
Integer Discrete Flows and
Lossless Compression
Emiel Hoogeboom, Jorn Peters, Rianne van den Berg* & Max Welling.

* Now at Google.

Lossless source compression

● Map every input to unique output such that

probable inputs map to shorter codes and

improbable inputs are mapped to longer

codes.

● Minimum code length for a symbol x is close

to

● Minimum expected code length:

Problem formulation: Define invertible

Integer Discrete Flows (IDFs): Remove scaling in coupling layers (step 1).

Normalizing flows for integer-valued data

Use straight-through estimator to backprop gradients

Problem formulation: Define invertible

Integer Discrete Flows (IDFs): Constrain translations to be integer valued (step 2).

Normalizing flows for integer-valued data

Obtaining the density

Continuous random variables:

Discrete random variables:

Lossless source compression

Step 1: transform input data to z-space using the IDF.

Lossless source compression
High-probability z → Short code

Low-probability z → Long code
Step 2: encode z using off-the-shelve entropy encoder

Lossless source compression

Decompression works analogously in inverse order, using the inverse transformation: the entropy
based decoder following by the inverse mapping defined by the IDF.

Results

Medical data: Histology dataset Resolution: 2000 x 2000 pixels

Sampled patches: 80 x 80 pixels

IDF trained on 80 x 80 px patches

Compression is done patch-wise (each patch
is considered independent)

Progressive image rendering
To partially render an image using IDFs, first the received variables are decoded. Next, using the hierarchical structure of the prior
and ancestral sampling, the remaining dimensions are obtained. Below, the decoded images using 15, 30, 60, and 100% of the
encoded data was user to decode the images.

