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Experiments

Background: Lossless Compression

Background: Normalizing Flows

Dataset
Cifar10
ImageNet32
ImageNet64

IDF
3.34 (2.40x)
4.18 (1.91x)
3.90 (2.05x)

IDF†
3.60 (2.22x)
4.18 (1.91x)
3.94 (2.03x)

Bit-Swap
3.82 (2.09x)
4.50 (1.78x)
       —

FLIF
4.37 (1.83x)
5.09 (1.57x)
4.55 (1.76x)

PNG
5.89 (1.36x)
6.54 (1.25x)
5.74 (1.39x)

IDF† indicates our IDF model trained on ImageNet32, but evaluated on the indicated dataset.

Tunable Compression
Without domain knowledge, we can learn a domain specific compressor 
using only data. We evaluate this on a histology dataset.

Dataset
Histology

IDF
2.42 (3.19x)

JP2-WSI
3.04 (2.63x)

FLIF
4.00 (2.00x)

JPEG2000
4.26 (1.88x)

Progressive Image Rendering

~30%

~15%

~60%

100%

Lossless compression methods aim to reduce the size of data in 
expectation, using a statistical model. Flow-based models are attractive in 
this setting because they admit exact likelihood optimization, which is 
equivalent to minimizing the expected number of bits per message. 
Conventional flows learn continuous distribution, whereas entropy coders 
are based on discrete distributions. As a solution, we introduce a flow-
based generative model for ordinal discrete data called Integer Discrete 
Flow (IDF). To the best of our knowledge, this is the first lossless 
compression method that uses invertible neural networks.
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In lossless compression one aims to use short codes for likely symbols and 
long codes for unlikely symbols. Since the likely symbols occur more 
frequently, the expected code length is short.  The optimal length for a 
sample x is          . The challenge lies in finding a good statistical 
models          . In the example below we show that by taking the likelihood 
into account, one can obtain a shorter expected code.

The expected code length is equal to the log-likelihood objective. Hence,
optimizing log-likelihood is equivalent to minimizing the expected code 
length.

Normalizing Flows are an attractive statistical model because they admit 
exact likelihood optimization. They map complicated distributions to simple 
distributions using an invertible map. 

The likelihood can be computed using the change of variables formula:

Integer Discrete Flows
We introduce integer discrete flows (IDFs) to make flows suitable for lossless 
compression. IDFs are invertible integer maps that can represent rich 
transformations. They can be used to learn the probability mass function on 
(high-dimensional) ordinal discrete data.  The model distribution can then be 
expressed as:

Because IDFs define discrete distributions, they can directly be used by an 
entropy encoder for lossless compression:

Integer Coupling

the coupling layer to integers by rounding. A 
deep architecture is obtained by composing 
multiple integer coupling layers. As each 
coupling layer is an integer map, so is the 
composition.

Discrete Base Distribution
The discrete change of variables formula requires pZ(z) to be discrete.  We
propose the Discretized Logistic distribution. 
The discretized logistic captures the inductive 
bias that values close together are related, 
which is well-suited for ordinal data. Moreover, 
evaluation is cheap as the CDF of the logistic is 
related to the sigmoid.

Architecture
The IDF architecture utilizes splitpriors for 
hierarchical structure. Empirically we found 
this improves performance. Moreover, 
since a part of the flow operators on lower 
dimensional data, there is also a 
computational benefit.

In our experiments, we found that too 
many coupling layers are difficult to 
optimize, possibly due to the introduced 
gradient bias. To circumvent this, we use 
more expressive coupling layers while 
using fewer coupling layers in total.

To test the compression performance of IDFs, we compare with a number 
of established lossless compression methods:  PNG; FLIF, a recent format 
that uses machine learning  to  build  decision  trees  for  efficient  coding;  
and  Bit-Swap,  a  VAE  based  lossless compression method. We show that 
IDFs outperform all these formats on CIFAR10, ImageNet32 and 
ImageNet64. 

IDFs support progressive rendering naturally. To partially render an image 
using IDFs, first the received variables are decoded. All unknown remaining  
variables can be sampled from the IDF. Below we show various images 
decoded using approximately 15, 30, 60 and 100% of the bitstream.


