
Pure Exploration in Kernel and Neural Bandits

Yinglun Zhu∗
Department of Computer Sciences
University of Wisconsin-Madison

Madison, WI 53706
yinglun@cs.wisc.edu

Dongruo Zhou∗
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095
drzhou@cs.ucla.edu

Ruoxi Jiang∗
Department of Computer Science

University of Chicago
Chicago, IL 60637

roxie62@uchicago.edu

Quanquan Gu
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095

qgu@cs.ucla.edu

Rebecca Willett
Department of Statistics and Computer Science

University of Chicago
Chicago, IL 60637

willett@uchicago.edu

Robert Nowak
Department of Electrical and Computer Engineering

University of Wisconsin-Madison
Madison, WI 53706
rdnowak@wisc.edu

Abstract

We study pure exploration in bandits, where the dimension of the feature repre-
sentation can be much larger than the number of arms. To overcome the curse
of dimensionality, we propose to adaptively embed the feature representation of
each arm into a lower-dimensional space and carefully deal with the induced
model misspecifications. Our approach is conceptually very different from existing
works that can either only handle low-dimensional linear bandits or passively deal
with model misspecifications. We showcase the application of our approach to
two pure exploration settings that were previously under-studied: (1) the reward
function belongs to a possibly infinite-dimensional Reproducing Kernel Hilbert
Space, and (2) the reward function is nonlinear and can be approximated by neu-
ral networks. Our main results provide sample complexity guarantees that only
depend on the effective dimension of the feature spaces in the kernel or neural
representations. Extensive experiments conducted on both synthetic and real-world
datasets demonstrate the efficacy of our methods.

1 Introduction

Pure exploration in bandits [11, 12, 6] has been extensively studied in machine learning. Consider
a set of arms, where each arm is associated with an unknown reward distribution. The goal is to
∗Equal contribution

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

approximately identify the optimal arm using as few samples as possible. Applications of bandit pure
exploration range from medical domains [3] to online content recommendation [40].

Despite the popularity of bandit pure exploration, it was previously mainly studied in two relatively
restrictive settings: (1) the standard multi-armed bandit setting [22, 19, 9, 18], where the expected
rewards among arms are completely unrelated to each other, and (2) the (generalized) linear bandit
setting [38, 13, 10, 26], where the expected rewards are assumed to be linearly parameterized by
some unknown weight vector. The standard multi-armed bandit setting fails to deal with large arm
sets, and the linear bandit setting suffers from both model misspecifications (due to its simplified
linear form) and the curse of dimensionality in the high-dimensional setting. Pure exploration is
also studied in continuous spaces. However, guarantees therein scale exponentially with dimension
[31, 4].

In this paper, we generalize bandit pure exploration to the nonlinear and high-dimensional settings.
More specifically, we study the following two settings: (1) the rewards of arms are parameterized by
a function belonging to a Reproducing Kernel Hilbert Space (RKHS), and (2) the rewards of arms are
nonlinear functions that can be approximated by an overparameterized neural network. Problems in
these two settings are often high-dimensional in nature. To overcome the curse of dimensionality,
we propose to adaptively embed each arm’s feature representation in a lower-dimensional space
and carefully deal with the induced misspecifications. Note that our approach is conceptually very
different from all existing work dealing with model misspecifications: they assume the existence of
misspecifications and address it in the original space (thus dealing with model misspecifications in
a passive way) [28, 7]. On the other hand, we deliberately induce (acceptable) misspecifications to
embed arms into lower-dimensional spaces and thus overcome the curse of dimensionality.

1.1 Contribution and Outline

We make the following main contributions:

• In Section 3, we introduce the idea of adaptive embedding to avoid the curse of dimensionality.
The induced model misspecifications are carefully handled, which is novel in the bandit pure
exploration setting. The sample complexity is theoretically analyzed and we relate the instance-
dependent sample complexity to the complexity of a closely-related linear bandit problem without
model misspecification. As a by-product, our algorithm can also be applied to constrained high-
dimensional linear bandit pure exploration to reduce sample complexity.

• In Section 4, we specialize the adaptive embedding scheme to pure exploration in an RKHS. We
construct feature mappings from eigenfunctions and eigenvalues of the associated kernel. The
effective dimension of the kernel is analyzed, and we provide sample complexity guarantees in
terms of the eigenvalue decay of the associated kernel. We rely on a known kernel in this setting.

• In Section 5, we further extend our adaptive embedding scheme to pure exploration with a general
nonlinear reward function and model the reward function with an over-parameterized neural
network. Sample complexity guarantees are provided with respect to the eigenvalue decay of the
associated Neural Tangent Kernel. To the best of our knowledge, this provides the first theoretically
founded pure exploration algorithm with a neural network approximation.

• In Section 6, we conduct extensive experiments on both synthetic and real-world datesets to confirm
the efficacy of our proposed algorithms. We conclude our paper in Section 7 with open problems.

1.2 Related Work

The bandit pure exploration problem has a long history, dating back to the seminal work by Bechhofer
[5], Paulson et al. [32]. One classical objective of pure exploration is Best Arm Identification (BAI),
where the goal is to identify the best arm using as few samples as possible [22, 19, 9, 15]. To make
it applicable to a large action space, the BAI problem is also extensively studied as the good arm
identification problem, where the goal is to identify an ε-optimal arm [11, 12, 20, 21, 34, 23, 30].

The pure exploration problem in linear bandits is initially analyzed in Soare et al. [38], where
optimal experimental design [27] is applied to guide the allocation of samples. Other approaches
dealing with linear bandits, with various sample complexity guarantees, include adaptive sampling
[45] and an approach called track-and-stop [10]. Constrained linear bandit pure exploration is also
commonly studied with additional assumptions on the reward parameters [41, 10]. We note that the

2

track-and-stop approach only achieves optimal instance-dependent sample complexity in the regime
where the confidence parameter approaches 0, but fails to do so in the moderate confidence regime.
Fiez et al. [13] propose an elimination-based algorithm (with optimal design) that achieves (nearly)
instance-dependent sample complexity. such algorithm is further generalized to the combinatorial
bandit setting [24].

Learning with model misspecifications was recently introduced in bandit learning, with the primary
emphasis placed on the regret minimization problem [16, 28, 14]. A very recent independent work
studies pure exploration in kernel bandits with misspecifications [7]; both their and our algorithms
follow the framework of RAGE [13] and draw inspiration from [28]. Camilleri et al. [7] propose a
robust estimator that works in high-dimensional spaces and also explore the project-then-round idea
through regularized least squares. Our algorithms adaptively embed actions into lower dimensional
spaces according to some error tolerances (different embeddings from round to round); our rounding
and elimination steps are thus computed only with respect to lower-dimensional embeddings. We
additionally study the pure exploration problem with an overparameterized neural network. As
mentioned before, our approach is also conceptually different from existing ones: rather than
passively dealing with model misspecifications in its original representation, we deliberately and
adaptively embed arms into a lower-dimensional space to avoid the curse of dimensionality; the
induced model misspecifications are also carefully dealt with in our algorithms.

