
Integer Discrete Flows and Lossless Compression
Emiel Hoogeboom, Jorn Peters, Rianne van den Berg & Max Welling

Integer Flow

Squeeze

Factor out

Integer Flow

Squeeze

…
IDF Coder

We modify the standard coupling layer by constraining the translations in

Experiments

Background: Lossless Compression

Background: Normalizing Flows

Dataset
Cifar10
ImageNet32
ImageNet64

IDF
3.34 (2.40x)
4.18 (1.91x)
3.90 (2.05x)

IDF†
3.60 (2.22x)
4.18 (1.91x)
3.94 (2.03x)

Bit-Swap
3.82 (2.09x)
4.50 (1.78x)
 —

FLIF
4.37 (1.83x)
5.09 (1.57x)
4.55 (1.76x)

PNG
5.89 (1.36x)
6.54 (1.25x)
5.74 (1.39x)

IDF† indicates our IDF model trained on ImageNet32, but evaluated on the indicated dataset.

Tunable Compression
Without domain knowledge, we can learn a domain specific compressor
using only data. We evaluate this on a histology dataset.

Dataset
Histology

IDF
2.42 (3.19x)

JP2-WSI
3.04 (2.63x)

FLIF
4.00 (2.00x)

JPEG2000
4.26 (1.88x)

Progressive Image Rendering

~30%

~15%

~60%

100%

Lossless compression methods aim to reduce the size of data in
expectation, using a statistical model. Flow-based models are attractive in
this setting because they admit exact likelihood optimization, which is
equivalent to minimizing the expected number of bits per message.
Conventional flows learn continuous distribution, whereas entropy coders
are based on discrete distributions. As a solution, we introduce a flow-
based generative model for ordinal discrete data called Integer Discrete
Flow (IDF). To the best of our knowledge, this is the first lossless
compression method that uses invertible neural networks.

a

b

c

d

00

01

10

11

1/2

1/4

1/8

1/8

Sym code p

a

b

c

d

0

10

110

111

1/2

1/4

1/8

1/8

Sym code p

In lossless compression one aims to use short codes for likely symbols and
long codes for unlikely symbols. Since the likely symbols occur more
frequently, the expected code length is short. The optimal length for a
sample x is . The challenge lies in finding a good statistical
models . In the example below we show that by taking the likelihood
into account, one can obtain a shorter expected code.

The expected code length is equal to the log-likelihood objective. Hence,
optimizing log-likelihood is equivalent to minimizing the expected code
length.

Normalizing Flows are an attractive statistical model because they admit
exact likelihood optimization. They map complicated distributions to simple
distributions using an invertible map.

The likelihood can be computed using the change of variables formula:

Integer Discrete Flows
We introduce integer discrete flows (IDFs) to make flows suitable for lossless
compression. IDFs are invertible integer maps that can represent rich
transformations. They can be used to learn the probability mass function on
(high-dimensional) ordinal discrete data. The model distribution can then be
expressed as:

Because IDFs define discrete distributions, they can directly be used by an
entropy encoder for lossless compression:

Integer Coupling

the coupling layer to integers by rounding. A
deep architecture is obtained by composing
multiple integer coupling layers. As each
coupling layer is an integer map, so is the
composition.

Discrete Base Distribution
The discrete change of variables formula requires pZ(z) to be discrete. We
propose the Discretized Logistic distribution.
The discretized logistic captures the inductive
bias that values close together are related,
which is well-suited for ordinal data. Moreover,
evaluation is cheap as the CDF of the logistic is
related to the sigmoid.

Architecture
The IDF architecture utilizes splitpriors for
hierarchical structure. Empirically we found
this improves performance. Moreover,
since a part of the flow operators on lower
dimensional data, there is also a
computational benefit.

In our experiments, we found that too
many coupling layers are difficult to
optimize, possibly due to the introduced
gradient bias. To circumvent this, we use
more expressive coupling layers while
using fewer coupling layers in total.

To test the compression performance of IDFs, we compare with a number
of established lossless compression methods: PNG; FLIF, a recent format
that uses machine learning to build decision trees for efficient coding;
and Bit-Swap, a VAE based lossless compression method. We show that
IDFs outperform all these formats on CIFAR10, ImageNet32 and
ImageNet64.

IDFs support progressive rendering naturally. To partially render an image
using IDFs, first the received variables are decoded. All unknown remaining
variables can be sampled from the IDF. Below we show various images
decoded using approximately 15, 30, 60 and 100% of the bitstream.

