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1 MORE TRAINING DETAILS
The hyperparameter 𝛼 is set to 0.5 to achieve the optimal perfor-
mance in experiments. The temperature coefficient 𝜏 is set to 0.2.We
employ Adam as the optimizer with a weight decay of 0.01 and tune
all models for 3 epochs. In this work, we utilize CLIP (ViT-B/32)1 [3],
AudioCLIP (Full-Trained)2 [2] and CLIP-ViP (base-patch32)3 [4]
text encoders to obtain representations of image, audio, and video
modalities, respectively. The hidden sizes for image, audio, and
video representations are set to 512, 1024, and 512. In addition, we
set the training batch size of 32 on the GLUE benchmark and Com-
monGen dataset, 8 on the CSQA dataset, and 12 on the SQuAD v2.0
datasets. We use grid search to determine the optimal hyperparam-
eters mentioned above. For VQA tasks, we use our MASE to replace
the original PLMs and fine-tune it according to settings similar to
ConceptBert [1]. We use Spearman’s correlation as the metric on
STS-B and the remaining GLUE tasks using accuracy as the metric.
All experiments are conducted on 8 RTX 4090 GPUs.

2 THEORETICAL ANALYSIS OF OUR MODAL
PROXY

In this section, we analyze why our modal proxies are a good
bridge for multimodal information transmission. We analyze from
the perspective of information theory that using our multimodal
proxies for training is implicitly transmitting information from
other modal sources. Maximizing the mutual information between
our multimodal proxies and labels is essentially maximizing the
mutual information between real modal data and labels. Specifically,
we provide the following theorem:

Theorem 1. Given a multimodal contrastive pre-training modelΘ,
constructed on a large-scale dataset that integrates modalities 𝑘 and 𝑡 ,
suppose 𝑍𝑘 and 𝑍𝑡 are the embeddings produced by Θ for modalities
𝑘 and 𝑡 respectively, and 𝑌 is a set of labels for a specific task. It is
proposed that the optimization of mutual information between 𝑍𝑡
and 𝑌 inherently optimizes the mutual information between 𝑍𝑘 and
𝑌 , hence:

max I(𝑍𝑡 , 𝑌 ) ≡ max I(𝑍𝑘 , 𝑌 ), (1)
where I denotes the mutual information.

Proof: Given the model Θ is trained on a comprehensive dataset
comprising multimodal pairs (𝑘, 𝑡), embeddings 𝑍𝑘 and 𝑍𝑡 are ex-
pected to encode similar informational contents about the labels
𝑌 . Assuming high alignment between these embeddings due to the
shared training objective, we observe that:

𝑝 (𝑍𝑘 | 𝑍𝑡 ) ≈ 1 and 𝑝 (𝑍𝑡 | 𝑍𝑘 ) ≈ 1, (2)

suggesting a nearly deterministic inferential reciprocity between
𝑍𝑘 and 𝑍𝑡 . According to the definition of mutual information, we
1https://github.com/openai/CLIP
2https://github.com/AndreyGuzhov/AudioCLIP
3https://github.com/microsoft/XPretrain/tree/main/CLIP-ViP

have:
𝐼 (𝑍𝑘 , 𝑌 ) =

∑︁
𝑧𝑘 ,𝑦

𝑝 (𝑧𝑘 , 𝑦) log
(
𝑝 (𝑧𝑘 , 𝑦)
𝑝 (𝑧𝑘 )𝑝 (𝑦)

)
;

𝐼 (𝑍𝑡 , 𝑌 ) =
∑︁
𝑧𝑡 ,𝑦

𝑝 (𝑧𝑡 , 𝑦) log
(
𝑝 (𝑧𝑡 , 𝑦)
𝑝 (𝑧𝑡 )𝑝 (𝑦)

)
.

(3)

To formalize this, we utilize the chain rule of mutual information:

𝐼 (𝑍𝑘 ;𝑌 |𝑍𝑡 ) = 𝐼 (𝑍𝑘 ;𝑌 ) − 𝐼 (𝑍𝑘 ;𝑍𝑡 ;𝑌 ), (4)

where 𝐼 (𝑍𝑘 ;𝑍𝑡 ;𝑌 ) represents the mutual information among 𝑍𝑘 ,
𝑍𝑡 , and 𝑌 . Given the strong mutual information between 𝑍𝑘 and
𝑍𝑡 , 𝐼 (𝑍𝑘 ;𝑌 |𝑍𝑡 ) approximates to 0, indicating that:

𝐼 (𝑍𝑘 ;𝑌 ) ≈ 𝐼 (𝑍𝑡 ;𝑌 ). (5)

Thus, maximizing I(𝑍𝑡 , 𝑌 ) leads to the maximization of I(𝑍𝑘 , 𝑌 )
and vice versa, under the assumption of adequate training and
representative data modalities.

