and downsample the feature di-
mension to 3, and visualize umap feature in rgb format via colormap. We overlay the original rgb
image and the visualization of rendered pricipal components. Finally, in order to use visualization
to proof-of-concept of Gaussian Memory Attention, we sample four principal queries on location
[0.25, 0.25], [0.25, 0.75], [0.75, 0.25], [0.75, 0.75]. And those four points are corresponding to the
circle drawn in the image with , , , .

Principal Scene Component (best viewed with zoom-in) : The principal scene components are
the subset of raw feature. In the second column, we visualize the umap down-sampled principal
scene component ( ) and around 1/20 original raw feature ( ). The top-5 PSC components to the
corresponding principal queries are represented with , , , again. In this way, we could know
where the original four pixel of principal query falls in the PSC space.

Principal Scene Component (best viewed with zoom-in) : This part is the most important in the
table. It traces back to the original feature location for the top-1 PCA component in the second
column. The circles , , , are draw with the center of the traced pixel in the feature map. It
clearly shows that the train, sky, ground, stars are clearly correlated to the correct PSC component
that is part of the original raw features.

Render Feature: Finally we clearly show the final rendered feature after gaussian memory attention
in the last column.

Video: Train, Model: LLaMAv
Principal Query PSC Raw Feature Render Feature
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B M3 LMM BENCHMARK

Grounding. We create the LMM evaluation benchmark on grounding using SoM Yang et al.
(2023) and Semantic-SAM Li et al. (2023). The pipeline first uses Semantic-SAM to label the
marked image and then uses SoM and GPT4-o to label the marked region with proper text. Below
we show examples of the datasets Train, Geisel, and Garden.

1.Green locomotive with
number 713.
2.Clear blue sky.
3.Dirt and gravel ground.
4.Rusty train cars in a row.
5.Green hills in the
background.

1.Green train engine with
’713’ and ’WESTE’ visible.
2.Blue sky with some clouds.
3.Gravel path or road.
4.Green hills or mountain
range.
5.Tall pole or antenna.

1.Green locomotive with
’Western Pacific’ written on
the side.
2.Blue sky with a few
clouds.
3.Part of a dark-colored
train car.
4.Gravel and railroad
tracks.
5.Green hills and trees in
the background.

1.Large, multi-level
building with extensive
glass windows.
2.Open concrete plaza area
in front of the building.
3.Clear sky above the
building.
4.Trees and greenery
surrounding the area.
5.Hillside with sparse
vegetation.

1.Modern library
architecture with large
glass windows.
2.Clear blue sky in the
background.
5.Distant mountain range
visible in the horizon.
7.Tall trees with dense
foliage.
9.Green grass area near the
building.

1.The structure of the
library with large glass
windows.
3.The sky above the
building.
5.The concrete land area
surrounding the library.
6.A group of trees in the
background.
7.A grassy area near the
library.

1.A door on the right side
of the image.
2.A wall with space-themed
stickers.
4.The ceiling with
decorative molding.
6.A monitor on the table.
9.A bookshelf filled with
various items.

1.A colorful striped rug on
the floor.
2.A red bean bag chair.
5.A wooden floor beside the
rug.
6.A set of stacked toy cups
on the rug.

1.Wooden floorboards
covering the ground.
2.White wall with a
baseboard.
3.Small toy truck on the
floor.
4.Toy tractor placed next to
the toy truck.
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Retrieval & Captioning. Similar to grounding, we also use SoM Yang et al. (2023) and Semantic-
SAM Li et al. (2023) labeled images to generate the description for the evaluation dataset including
Train, Geisel, Garden, Drjohnson, and Playroom. Below, we show examples in Drjohnson and
Garden to show variants with the grounding examples.

Caption: A room features
chairs, artwork on the
walls, and a window with
shutters.
Short Caption: A room with
chairs and artwork.
Long Caption: The image
shows an interior room
with light green walls.
There are two wooden chairs
positioned beneath artwork,
a radiator along the wall,
and a window with closed
shutters allowing light to
stream in. A wooden door
with a handle is on the
right side.