2 Problem setting

We introduce the general setting and notations for pure exploration in bandits. Consider a set of arms
X ⊆ RD where the number of arms |X | = K is possibly very large. We use an unknown function
h : X → [−1, 1] to represent the true reward of each arm. A noisy feedback h(x) + ξ is observed
after each sample arm x, where the noise ξ is assumed to be 1-sub-Gaussian. The learner is allowed
to allocate her samples based on previously collected information, and the goal is to approximately
identify an approximately optimal arm using as few samples as possible. Let x? = arg maxx∈X h(x)
denote the optimal arm among X . We aim at developing (ε, δ)-PAC guarantees: for any δ ∈ (0, 1),
with probability at least 1− δ, the algorithm outputs an ε-optimal arm x̂ such that h(x̂) ≥ h(x?)− ε
using a finite number of samples. The performance of the algorithm is measured by its sample
complexity, i.e., the number of samples pulled before it stops and recommends a candidate arm.

Notations. We define ∆x = h(x?)− h(x) as the sub-optimality gap of arm x. We use the notations
Sk := {x ∈ X : ∆x < 4 · 2−k} (with S1 = X). We consider feature mappings of the form
ψd(·) : X → Rd, and define ψd(X) = {ψd(x) : x ∈ X}. We use ΛX = {λ ∈ R|X | :

∑
x∈X λx =

1, λx ≥ 0} to denote the (|X | − 1)-dimensional probability simplex over arms in X ; and set
Aψd(λ) =

∑
x∈X λxψd(x)ψd(x)>.2 We use ‖x‖A =

√
x>Ax to represent the Mahalanobis

norm. We also define Y(V) = {v − v′ : v,v′ ∈ V} for any set V . For a matrixH ∈ R|X |×|X|, we
useH(x,x′) to denote the entry ofH which locates at row x and column x′.

3 Bandit pure exploration with adaptive embedding

We introduce the idea of bandit pure exploration with adaptive embedding, which can be viewed as an
approach that actively trades off sample complexity with accuracy guarantees: we adaptively embed
the feature representation into lower-dimensional spaces to avoid the curse of dimensionality, and
conduct pure exploration with misspecified linear bandits. The embedding dimensions are carefully
selected so that we can identify an ε-optimal arm.

We formalize the idea as follows. For any d ∈ N, we assume the existence of a feature mapping
ψd : X → Rd and a unknown reward vector θd ∈ Rd such that, for any x ∈ X ,

h(x) = 〈ψd(x),θd〉+ ηd(x),

where ηd(x) represents the induced approximation error on arm xwith respect to the low-dimensional
embedding ψd(·). Without loss of generality, we assume that the action set X is rich enough so
that ψd(X) spans Rd for d considered in this paper. Otherwise, one can always project feature

2A generalized inversion is used for singular matrices. We refer to Appendix A.1 for detailed discussion.

3

representations ψd(X) into an even lower-dimensional space without losing information in the linear
component.

We use γ̃ : N → R to represent the misspecification level: an upper bound of the induced
approximation error across all arms, i.e., maxx∈X |ηd(x)| ≤ γ̃(d). We define g(d, ζ) :=
(1 + ζ) infλ∈ΛX supy∈Y(ψd(X))‖y‖2Aψd (λ)−1 , which represents the optimal value of a transductive

design among embeddings in Rd. We define γ(d) := (16 + 8
√
g(d, ζ)) γ̃(d), which quantifies the

sub-optimality gap of the identified arm in the worst case. One can easily show γ(d) ≤ O(γ̃(d)
√
d)

through Kiefer-Wolfowitz theorem [27].
Remark 1. We believe such optimality guarantees are un-improvable in general. In fact, a hard in-
stance is constructed in [28] showing that, even with deterministic feedback, identifying a o(γ̃(d)

√
d)-

optimal arm requires sample complexity exponential on d. On the other side, identifying a Ω(γ̃(d)
√
d)-

optimal only requires sample complexity polynomially in d. Such a sharp trade-off between optimality
and sample complexity motivates our definition of γ(d) (and our sample complexities are polynomially
in d).

We assume the knowledge of both the feature mapping ψd(·) and the error function γ̃(·). This
assumption is mild since one can explicitly construct/analyze ψd(·) and γ̃(·) in many cases (as
discussed in Section 3.2, Section 4 and Section 5). We further assume that γ(d) can be made
arbitrarily small for large enough d. Such assumption trivially holds if the rewards are perfectly
explained for d large enough, i.e., γ̃(d) = 0. We now define the effective dimension with respect to
γ(d) (induced from feature mapping ψd(·)) as follows.
Definition 1. For any ε > 0, we define the effective dimension as deff(ε) := min{d ≥ 1 : γ(d) ≤ ε}.

In general, the effective dimension deff(ε) captures the smallest dimension one needs to explore in
order to identify an ε-optimal arm. Similar notions have been previously used in regret minimization
settings [42, 43]. One can easily see that deff(ε1) ≤ deff(ε2) as long as ε1 ≥ ε2.

3.1 Algorithm and analysis

Algorithm 1 follows the framework of RAGE [13] to eliminate arms with sub-optimality gap≥ O(2−k)
at the k-th iteration. It runs for n = O(log(1/ε)) iterations and identifies an ε-optimal arm. We use
optimal experimental design to select arms for faster elimination. For any fixed design λ ∈ ΛX , with
N ≥ rd(ζ) samples and an approximation factor ζ (with default value ζ ∈ [1/10, 1/4]), the rounding
procedure in Rd, i.e., ROUND(λ,N, d, ζ), outputs a discrete allocation {x1,x2, . . . ,xN} satisfying

max
y∈Y(ψd(X))

‖y‖2(∑N
i=1 ψd(xi)ψd(xi)>)

−1 ≤ (1 + ζ) max
y∈Y(ψd(X))

‖y‖2Aψd (λ)−1/N. (1)

Efficient rounding procedures exist with rd(ζ) = d2+d+2
ζ [33] or rd(ζ) = 180d

ζ2 [1, 13]. We refer
reads to [13, 33, 1] for detailed rounding algorithms and the associated computational complexities.

