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A GP -NC FOR SCALABLE GP METHODS

We can replace the NLL term in Algorithm (1) by the log likelihood of the different scalable GP
methods. We have a scalable implementation of the DKL update, so the entire Algorithm scales
well with the input data size. It is straightforward to plug-in the class of scalable and Sparse GP
regression models in the likelihood term of Algorithm (1) to account for the negative datapairs in
their formulation. In particular we review the SVGP model by (Hensman et al., 2013), which is a
popular scalable implementation of GPs. We also investigate a recent parametric Gaussian Process
regressors (PPGPR) method by (Jankowiak et al., 2019). In this section, we follow the notations
given in their respective research works and give their derivations of the log likelihood function here
for the sake of completeness.

A.1 SVGP REGRESSION MODEL

(Hensman et al., 2013) proposed the Scalable Variational GP (SVGP) method. The key technical
innovation was the development of inducing point methods which we now review. By introducing
inducing variables u that depend on variational parameters {zm}Mm=1, where M = dim(u) � N
and with each zm ∈ Rd, we augment the GP prior as follows:

p(f |X)→ p(f |u, X, Z)p(u|Z)

We then appeal to Jensen’s inequality and lower bound the log joint density over the targets and
inducing variables:

log p(y,u|X,Z) = log

∫
dfp(y|f)p(f |u)p(u)

≥ Ep(f |u) [log p(y|f) + log p(u)]

=

N∑
i=1

logN (yi|kTi K−1MMu, σ2
obs)− 1

2σ2
obs

TrKtNN + log p(u)

(8)

where ki = k(xi, Z), KMM = k(Z,Z) and KtNN is given by

KtNN = KNN −KNMK
−1
MMKMN (9)

with KNM = KT
MN = k(X,Z). The essential characteristics of Eqn. 8 are that: i) it replaces

expensive computations involving KNN with cheaper computations like K−1MM that scale as O(M3);
and ii) it is amenable to data subsampling, since the log likelihood and trace terms factorize as sums
over datapoints (yi,xi).

A.1.1 SVGP LIKELIHOOD FUNCTION

SVGP proceeds by introducing a multivariate Normal variational distribution q(u) = N (m, S). The
parameters m and S are optimized using the ELBO (evidence lower bound), which is the expectation
of Eqn. 8 w.r.t. q(u) plus an entropy term term H[q(u)]:

Lsvgp = Eq(u) [log p(y,u|X,Z)] +H[q(u)]

=

N∑
i=1

{
logN (yi|µf (xi), σ

2
obs)−

σf (xi)
2

2σ2
obs

}
−DKL(q(u)|p(u))

(10)

where KL denotes the Kullback-Leibler divergence, µf (xi) is the predictive mean function given by
µf (xi) = kTi K

−1
MMm and σf (xi)2 ≡ Var[fi|xi] = Ktii + kTi K

−1
MMSK

−1
MMki denotes the latent

function variance.

Lsvgp, which depends on m, S, Z, σobs and the various kernel hyperparameters θ, can then be
maximized with gradient methods. We refer to the resulting GP regression method as SVGP.

A.2 PPGPR-NC REGRESSION MODEL: LIKELIHOOD FUNCTION

Jankowiak et al. (2019) recently proposed a parametric Gaussian Process regressors (PPGPR) method.
We defer the reader to Section (3.2) of their paper for details about their likelihood function.
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