This theorem implies that, in contexts where embeddings are
derived from jointly trained multimodal data via MC-PTMs, opti-
mizing the mutual information for one modality’s embedding about
the labels effectively optimizes it for the other. In other words, 𝑍𝑡
is a well-implicit modal proxies for modality 𝑘 . We can utilize 𝑍𝑡 to
efficiently transfer multimodal knowledge into PLMs to augment
cognitive processing and understanding.

Table 1: We use RoBERTa-base as the base model to evaluate
the impact of EM iteration times on CSQA and SQuAD v2.

Iterations steps
CSQA SQuAD v2

Acc. F1-score Acc. F1-score

1 85.5 75.8 80.3 83.6
2 86.7 76.3 81.1 84.4
5 87.2 76.8 81.9 85.0
10 87.7 77.8 82.8 85.7
15 87.5 77.8 82.4 85.6

3 EFFECT OF EM ITERATION STEPS
We use RoBERTa-base as the backbone network to evaluate the
impact of EM algorithm iterations on the performance of our prob-
abilistic framework. We present the results of quantitative analysis
as shown in Table 1. We can observe that when the number of iter-
ation steps is between [1,10], the model performance continuously
improves with the increase of iteration steps. This indicates that
the bidirectional optimization of modal information injection and
information balance estimation is mutually reinforcing. Our itera-
tive algorithm can promote bidirectional optimization and improve
the performance of PLMs. In addition, the results in Table 1 also
indicate that when the number of iterations is 10, our probability
framework can be fully optimized to achieve optimal performance.

https://github.com/openai/CLIP
https://github.com/AndreyGuzhov/AudioCLIP
https://github.com/microsoft/XPretrain/tree/main/CLIP-ViP
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Figure 1: The overlap of correct predictions between each
pair of models in the CSQA dataset.

4 DIFFERENT PRE-TRAINED MODELS
BEHAVE DIFFERENTLY.

To further demonstrate the effectiveness of our model proxies, we
use the overlapping situation correctly predicted by the model to
evaluate the output features of different encoders. We mathemati-
cally define the concept of overlap in correct predictions between
two modelsM1 andM2 as:

O(M1,M2) =
| SM1

⋂SM2 |
| SM1 | , (6)

where, SM denotes the set of predictions made by modelM. We
obtain the model overlap coefficients O among different models
(i.e., CLIP, AudioCLIP, CLIP-ViP, BERT, RoBERTa and XLNet) on
the CSQA dataset in Figure 1. We can observe a high degree of
overlap among PLMs i.e., BERT-base, RoBERTa-base, and XLNet-
large), while the overlap between MC-PTM i.e., CLIP, AudioCLIP,
and CLIP-ViP) and other models are significantly smaller. This
difference empirically explains the significant performance gain
obtained by integrating multimodal proxies.

Text Encoder
CSQA SQuAD v2

Acc. F1 Acc. F1

Gaussian Noise (0M) 82.1 70.3 76.8 79.6
BERT-base (110M) 84.0 73.9 78.5 82.1

RoBERTa-large (355M) 84.3 74.3 79.0 82.2
T5-3b (1500M) 84.9 74.5 80.2 83.5
CLIP-base (63M) 86.7 76.6 81.8 85.0

Table 2: Performance comparison of different text encoders
in our approach on CSQA and SQuAD v2 datasets. We employ
RoBERTa-base as the base model. "CLIP-base" represents
using the text encoders of CLIP, AudioCLIP and CLIP-ViP.

5 DIFFERENT MULTIMODAL PROXY
EXTRACTION METHODS

To investigate the effectiveness of our multimodal semantic prox-
ies, we use PLMs trained on pure text corpus instead of encoders
in the MC-PTMs (i.e., CLIP-based models). We utilize BERT-base,
RoBERTa-large, and T5-3b, along with random Gaussian noise as
alternatives to CLIP-based text encoders to conduct experiments for
assessing the significance of multimodal representation. The results
are shown in Table 2, indicating that our method achieved the most
significant performance gain. This experiment indicates that the
performance gain brought by our method is not only related to
the text information provided by the text encoder but also to the
implicit multimodal information provided by MC-PTMs. That is to
say, the semantics we inject into PLMs do contain additional modal
information that text features do not possess. In addition, this also
demonstrates the significant role of additional modal knowledge in
enhancing the expression and reasoning capabilities of PLM.