Unlike RAGE that directly works in the original high-dimensional space, Algorithm 1 adaptively
embeds arms into lower-dimensional spaces and carefully deals with the induced misspecifications.
More specifically, the embedding dimension dk is selected as the smallest dimension such that the
induced error term εk is well controlled, i.e., εk ≤ O(2−k). The embedding is more aggressive at
initial iterations due to larger error tolerance; The embedding dimension selected at the last iteration is
(roughly) deff(ε) to identify an ε-optimal arm. The number of samples required for each iteration Nk
is with respect to an experimental design in the lower-dimensional space after embedding. The ROUND
procedure also becomes more efficient due to the embedding. Before stating our main theorem, we
introduce the following complexity measure [38, 13, 10], which quantifies the hardness of the pure
exploration problem (with respect to mapping ψd(·)).

ρ?d(ε) := inf
λ∈ΛX

sup
x∈X\{x?}

‖ψd(x?)−ψd(x)‖2Aψd (λ)−1

max{h(x?)− h(x), ε}2
.

Theorem 1. With probability of at least 1− δ, Algorithm 1 correctly outputs an ε-optimal arm with
sample complexity upper bounded by

640

dlog2(2/ε)e∑
k=1

((
k ρ?dk(22−k) log(k2|X |2/δ)

)
+ (rdk(ζ) + 1)

)
≤ Õ

(
deff(ε) ·max{∆min, ε}−2

)
,

4

Algorithm 1 Arm Elimination with Adaptive Embedding and Induced Misspecification

Input: Action set X , confidence parameter δ, accuracy parameter ε and rounding approximation
factor ζ.

1: Set n = dlog2(2/ε)e and Ŝ1 = X .
2: for k = 1, 2, . . . , n do
3: Set δk = δ/k2, dk = deff(4 · 2−k).
4: Select feature representation ψdk(·), and calculate the induced misspecification level γ̃(dk).

Set rdk(ζ) = O(dk/ζ
2) as the number of samples needed for ROUND in Rdk .

5: Set λk and τk be the design and the value of the following optimization problem
inf
λ∈ΛX

sup
y∈Y(ψdk (Ŝk))

‖y‖2Aψdk (λ)−1 .

6: Set εk = 2γ̃(dk) + γ̃(dk)
√

(1 + ζ) τk,
and Nk = max{d(2−k − εk)−22(1 + ζ) τk log(|Ŝk|2/δk)e, rdk(ζ)}.

7: Get {x1,x2, . . . ,xNk} = ROUND(λk, Nk, dk, ζ).
8: Pull arms {x1,x2, . . . ,xNk} and receive rewards {y1, . . . , yNk}.
9: Set θ̂k = A−1

k bk, whereAk =
∑Nk
i=1ψdk(xi)ψdk(xi)

> and bk =
∑Nk
i=1ψdk(xi)yi.

10: Eliminate arms with respect to criteria

Ŝk+1 = Ŝk \ {x ∈ Ŝk : ∃x′ such that (ψdk(x′)−ψdk(x))>θ̂k ≥ ωk(ψdk(x′)−ψdk(x))},

where ωk(y) = εk + ‖y‖A−1
k

√
2 log(|Ŝk|2/δk).

11: end for
Output: Output any arm in Ŝn+1.

where dk = deff(4 · 2−k) ≤ deff(ε) since 4 · 2−k ≥ ε when k ≤ dlog2(2/ε)e.

The rounding term rd(ζ) commonly appears in the sample complexity of linear bandits [13, 24]; and
our rounding term is with respect to the lower-dimensional space after embedding, which only scales
with dk rather than the ambient dimension. To further interpret the complexity, we define another
complexity measure of a closely related linear bandit problem in the low-dimensional space and
without model misspecifications.

ρ̃?d(ε) := inf
λ∈ΛX

sup
x∈X\{x?}

‖ψd(x?)−ψd(x)‖2Aψd (λ)−1

max{〈ψd(x?)−ψd(x),θd〉, ε}2
,

where 〈ψd(x?)−ψd(x),θd〉 on the denominator represents the sub-optimality gap characterized by
the linear component rather than the true sub-optimality gap h(x?)− h(x). The relation between
ρ?(ε) and ρ̃?(ε) is discussed as follows.

Proposition 1. Suppose maxx∈X |h(x) − 〈ψd(x),θd〉| ≤ γ̃(d). For any ε ≥ γ̃(d), we have
ρ?d(ε) ≤ 9ρ̃?d(ε). When γ̃(d) < ∆min/2, ρ̃?d(0) represents the sample complexity of a closely-related
linear bandit problem without model misspecifications, i.e., h̃(x) = 〈ψd(x),θd〉.
Remark 2. When γ̃(d) < ∆min/2, our sample complexity upper bound is relevant to the sample
complexity of closely-related linear bandit problems without model misspecifications in lower-
dimensional spaces. In fact, ρ̃?d(0) log(1/2.4δ) is the lower bound of the corresponding linear bandit
problem in Rd [38, 13, 10].

Remark 3. Although the misspecification levels are generally known for situations considered in this
paper, we also provide an algorithm that deals with unknown misspecification levels in Appendix D.
Similar sample complexity guarantees are provided, but only in an unverifiably way (due to unknown
misspecification levels): the algorithm starts to output ε-good arms after N samples, yet it doesn’t
know when to stop. We refer readers to [23] for details on the unverifiable sample complexity.

3.2 Application to high-dimensional linear bandits

We apply the idea of adaptive embedding to high-dimensional linear bandits. We consider linear
bandit problem of the form h = Xθ? where X ∈ RK×D and the i-th row of X represents the

5

feature vector of arm xi. We assume that ‖θ?‖2 ≤ C, which is commonly studied as the constrained
linear bandit problem [41, 10].

LetX = UΣV > be the singular value decomposition (SVD) ofX , with singular values σ1 ≥ σ2 ≥
· · · ≥ σr > 0 for some r ≤ min{K,D}. Let ui,j denote the (i, j)-th entry of matrix U and u:,i

denote the i-th column of U (similar notations for V). We have

h = Xθ? = UΣV >θ? =

d∑
i=1

σiu:,iv
>
:,iθ? +

D∑
i=d+1

σiu:,iv
>
:,iθ? =:

d∑
i=1

σiu:,iv
>
:,iθ? + η,

where ‖η‖∞ ≤ C
∑D
i=d+1 σi. As a result, for any d ≤ r, we can construct the feature map-

ping ψd(xi) = [σ1ui,1, . . . , σdui,d]
> ∈ Rd such that h(xi) = 〈ψd(xi), θ̃?〉 + η(xi), where

θ̃? =
[
V >θ

]
[1:d]

∈ Rd is the associated reward parameter.3 The upper bound of the induced

misspecification can be expressed as γ̃(d) = C
∑D
i=d+1 σi, which allows us to calculate γ(d). We

can then apply Algorithm 1 to identify an ε-optimal arm. A high-dimensional linear bandit instance is
provided in Appendix B.3 showing that: Algorithm 1 takes Õ(1/ε2) samples to identify an ε-optimal
arm, while the sample complexity upper bound of RAGE scales as Õ(D/ε2).

