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1 IMPLEMENTATION DETAILS
For image preprocessing, we resize all input images to a size of
224×224 and feed them into a vision feature extractor, utilizing
the MobileNetv2 model trained on ImageNet1K for feature extrac-
tion. We employ Cascade-rcnn for object detection on each image,
obtaining up to 19 objects’ bounding boxes. The images within
these bounding boxes are also resized to 224×224 and subjected to
feature extraction. The feature dimension of the output features is
1280. Within the Dynamic Object Attention mechanism, we first
down sample the feature dimensions to 16 and set the number of
iterations in the Dynamic Route to 8. A similar down sampling to
16 is applied in the Dual Vision Attention framework. For the loss
function parameters, we set a decay coefficient 𝜆 = 20 and a loss
function ratio coefficient 𝜂 = 10. For the training parameters, we
set the model learning rate to 1 × 10−4, with a batch size of 16.

2 ABLATION STUDIES OF DYNAMIC OBJECT
ATTENTION

2.1 Ablation Studies of the Sample Method
In diffusion models, the noise coefficient is related to the diffusion
timestep, enabling a progressive effect between iterations. In the
dynamic route approach, iterations replace the concept of timesteps.
In Equation 1, the coefficient 𝛼 (𝑛) is a discrete array concerning
iteration 𝑛, and setting the value of 𝛼 (𝑛) is crucial. While this value
could be constant, doing so would maintain the same ratio between
the result of the previous iteration D (𝑛−1) and the noise propor-
tion 𝜖 across different iterations. Alternatively, employing a specific
function to define 𝛼 (𝑛) allows for dynamic adjustment in the re-
lationship between D (𝑛−1) and 𝜖 with each iteration, resulting in
varying noise intensities. We experimented with Linear, Cosine,
and Sigmoid functions. As Table 1 illustrates, the Linear progression
yields the best outcome, while the Cosine function performs the
worst, with the AP value even slightly lower than the None scenario
where 𝛼 (𝑛) remains unchanged. Our analysis suggests that both
Linear and Sigmoid functions are monotonically increasing within
their domains, implying that the proportion of noise decreases as
iterations progress. This aligns with the conventional understand-
ing that higher initial noise levels enhance model robustness, but
as iterations advance, the model requires optimization at a finer
granularity, necessitating lower noise levels.

D (𝑛) =
√︁
𝛼 (𝑛)D (𝑛−1) +

√︁
1 − 𝛼 (𝑛)𝜖 (1)

2.2 Ablation Studies of the Iterations
Ablation Studies of Dynamic Object Attention.
In the main text, we have presented experiments concerning vary-
ing numbers of iterations for the Dynamic Route during both train-
ing and testing phases. To further substantiate the significance
of our conclusions, we have supplemented this with experiment

Table 1: Ablation studies of the dynamic object attention on
different sample method.

Index Method
Evaluation Metrics

AP(%)↑ mTTA(s)↑ AOLA↑
1 Linear 69.2 4.26 0.89
2 Cosine 65.4 4.21 0.82
3 Sigmoid 67.6 4.17 0.86
4 None 65.7 4.13 0.81

result, as shown in Table 2. The experimental results further cor-
roborate that a finite number of iterations yields optimal model
performance, with excessive or insufficient iterations leading to
overfitting or underfitting, respectively. Moreover, after training
with multiple iterations, testing with a single iteration suffices to
achieve satisfactory outcomes.

3 ABLATION STUDIES OF FEATURE
EXTRACTOR

Traditional accident detection predominantly relies on utilizing
VGG for feature extraction, resulting in slow extraction speeds
and suboptimal performance. In response, we experimented with
a variety of feature extractors and image preprocessing methods.
As demonstrated in Table 5, we employed VGG-16, VGG-19, Mo-
bileNet, EfficientNet, ResNet101, Swin Transformer, and ViT for
feature extraction. The results indicate that MobileNet delivers the
best performance, coupled with minimal parameters and GFLOPS.
Although a lower GFLOPS suggests higher computational efficiency,
it demands more fromGPUs and memory. Contrary to conventional
wisdom, resizing images to dimensions higher than the standard
224 does not necessarily enhance performance; the optimal results
were achieved with the traditional size of 224. This is presumably
because conventional feature extractors are trained with images of
224×224 pixels, and resizing to dimensions beyond this threshold
involves average pooling for dimension transformation, leading
to the loss of critical information. Furthermore, excessively high
feature dimensions are not conducive to accident detection and
incur additional parameter and time costs.