Base Model Methods Param. Latency Speedup

BERT-base

+None 110M 13.1ms 1×
+MPB 118M 18.3ms 1.4×

+VOKEN 121M 22.6ms 1.7×
+iACE 568M 42.9ms 3.3×
+MASE 135M 23.9ms 1.8×

RoBERTa-base

+None 355M 24.1ms 1x
+MPB 363M 28.9ms 1.2×

+VOKEN 367M 32.7ms 1.4×
+iACE 738M 90.8ms 3.8×
+MASE 383M 34.2ms 1.4×

Table 3: Runtime analysis. We calculate the model parameter
size and average inference time (latency) for each sample
using different methods on the SST-2 dataset.

6 RUNTIME ANALYSIS
To further analyze the runtime efficiency of our method, we conduct
runtime analysis on different methods with the results shown in
Table 3. It can be observed that our method only introduces subtle
computational overhead compared to the baseline method. Note
that our multimodal proxy extraction module is frozen at runtime,
therefore no additional learnable parameters will be introduced.
Furthermore, although our method involves iterative optimization,
the encoders of PLMs only need to extract multimodal features
once (referring to the algorithm in the manuscript).

7 MORE EXPERIMENTS ON DIFFERENT BASE
MODELS.

We use XLNet as the baseline model to further test our method,
and the results are shown in Table 4. It can be seen that our method
still exhibits excellent performance on larger base models.
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Question: How many giraffes 
are in the photo?

MPB: four

MASE: one

Question: What color is the 
window frame?

MPB: red

MASE: black

Question: What action are 
these two doing?

MPB: running

MASE: brushing teeth

Question: Is the baby holding 
a toothbrush?

MPB: no

MASE: yes

Question: What is the young 
man carrying?

MPB: bag

MASE: duffle bag

Question: What is behind and 
to the right of the bench?

MPB: dog

MASE: tree

Figure 2: Visualize evaluation results on the VQA 2.0 validation set.

Base Model Methods Modality Average

XLNet-large

+None T 85.22
+MPB T+I+A+V 87.39
+MASE T+I 89.25
+MASE T+I+A 89.93
+MASE T+I+A+V 90.61

Table 4: Experiments on different base models (i.e., XLNet)
on the GLUE benchmark.

8 CASE STUDY OF OUR MASE
We present a visualization example of our method and baseline
MPB in a cross-modal QA task (i.e., VQA 2.0 benchmark) in Figure 2.
Furthermore, we provide some qualitative analysis examples for the
QQP, QNLI, CSQA and SQuADv2 datasets as shown in Table 5. The
effectiveness of our method in NLU and QA tasks can be intuitively
seen in the following examples.
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QQP

Sentence 1 Why is the EPA held in such low esteem by a large proportion of
Libertarians and the Right?

Sentence 2 Why is the EPA (Environmental Protection Agency) held in such low
esteem by the American Conservatives?

Ground Truth (1) Equivalent

BERT-base (0) Not Equivalent

BERT-base + MASE (1) Equivalent

QNLI

Sentence 1 What area in modern-day Canada received Huguenot immigrants?

Sentence 2 They also spread beyond Europe to the Dutch Cape Colony in South
Africa, the Dutch East Indies, the Caribbean, and several of the English
colonies of North America, and Quebec, where they were accepted and
allowed to worship freely.

Ground Truth entailment

BERT-base not_entailment

BERT-base + MASE entailment

CSQA

Question Janet was watching the film because she liked what? (A) erection (B)
laughter (C) being entertained (D) fear (E) bordem

Ground Truth C

BERT-base B

BERT-base + MASE C

SQuAD v2

Question What is the area called where two plates move apart?

Ground Truth "answers": ["text": "divergent boundaries", "answer_start": 295]

BERT-base "answers": ["text": "asthenosphere", "121"]

BERT-base + MASE "answers": ["text": "divergent boundaries", "answer_start": 295]
Table 5: Case studies of our method on different datasets.


	1 More Training Details
	2 Theoretical Analysis of Our Modal Proxy
	3 Effect of EM iteration steps
	4 Different Pre-trained Models Behave Differently.
	5 Different MultiModal Proxy Extraction Methods
	6 Runtime analysis
	7 More experiments on different base models.
	8 Case Study of our MASE
	References