4 Pure exploration in RKHS

We consider a kernel function K : Z ×Z → R over a compact set Z; we assume the kernel function
satisfies condition stated in the Mercer’s Theorem (see Appendix E.1) and has eigenvalues decay
fast enough (see Assumption 1). LetH be the Reproducing Kernel Hilbert Space (RKHS) induced
from K. We assume X ⊆ Z and the true reward of any arm x ∈ X is given by an unknown function
h ∈ H such that ‖h‖H ≤ 1.

Let {φj}∞j=1 and {µj}∞j=1 be sequences of eigenfunctions and non-negative eigenvalues associated
with kernel K.4 A corollary of Mercer’s theorem shows that any h ∈ H can be written in the form
of h(·) =

∑∞
j=1 θjφj(·) for some {θj}∞j=1 ∈ `2(N) such that

∑∞
j=1 θ

2
j/µj < ∞. We also have

‖h‖2H =
∑∞
j=1 θ

2
j/µj . Although functions in RKHS are non-linear in nature, we now can represent

them in terms of an infinite-dimensional linear function. We construct feature mappings for the
embedding next.

For any x ∈ X , we have h(x) =
∑∞
j=1 θjφj(x) =

∑∞
j=1

θj√
µj

√
µjφj(x). Let Cφ :=

supx∈X̃ ,j≥1|φj(x)|. Since
∑∞
j=1 θ

2
j/µj = ‖h‖2H ≤ 1 is bounded, for any d ∈ N, we define

feature mapping ψd(x) = [
√
µ1φ1(x), . . . ,

√
µdφd(x)]> ∈ Rd such that

h(x) = 〈θd,ψd(x)〉+ ηd(x),

where θd = [θ1/
√
µ1, . . . , θd/

√
µd]
> ∈ Rd and |ηd(x)| ≤ γ̃(d) := Cφ

√∑
j>d µj . We remark here

that the constant Cφ is calculable and usually mild, e.g., Cφ = 1 for φj(x) = sin((2j − 1)πx/2).

We can then construct γ(d) and deff(ε) as in Section 3 and specialize Algorithm 1 to the kernel setting.
Both γ(d) and deff(ε) depend on eigenvalues of the associated kernel. Fortunately, fast eigenvalue
decay are satisfied by most kernel functions, e.g., Gaussian kernel. We quantify such properties
through the following assumption.

Assumption 1. We consider kernels with the following eigenvalue decay with some absolute constants
Ck and β.

1. Kernel K is said to have (Ck, β)-polynomial eigenvalue decay (with β > 3/2) if µj ≤ Ckj−β for
all j ≥ 1.

3We note that the embeddings and associated quantities can also be constructed on the fly with respect to the
set of uneliminated arms.

4With a known kernel, the sequence of eigenfunctions and eigenvalues can be analytically calculated or
numeriaclly approximated [36, 35]. We assume the knowledge of eigenfunctions and eigenvalues in this paper.

6

2. Kernel K is said to have (Ck, β)-exponential eigenvalue decay (with β > 0) if µj ≤ Cke−βj for
all j ≥ 1.

Theorem 2. Suppose Assumption 1 holds. For any ε > 0, the following statements hold when we
specialize Algorithm 1 to the kernel setting.

1. Suppose K has (Ck, β)-polynomial eigenvalue decay. We have deff(ε) ≤ O(ε−2/(2β−3)),
and the sample complexity of identifying an ε-optimal arm is upper bounded by
Õ(ε−2/(2β−3) max{∆min, ε}−2).

2. Suppose K has (Ck, β)-exponential eigenvalue decay. We have deff(ε) ≤ O(log(1/ε)), and the
sample complexity of identifying an ε-optimal arm is upper bounded by Õ(max{∆min, ε}−2).

Remark 4. Our sample complexity guarantees are directly related to the eigenvalue decay of the
underlying kernel function, rather than the empirical kernel matrix as studied in previous works
[7, 42]. Although one can also provide an instance dependent bound as in Theorem 1, the worst-case
sample complexity bound in Theorem 2 provides insightful characterizations of the sample complexity
in terms of eigenvalue decay. One should notice that with exponential eigenvalue decay, the sample
complexity Õ(ε−2) essentially matches, up to logarithmic factors, the complexity of distinguishing a
two-armed bandit up to accuracy ε [25].

5 Pure exploration with neural networks

In this section we present a neural network-based pure exploration algorithm in Algorithm 2. Our
algorithm is inspired by the recently proposed neural bandits algorithms for regret minimization
[47, 46]. At the core of our algorithm is to use a neural network f(x;θ) to learn the unknown reward
function h. Specifically, following [8, 47], we consider a fully connected neural network f(x;θ)
with depth L ≥ 2

f(x;θ) =
√
mWLσ

(
WL−1σ

(
· · ·σ(W1x)

))
, (2)

where σ(x) := max(x, 0) is the ReLU activation function, W1 ∈ Rm×d,WL ∈ R1×m, and for
2 ≤ i ≤ L − 1, Wi ∈ Rm×m. Moreover, we denote θ = [vec(W1)>, . . . , vec(WL)>]> ∈ Rp,
where p = m+md+m2(L− 2) is the number of all the network parameters. We use g(x;θ) =
∇θf(x;θ) to denote the gradient of the neural network output with respect to the weights.

In detail, at k-th iteration, Algorithm 2 firstly applies its current gradient mapping g(x;θk−1) over the
whole action set X , and obtains the collection of gradientsG ∈ R|X |×p. Then Algorithm 2 does SVD
overG and constructs a dk-dimensional feature mappingψdk , which can be regarded as the projection
of the gradient feature mapping g(x;θk−1) to the most informative dk-dimensional eigenspace. Here
we choose dk such that the summation of the eigenvalues of the remaining eigenspace be upper
bounded by some error ε̄. Algorithm 2 then computes the optimal design λk over ψk(X) and pulls
arms {x1, . . . ,xNk} based on both the design λk and the total number of allocations Nk. Finally,
Algorithm 2 trains a new neural network f(x;θk) using gradient descent starting from the initial
parameter θ0 (details are deferred to Appendix F), then eliminates the arms x in the current arm set
Ŝk which are sub-optimal with respect to the neural network function value f(x;θk).