4 ABLATION STUDIES OF THE LOSS
FUNCTIONS

4.1 Ablation Studies of the Scaling Coefficient
The scaling coefficient 𝜂 balances the ratio between the score loss
𝐿𝑆 and the anticipation loss 𝐿𝐴 , controlling the proportion between
these two loss functions. During the training process of our model,
we keep other variables constant and experiment with different val-
ues of 𝜂. As shown in Table 3, the experimental outcomes indicate
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Table 2: Complete ablation studies of the Dynamic Object
Attention on iterations. Num-iteration means the number
of iterations that Dynamic Route used during the training
and testing process. TC means the time consumption during
training. During the training process, the time consumption
by the model with Num-iteration=1 is set as a baseline of 1.

Index
Num-iteration Evaluation Metrics

Train Test AP(%)↑ mTTA(s)↑ AOLA↑ TC(%)↓
1 2 2 63.1 3.95 0.82 1.02
2 3 3 64.9 4.01 0.84 1.03
3 4 4 66.8 4.10 0.85 1.04
4 5 5 68.4 4.19 0.88 1.05
5 6 6 69.2 4.26 0.89 1.07
6 7 7 68.8 4.26 0.89 1.10
7 8 8 68.7 4.28 0.88 1.12
8 9 9 68.3 4.24 0.86 1.13
9 10 10 67.4 4.23 0.86 1.15

10 5 1 65.8 4.03 0.80 -
11 5 2 66.7 4.10 0.82 -
12 5 3 67.5 4.14 0.85 -
13 5 4 68.0 4.17 0.87 -
14 5 5 68.4 4.19 0.88 -

15 6 1 66.4 4.16 0.82 -
16 6 2 67.1 4.20 0.85 -
17 6 3 68.3 4.22 0.87 -
18 6 4 68.9 4.23 0.88 -
19 6 5 69.0 4.25 0.88 -
20 6 6 69.2 4.26 0.89 -

21 7 1 66.8 4.14 0.79 -
22 7 2 67.3 4.17 0.82 -
23 7 3 67.7 4.20 0.85 -
24 7 4 68.2 4.22 0.87 -
25 7 5 68.5 4.23 0.87 -
26 7 6 68.6 4.25 0.88 -
27 7 7 68.8 4.26 0.89 -

Table 3: Ablation studies of the Scaling Coefficient 𝜂.

Index 𝜂
Evaluation Metrics

AP(%)↑ mTTA(s)↑ AOLA↑
1 0.01 67.0 4.35 0.85
2 0.1 67.9 4.27 0.84
3 1 68.4 4.29 0.87
4 10 69.2 4.26 0.89
5 100 69.6 4.11 0.85
6 1000 70.3 3.79 0.86

that a lower 𝜂 emphasizes score loss, making the model prioritize
optimizing the probability of incident occurrence at each moment.
This leads to an increase in mean Time to Accident (mTTA) and a
decrease in Average Precision (AP); conversely, a higher 𝜂 empha-
sizes anticipation loss, inclining the model towards optimizing the

Table 4: Ablation studies of the Decay Coefficient 𝜆.

Index 𝜆
Evaluation Metrics

AP(%)↑ mTTA(s)↑ AOLA↑
1 5 67.9 4.39 0.82
2 10 68.6 4.25 0.86
3 20 69.2 4.26 0.89
4 50 69.4 3.95 0.89
5 100 69.5 3.72 0.87

Figure 1: Visualization of the Attention Allocation. “Origi-
nal” represents the object features, “Normal Attention” repre-
sents the object-aware features processed by a normal atten-
tion mechanism, “Dynamic Attention” represents the object-
aware features processed by Dynamic Object Attention pro-
posed in this paper.

accuracy of predicting incident occurrence in videos, which results
in an increase in AP and a decrease in mTTA. Comparably, changes
in 𝜂 have a minor effect on the accuracy of incident prediction.