Caption: A room featuring a
framed painting between two
shuttered windows.
Short Caption: Room with a
painting and shutters.
Long Caption: The image
shows a room with two large
shuttered windows on either
side of a framed painting
hung on a green wall. Below
the painting is a chair and
a table, creating a classic
and elegant atmosphere.

Caption: A well-decorated
room featuring a chandelier,
fireplace, and framed
artwork.
Short Caption: Elegant
room with a chandelier and
fireplace.
Long Caption: The room
is elegantly decorated
with a classic chandelier
hanging from the ceiling,
a white fireplace with a
dark opening, and a framed
portrait on the green wall.
Bookshelves filled with
books are visible on the
right, while a couple of
chairs are placed near the
fireplace. The room has
an inviting, traditional
atmosphere.

Caption: A round wooden
table sits in a garden,
featuring a vase with
decorative items as a
centerpiece.
Short Caption: Garden table
with a vase centerpiece.
Long Caption: In a quaint
garden setting, a round
wooden table is centrally
placed on a tiled patio.
The table’s focal point is a
vase filled with decorative
items, adding a touch of
elegance. Surrounding
the table are well-kept
grass, various plants, and
a backdrop of a brick wall
covered in ivy, creating a
serene outdoor atmosphere.

Caption: A wooden table
is placed in a garden
surrounded by grass and
plants.
Short Caption: Garden scene
with a wooden table.
Long Caption: The image
depicts a backyard garden
scene featuring a wooden
circular table set on a
stone patio. The garden
is lush with greenery,
including various bushes
and plants. A vase
with decorative elements
sits atop the table, and
there’s a small soccer
ball underneath. In
the background, a mix of
garden furniture and toys
is visible, surrounded by
well-maintained grass and
foliage.

Caption: A round wooden
table sits in a garden
surrounded by greenery.
Short Caption: Garden with
a round table.
Long Caption: A round
wooden table is at
the center of a garden
scene. The table is on a
hexagonal stone patio and is
surrounded by various plants
and grass. A small statue
sits in the middle of the
table, adding a decorative
touch. The lush garden
includes a mix of potted
plants, bushes, and a tree,
creating a serene outdoor
space.
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C QUALITATIVE RESULTS

Real Robot Experiments. In addition to the main paper. We conduct additional real robot exper-
iments on (1) Part-level understanding. (2) Multi-Scene Scenario. (3) Long-Horizon Task. Below
we show the command and demo video frames for each task. Note, for the multi-scene task, we use
CLIP and SigLIP for grounding different scenes to achieve the multi-foundation model scenario.

Figure 8: Real robot deployment on part-level understanding, multi-scene and long-horizon tasks.
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Feature Comparison. Here we visualize the feature PCA comparison between M3 and F-3DGS.
Noted that different from the original paper of F-3DGS that uses semantic clustering for VLM fea-
tures, in our work, we train both M3 and F-3DGS for the original VLM features for fair comparison.
Looking at the visualization below, we can observe that while numerical performance is not too far
away between these two methods, the feature quality and continuity of F-3DGS are much lower than
M3. We show features from both CLIP and SigLIP models on train and Geisel datasets.

F-3DGS, CLIP, Train

M3, CLIP, Train

F-3DGS, SigLIP, Train

M3, SigLIP, Train

F-3DGS, CLIP, Geisel

M3, CLIP, Geisel

F-3DGS, SigLIP, Geisel

M3, SigLIP, Geisel
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Knowledge Space (KS) Visualization. We visualize the knowledge space across datasets and
foundation models. As shown in the figure below, we visualize both the Tabletop and Train dataset.
The knowledge space manifold was built by all the feature pixels for each foundation model in the
video, the blue point is the raw feature, and the red point is the principal component, the first and
second rows are multi-view visualizations of the feature manifold. We could interestingly observe
that the feature manifold pattern is different across foundation models, and especially the LLaMAv
feature is the most diverse and continuous. This is actually interestingly aligned with the feature
visualization of Fig.6 in the main paper.

Video: Tabletop
CLIP DINOv2 LLaMAv SigLIP

Video: Train
CLIP DINOv2 LLaMAv SigLIP
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