The main difference between Algorithm 2 and its RKHS counterpart is as follows. Unlike Algorithm
1 which works on known feature mappings ψd (derived from a known kernel K), Algorithm 2 does
not have information about the feature mapping, and thus it constructs the feature mapping from the
raw high-dimensional up-to-date gradient mapping g(x;θk−1). The feature mapping is constructed
with respect to a trained neural work, which leverages the great representation power of neural
networks. This makes Algorithm 2 a more general and flexible algorithm than Algorithm 1.

Now we present the main theorem of Algorithm 2. Let H |X |×|X| be the Neural Tangent Kernel
(NTK)[17] gram matrix over all arms X (the detailed definition ofH is deferred to Appendix F). We
define the effective dimension for the neural version as below. The definition is similar to Definition 1.

7

Algorithm 2 Neural Arm Elimination

Input: Action set X , initial parameter θ0, neural network f(x;θ), gradient mapping g(x,θ),
width of the matrix m, parameter of the number of allocations A, approximation parameter ζ,
regularization parameter α, error parameter ε̄, ε, confidence level δk = δ/(8k2)

1: Set Ŝ1 = X .
2: for k = 1, 2, . . . , n do
3: Construct the truncated feature representation ψk(X) based on gradient mapping g(x;θk−1).

In detail, letG ∈ R|X |×p be the collection of gradients such that
G = [g(x1;θk−1)>; . . . ; g(x|X |;θk−1)>]/

√
m ∈ R|X |×p (3)

Let [U ,Σ,V] be the SVD of G, where U = (ui,j) ∈ R|X |×|X|, Σ =

[diag(e1, . . . , e|X |), 0] ∈ R|X |×p, V ∈ Rp×p. Get dk = min{d ∈ [|X |] :
∑|X |
i=d+1 ei ≤ ε̄},

and set ψdk(xi) = (e1ui,1, . . . , edkui,dk) ∈ Rdk .
4: Set λk and τk be the experimental design and the value of the following optimization problem

inf
λ∈ΛX

sup
y∈Y(ψdk (Ŝk))

‖y‖2Aψdk (λ)−1 . (4)

5: Set Nk = max
{

22k A(1 + ζ) log
(
|X |2/δk

)
, rdk(ζ)}.

6: Get {x1,x2, . . . ,xNk} = ROUND(λk, Nk, dk, ζ).
7: Pull arms {x1,x2, . . . ,xNk} and receive rewards {y1, . . . , yNk}.
8: Using Jk step ηk-step size gradient descent to optimize the following loss function to obtain

θk,
θk = arg minL(θ) :=

Nk∑
j=1

(f(xj ;θ)− yj)2 +
mα

2
‖θ − θ0‖22. (5)

9: SetAk = αI +
∑Nk
i=1ψdk(x)ψdk(x)> and eliminate arms with respect to criteria

Ŝk+1 = Ŝk \ {x ∈ Ŝk : ∃x′ such that f(x′;θk)− f(x;θk) ≥ 2−k/8 + 3ε/8}.
10: end for
Output: Output any arm in Ŝn+1.

Definition 2 (Neural version). For any ε > 0, we define the effective dimension as deff(ε) :=

min{d ∈ [|X |] :
∑|X |
i=d+1 λi(H) ≤ ε}, where λi(H) is the i-th eigenvalue ofH .

Next, we make standard assumptions for the initialization of neural networks and the arms x ∈ X .

Assumption 2 ([47]). There exists λ0 > 0 such thatH � λ0I . For any x ∈ X , the arm x satisfies
‖x‖2 = 1 and that its j-th coordinate is identical to its j + d/2-th coordinate. Meanwhile, the initial
parameter θ0 = [vec(W1)>, . . . , vec(WL)>]> is initialized as follows: for 1 ≤ l ≤ L− 1, Wl is

set to
(
W 0
0 W

)
, where each entry ofW is generated independently from N (0, 4/m);WL is set

to (w>,−w>), where each entry of w is generated independently from N (0, 2/m).

We now present our main theorem for pure exploration with neural network approximation. The
formal version of our theorem is deferred to Appendix F.

Theorem 3 (Informal). Under Assumption 2, with proper selection of parameters α, n, ε̄, A, ηk, Jk,
then when m = poly(|X |, L, λ−1

0 , log(|X |/δk), Nk, α, ε̄
−1), with probability at least 1 − δ, ŜK+1

only includes arm x satisfying ∆x ≤ ε, and the total sample complexity of Algorithm 2 is bounded by

N = Õ

(
(1 + ζ)deff(ε̄2/|X |)/ε2 + rdeff (ε̄2/|X |)(ζ)

)
= Õ

(
deff(ε̄2/|X |)ε−2

)
.

Remark 5. For the case where the effective dimension can be well bounded, e.g., deff(ε̄2/|X |) =
O(log(|X |/ε̄2)), Theorem 7 suggests that Algorithm 2 is able to identify an ε-optimal arm within
Õ(ε−2) samples. That suggests that our neural network-based algorithm is efficient without con-
structing a low-dimensional linear approximation of h in prior, like the previous linear or RKHS
approaches.

8

6 Experiments

We conduct four experiments on synthetic and real-world datasets. We specialize our embedding
idea to the neural, kernel, and linear regimes, and denote the algorithms as NeuralEmbedding
(Algorithm 2), KernelEmbedding (Algorithm 1 with Gaussian kernel), and LinearEmbedding
(Algorithm 1 with linear representation), respectively. We compare our algorithms with two baselines:
RAGE and ActionElim. RAGE [13] conducts pure exploration in linear bandits and ActionElim
[18, 11] ignores all feature representations. The (empirical) sample complexity of each algorithm
is calculated as the number of samples needed so that the uneliminated set contains only ε-optimal
arms. Unsuccessful runs, i.e., those terminate with non-ε-optimal arms, are reported as failures. In
our experiments, we set ε = 0.1 and δ = 0.05. All results are averaged over 50 runs.5

250 500 750 1000
Numbers of arms

101

102

103

104

105

106

Sa
m

pl
e

Co
m

pl
ex

ity

Neural Embedding (Ours)
Kernel Embedding (Ours)
Linear Embedding (Ours)

RAGE
Action Elim

(a)

10 15 20 25 30
Dimension

101

102

103

104

105

sa
m

pl
e

co
m

pl
ex

ity

Neural Embedding (Ours)
Kernel Embedding (Ours)
Linear Embedding (Ours)

RAGE
Action Elim

(b)

Figure 1: Experiments on synthetic datasets. (a) linear reward function with D = 20; (b) nonlinear
reward function with K = 200.