4.2 Ablation Studies of the Decay Coefficient
The parameter 𝜆 in the loss function 𝐿𝑆 represents the decay size
in the exponent, controlling the decay rate of the loss function
over time. Theoretically, a larger ratio coefficient implies greater
weight variance across different time points. Excessive variance
may cause the model to predominantly optimize probabilities close
to the incident, resulting in a lower mean Time to Accident (mTTA);
conversely, minimal variance can lead to the model equally focus-
ing on information from all time points, reducing the accuracy of
accident prediction. As depicted in Table 4, the final experimental
results align with our hypothesis. Optimal performance is achieved
when 𝜆 = 20.
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Table 5: Comparison of models for the best AP on DAD datasets. Bold values represent the best performance of each category.
Dimension means the output feature dimension of the backbone. Bounding box means the size of each bounding box in object
detection. Resize means the size of each image will resize before feature extraction. Dimension means the output dimension of
the extracted features. Params (M) represents the number of parameters in the model, while GFLOPS represents the number of
floating-point operations per second the model performs during inference or training. A higher GFLOPS value indicates a
higher computational demand on the GPU and memory.

Index Backbone Resize Bounding box Dimension Params (M)↓ GFLOPS↓ AP(%)↑ mTTA(s)↑ AOLA↑
1 VGG-16 224×224 224×224 512 138.4 15.47 61.8 3.91 0.77
2 VGG-16 224×224 224×224 1280 138.4 15.47 63.5 3.96 0.80
3 VGG-16 224×224 224×224 2048 138.4 15.47 63.3 3.92 0.79
4 VGG-16 224×224 224×224 4096 138.4 15.47 62.9 3.90 0.77
5 VGG-16 384×384 384×384 1280 138.4 15.47 62.7 3.94 0.78
6 VGG-16 384×384 224×224 1280 138.4 15.47 62.4 3.88 0.74
7 VGG-16 512×512 224×224 1280 138.4 15.47 58.1 4.07 0.75
8 VGG-16 1280×720 224×224 1280 138.4 15.47 56.8 4.15 0.75
9 VGG-19 224×224 224×224 1280 143.7 19.63 64.2 3.99 0.82
10 MobileNetv3 224×224 224×224 1280 5.5 0.22 68.9 4.22 0.87
11 MobileNetv2 224×224 224×224 512 3.5 0.3 67.6 4.12 0.84
12 MobileNetv2 224×224 224×224 1280 3.5 0.3 69.2 4.26 0.89
13 MobileNetv2 224×224 224×224 4096 3.5 0.3 68.5 4.33 0.82
14 MobileNetv2 384×384 224×224 1280 3.5 0.3 65.4 4.16 0.84
15 MobileNetv2 384×384 384×384 1280 3.5 0.3 66.9 4.20 0.88
16 MobileNetv2 512×512 224×224 1280 3.5 0.3 64.1 4.05 0.80
17 MobileNetv2 1280×720 224×224 1280 3.5 0.3 61.3 3.89 0.75
18 EfficentNet B0 224×224 224×224 1280 5.3 0.39 64.7 4.11 0.81
19 EfficentNet B7 224×224 224×224 1280 66.3 37.75 66.8 4.19 0.83
20 ResNet101 224×224 224×224 1280 44.5 7.8 62.8 4.14 0.78
21 Swin Transformer (S) 224×224 224×224 1280 48.6 8.74 59.4 4.05 0.72
22 Vision Transformer 224×224 224×224 1280 88.2 4.41 60.6 4.10 0.76

5 VISUALIZATION OF THE ATTENTION
ALLOCATION

To further elucidate the efficacy of our proposed Dynamic Object
Attention mechanism, we examined a specific scenario to compare
the allocation of target features with no attention mechanism, tradi-
tional attention mechanism, and Dynamic Object Attention applied.
For ease of comparison, we first normalized the number of targets
using softmax across the dimension of target quantity, followed by
summing up the feature dimensions for each target to derive the
feature value of each target. As illustrated in Figure 1, compared to
traditional attention mechanisms, employing Dynamic Object At-
tention facilitates a superior differentiation among diverse features,
enabling the learning of more profound feature content.

6 PROMPT ENGINEERING
As observed from Figures 2 and 3, the generality of large models
like GPT-4 does not afford them the specificity required for tasks
such as accident anticipation, resulting in imprecise detections.
Fine-tuning such large language models presents challenges in
data collection and incurs significant costs. Therefore, we have
employed a strategy where smaller models guide larger ones, as

demonstrated, yielding superior performance compared to GPT-4.
Specifically, we incorporate the outputs of the smaller model as
part of the prompt to guide the multimodal large language model
on certain key information. Additionally, we process the original
images to annotate the corresponding vehicles, enabling the larger
model to better recognize objects.
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Figure 2: Detailed design of prompts using our model.

Figure 3: Detailed design of prompts using GPT4.
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