Synthetic datasets. We first generate the feature matrix X̃ = X + E ∈ RK×D where X is
constructed as a rank-2 matrix andE is a perturbation matrix with tiny spectral norm (See Appendix G
for details). Each row of X̃ represents the feature representation of an arm, and those features can
be grouped into two clusters with equal size. In the case with linear rewards, we let θ? equal to the
first row of X̃ . For nonlinear rewards, the reward of each arm is set as the 2-norm of its feature
representation. We vary the number of arms K and the ambient dimension D in our experiments.

Fig. 1 shows experimental results on synthetic datasets. All algorithms successfully identify ε-
optimal arms with zero empirical failure probability (due to the simplicity of the datasets). In
terms of sample complexity, NeuralEmbedding outperforms all other algorithms in most cases,
and KernelEmbedding and LinearEmbedding significantly outperform RAGE and Action Elim.
The sample complexities of NeuralEmbedding, KernelEmbedding and LinearEmbedding are not
affected when increasing number of arms or dimensions since they first identify the important
subspace and then conduct elimination. On the other side, the sample complexity of ActionElim
gets larger with increasing number of arms and the sample complexity of RAGE gets larger with
increasing dimensions.

MNIST dataset. The MNIST dataset [29] contains hand-written digits from 0 to 9. We view each
digit as an arm, and set their rewards according to the confusion matrix of a trained classifier. Digit 7
is chosen as the optimal arm with reward 1; the reward of digits 1, 2 and 9 are set to be 0.8, and all
other digits have reward 0.5. In each experiment, we randomly draw 200 samples (20 samples each
digit) from the dataset. We project the raw feature matrixX ∈ R200×784 into a lower-dimensional
space X̃ ∈ R200×200 so that it becomes full rank (but without losing any information) and feasible
for RAGE. Our goal is to correctly identify a digit 7.

Yahoo dataset. The Yahoo! User Click Log Dataset R6A6 contains users’ click-through records.
Each record consists of a 36-dimensional feature representation (obtained from an outer product),
and a binary outcome stating whether or not a user clicked on the article. We view each record as

5All algorithms are elimination-styled for fair comparison. Other implementation details are deferred to
Appendix G.

6https://webscope.sandbox.yahoo.com

9

https://webscope.sandbox.yahoo.com

Neural
 Embedding

 (ours)

Kernel
 Embedding

 (ours)

Linear
 Embedding

 (ours)

RAGE Action Elim

1

2

3

4

5

Sa
m

pl
e

Co
m

pl
ex

ity

1e5

(a) MNIST

Neural
 Embedding

 (ours)

Kernel
 Embedding

 (ours)

Linear
 Embedding

 (ours)

RAGE Action Elim

104

105

106

Sa
m

pl
e

Co
m

pl
ex

ity

(b) Yahoo

Figure 2: Experiments on real-world datasets. The mean sample complexity is represented by a black
star. The mean sample complexities of LinearEmbedding and RAGE are heavily affected by outliers
in the Yahoo dataset.

an arm, and set the reward as 0.8 (if clicked) or 0.3 (if not clicked) to makes the problem harder. In
each experiment, we randomly draw 200 arms from the dataset, where 5 of them having rewards
0.8 (proportional to true click-through ratio), Our goal is to identify an arm with rewards 0.8. Our
experimental setup is similar to the one used in Fiez et al. [13]. However, their true rewards are
obtained from a least square regression. We do not enforce linearity in rewards in our experiment.

Box plots in Fig. 2 show the sample complexity of each algorithm on real-world datasets.
NeuralEmbedding significantly outperforms all other algorithms thanks to (1) the representation
power of neural networks and (2) efficient exploration in low-dimensional spaces. KernelEmbedding
and LinearEmbedding have competitive performance on the MNIST dataset. Table 1 shows the
success rate of each algorithm. Linear methods such as RAGE and LinearEmbedding have rela-
tively low success rates on the Yahoo dataset (with nonlinear rewards). Our NeuralEmbedding and
KernelEmbedding methods have high success rates since they are designed for nonlinear setting.

Table 1: Success rates on real-world datasets
NeuralEmbedding KernelEmbedding LinearEmbedding RAGE ActionElim

MNIST 98% 100% 100% 100% 100%
Yahoo 100% 98% 88% 90% 100%

7 Conclusion

We introduce the idea of adaptive embedding in bandit pure exploration. Unlike existing works
that passively deal with model misspecifications, we adaptively embed high-dimensional feature
representations into lower-dimensional spaces to avoid the curse of dimensionality. The induced
misspecifications are carefully dealt with. We further apply our approach to two under-studied
settings with the nonlinearity: (1) pure exploration in an RKHS and (2) pure exploration with neural
networks. Our sample complexity guarantees depend on the effective dimension of the feature spaces
in the kernel or neural representations. We conduct extensive experiments on both synthetic and
real-world datasets, and our algorithms greatly outperform existing ones.

Our current analysis with neural representations is in the NTK regime, which can only describe a
part of the representation of the neural networks. We leave extending our algorithm to more general
settings (beyond the NTK regime) as a future direction.

Acknowledgments and Disclosure of Funding

We thank the anonymous reviewers and area chair for their helpful comments. YZ and RN are partially
supported by AFOSR grant FA9550-18-1-0166. DZ and QG are partially supported by the National
Science Foundation CAREER Award 1906169, IIS-1904183 and AWS Machine Learning Research
Award. RJ and RW are partially supported by AFOSR FA9550-18-1-0166, NSF OAC-1934637, NSF
DMS-2023109, and NSF DGE-2022023. The views and conclusions contained in this paper are those
of the authors and should not be interpreted as representing any funding agencies.

10

References
[1] Zeyuan Allen-Zhu, Yuanzhi Li, Aarti Singh, and Yining Wang. Near-optimal discrete optimiza-

tion for experimental design: A regret minimization approach. Mathematical Programming,
pages 1–40, 2020.

[2] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang.
On exact computation with an infinitely wide neural net. In Advances in Neural Information
Processing Systems, 2019.

[3] Maryam Aziz, Emilie Kaufmann, and Marie-Karelle Riviere. On multi-armed bandit designs
for phase i clinical trials. arXiv preprint arXiv:1903.07082, 2019.

[4] Peter L Bartlett, Victor Gabillon, and Michal Valko. A simple parameter-free and adaptive
approach to optimization under a minimal local smoothness assumption. In Algorithmic
Learning Theory, pages 184–206. PMLR, 2019.

[5] Robert E Bechhofer. A sequential multiple-decision procedure for selecting the best one
of several normal populations with a common unknown variance, and its use with various
experimental designs. Biometrics, 14(3):408–429, 1958.

[6] Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in multi-armed bandits
problems. In International conference on Algorithmic learning theory, pages 23–37. Springer,
2009.

[7] Romain Camilleri, Julian Katz-Samuels, and Kevin Jamieson. High-dimensional experimental
design and kernel bandits. arXiv preprint arXiv:2105.05806, 2021.

[8] Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide
and deep neural networks. In Advances in Neural Information Processing Systems, 2019.

[9] Lijie Chen and Jian Li. On the optimal sample complexity for best arm identification. arXiv
preprint arXiv:1511.03774, 2015.

[10] Rémy Degenne, Pierre Ménard, Xuedong Shang, and Michal Valko. Gamification of pure
exploration for linear bandits. In International Conference on Machine Learning, pages 2432–
2442. PMLR, 2020.

[11] Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Pac bounds for multi-armed bandit and
markov decision processes. In International Conference on Computational Learning Theory,
pages 255–270. Springer, 2002.

[12] Eyal Even-Dar, Shie Mannor, Yishay Mansour, and Sridhar Mahadevan. Action elimination and
stopping conditions for the multi-armed bandit and reinforcement learning problems. Journal
of machine learning research, 7(6), 2006.

[13] Tanner Fiez, Lalit Jain, Kevin G Jamieson, and Lillian Ratliff. Sequential experimental design
for transductive linear bandits. In Advances in Neural Information Processing Systems, pages
10667–10677, 2019.

[14] Dylan J Foster, Claudio Gentile, Mehryar Mohri, and Julian Zimmert. Adapting to misspecifica-
tion in contextual bandits. Advances in Neural Information Processing Systems, 33, 2020.

[15] Aurélien Garivier and Emilie Kaufmann. Optimal best arm identification with fixed confidence.
In Conference on Learning Theory, pages 998–1027. PMLR, 2016.

[16] Avishek Ghosh, Sayak Ray Chowdhury, and Aditya Gopalan. Misspecified linear bandits. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2017.

[17] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in neural information processing systems, pages
8571–8580, 2018.

11

[18] Kevin Jamieson and Robert Nowak. Best-arm identification algorithms for multi-armed bandits
in the fixed confidence setting. In 2014 48th Annual Conference on Information Sciences and
Systems (CISS), pages 1–6. IEEE, 2014.

[19] Kevin Jamieson, Matthew Malloy, Robert Nowak, and Sébastien Bubeck. lil’ucb: An optimal
exploration algorithm for multi-armed bandits. In Conference on Learning Theory, pages
423–439. PMLR, 2014.

[20] Shivaram Kalyanakrishnan, Ambuj Tewari, Peter Auer, and Peter Stone. Pac subset selection in
stochastic multi-armed bandits. In ICML, volume 12, pages 655–662, 2012.

[21] Hideaki Kano, Junya Honda, Kentaro Sakamaki, Kentaro Matsuura, Atsuyoshi Nakamura, and
Masashi Sugiyama. Good arm identification via bandit feedback. Machine Learning, 108(5):
721–745, 2019.

[22] Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed
bandits. In International Conference on Machine Learning, pages 1238–1246. PMLR, 2013.

[23] Julian Katz-Samuels and Kevin Jamieson. The true sample complexity of identifying good
arms. In International Conference on Artificial Intelligence and Statistics, pages 1781–1791.
PMLR, 2020.

[24] Julian Katz-Samuels, Lalit Jain, Zohar Karnin, and Kevin Jamieson. An empirical process
approach to the union bound: Practical algorithms for combinatorial and linear bandits. arXiv
preprint arXiv:2006.11685, 2020.

[25] Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of best-arm
identification in multi-armed bandit models. The Journal of Machine Learning Research, 17(1):
1–42, 2016.

[26] Abbas Kazerouni and Lawrence M Wein. Best arm identification in generalized linear bandits.
Operations Research Letters, 49(3):365–371, 2021.

[27] Jack Kiefer and Jacob Wolfowitz. The equivalence of two extremum problems. Canadian
Journal of Mathematics, 12:363–366, 1960.

[28] Tor Lattimore, Csaba Szepesvari, and Gellert Weisz. Learning with good feature representations
in bandits and in rl with a generative model. In International Conference on Machine Learning,
pages 5662–5670. PMLR, 2020.

[29] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/,
1998.

[30] Blake Mason, Lalit Jain, Ardhendu Tripathy, and Robert Nowak. Finding all ε-good arms in
stochastic bandits. Advances in Neural Information Processing Systems, 33, 2020.

[31] Rémi Munos. From bandits to monte-carlo tree search: The optimistic principle applied to
optimization and planning, 2014. https://hal.archives-ouvertes.fr/hal-00747575v4/
document.

[32] Edward Paulson et al. A sequential procedure for selecting the population with the largest mean
from k normal populations. Annals of Mathematical Statistics, 35(1):174–180, 1964.

[33] Friedrich Pukelsheim. Optimal design of experiments. SIAM, 2006.

[34] Sivan Sabato. Epsilon-best-arm identification in pay-per-reward multi-armed bandits, 2019.
https://openreview.net/forum?id=H1xkvNrlLS.

[35] Gabriele Santin and Robert Schaback. Approximation of eigenfunctions in kernel-based spaces.
Advances in Computational Mathematics, 42(4):973–993, 2016.

[36] Stewart Schlesinger. Approximating eigenvalues and eigenfunctions of symmetric kernels.
Journal of the Society for Industrial and Applied Mathematics, 5(1):1–14, 1957.

12

https://hal.archives-ouvertes.fr/hal-00747575v4/document
https://hal.archives-ouvertes.fr/hal-00747575v4/document
https://openreview.net/forum?id=H1xkvNrlLS

[37] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

[38] Marta Soare, Alessandro Lazaric, and Rémi Munos. Best-arm identification in linear bandits.
arXiv preprint arXiv:1409.6110, 2014.

[39] Gilbert W Stewart. Perturbation theory for the singular value decomposition. Technical report,
University of Maryland, 1998. https://drum.lib.umd.edu/handle/1903/552.

[40] Ervin Tanczos, Robert Nowak, and Bob Mankoff. A kl-lucb bandit algorithm for large-scale
crowdsourcing. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, pages 5896–5905, 2017.

[41] Chao Tao, Saúl Blanco, and Yuan Zhou. Best arm identification in linear bandits with linear
dimension dependency. In International Conference on Machine Learning, pages 4877–4886.
PMLR, 2018.

[42] Michal Valko, Nathaniel Korda, Rémi Munos, Ilias Flaounas, and Nelo Cristianini. Finite-time
analysis of kernelised contextual bandits. arXiv preprint arXiv:1309.6869, 2013.

[43] Michal Valko, Rémi Munos, Branislav Kveton, and Tomáš Kocák. Spectral bandits for smooth
graph functions. In International Conference on Machine Learning, pages 46–54. PMLR, 2014.

[44] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48.
Cambridge University Press, 2019.

[45] Liyuan Xu, Junya Honda, and Masashi Sugiyama. A fully adaptive algorithm for pure explo-
ration in linear bandits. In International Conference on Artificial Intelligence and Statistics,
pages 843–851. PMLR, 2018.

[46] Weitong ZHANG, Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural thompson sampling.
In International Conference on Learning Representations, 2020.

[47] Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based
exploration. In International Conference on Machine Learning, pages 11492–11502. PMLR,
2020.

13

https://drum.lib.umd.edu/handle/1903/552

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] As discussed in Section 7.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] This paper

provides algorithms to conduct pure exploration for kernel and neural bandits. It does
not lead to negative societal impacts in the foreseeable future.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] As stated in

the paper.
(b) Did you include complete proofs of all theoretical results? [Yes] All proofs are provided

in the appendix in supplementary material (full paper).
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] Code, data, and
instructions can be found in the supplementary material (code).

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] As stated in Section 6 and Appendix G.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] As reported in Section 6.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] As stated in the supplementary
material (code).

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] We clarified the source of datasets

used in Section 6.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Code used to produce our experiments is included in the supplementary material (code).
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] As stated in Appendix G.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] As discussed in Appendix G.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

A Supporting materials

A.1 Matrix inversion and rounding

For possibly singular Aψd(λ), pseudo-inverse is used in ‖y‖2Aψd (λ)−1 if y belongs to the range of

Aψd(λ); otherwise, we set ‖y‖2Aψd (λ)−1 =∞.

Consider any S ⊆ X . With our (slightly abused) definition of matrix inversion, the optimal design

inf
λ∈ΛX

sup
y∈Y(ψd(S))

‖y‖2Aψd (λ)−1 (6)

will select a design λ? ∈ ΛX such that every y ∈ Y(ψd(S)) lies in the range of
Aψd(λ?).7 If span(Y(ψd(S))) = Rd, then Aψd(λ?) is positive definite (recall that Aψd(λ?) =∑
x∈X λxψd(x)ψd(x)> and span(ψd(X)) = Rd by assumption). Thus the rounding guarantees

(Theorem 2.1 therein, which requires a positive definite design) in Allen-Zhu et al. [1] goes through
(with additional simple modifications dealt as in Appendix B of Fiez et al. [13]).

We now consider the case whenAψd(λ?) is singular. Since span(ψd(X)) = Rd, we can always find
another λ′ such thatAψd(λ′) is invertible. For any ζ1 > 0, let λ̃? = (1−ζ1)λ?+ζ1λ

′. We know that
λ̃? leads to a positive definite design. With respect to ζ1, we can find another ζ2 > 0 small enough (e.g.,
smaller than the smallest eigenvalue of ζ1Aψd(λ′)) such thatAψd(λ̃?) � Aψd((1− ζ1)λ?) + ζ2I .
SinceAψd((1− ζ1)λ?) + ζ2I is positive definite, for any y ∈ Y(ψd(S)), we have

‖y‖2Aψd (λ̃?)−1 ≤ ‖y‖2(Aψd ((1−ζ1)λ?)+ζ2I)−1 .

Fix any y ∈ Y(ψd(S)). Since y lies in the range of Aψd(λ?) (according to the objective and the
definition of matrix inversion), we clearly have

‖y‖2(Aψd ((1−ζ1)λ?)+ζ2I)−1 ≤ ‖y‖2(Aψd ((1−ζ1)λ?))−1 ≤
1

1− ζ1
‖y‖2Aψd (λ?)−1 .

To summarize, we have

‖y‖2Aψd (λ̃?)−1 ≤
1

1− ζ1
‖y‖2Aψd (λ?)−1 ,

where ζ1 can be chosen arbitrarily small. We can thus send the positive definite design λ̃? to the
rounding procedure in Allen-Zhu et al. [1]. We can incorporate the additional 1/(1− ζ1) overhead,
for ζ1 > 0 chosen sufficiently small, into the sample complexity requirement rd(ζ) of the rounding
procedure.

A.2 Supporting lemmas

Lemma 1 (Theorem 10 in Katz-Samuels et al. [24]). Consider a linear bandit problem with action
set X ⊆ RD. Suppose span({x? − x}x∈X) = RD, we then have

inf
λ∈ΛX

sup
x∈X\x?

‖x? − x‖2A(λ)−1 = Ω(D).

B Omitted proofs for Section 3

B.1 Proof of Theorem 1

Theorem 1. With probability of at least 1− δ, Algorithm 1 correctly outputs an ε-optimal arm with
sample complexity upper bounded by

640

dlog2(2/ε)e∑
k=1

((
k ρ?dk(22−k) log(k2|X |2/δ)

)
+ (rdk(ζ) + 1)

)
≤ Õ

(
deff(ε) ·max{∆min, ε}−2

)
,

where dk = deff(4 · 2−k) ≤ deff(ε) since 4 · 2−k ≥ ε when k ≤ dlog2(2/ε)e.
7If the infimum is not attained, we can simply take a design λ?? with associated value τ?? ≤ (1 +

ζ0) infλ∈ΛX supy∈Y(ψd(S))‖y‖
2
Aψd

(λ)−1 for a ζ0 > 0 arbitrarily small. Our analysis goes through with
changes only in constant terms.

15

Proof. The proof is decomposed into three steps: (1) prove correctness through induction; (2) bound
the error probability; (3) upper bound the sample complexity. We first note that deff(ε) is well-defined
since we assume that γ(d) can be made arbitrarily small for d large enough.

Step 1: The induction. We define event

Ek = {x? ∈ Ŝk ⊆ Sk},

and prove through induction that

P(Ek+1| ∩i≤k Ei) ≥ 1− δk,

where δ0 := 0. Recall that x? = arg maxx∈X h(x) and Sk = {x ∈ X : ∆x < 4 · 2−k} (with
S1 = X).

The base case {x? ∈ Ŝ1 ⊆ S1} holds with probability 1 by definition of Ŝ1 = S1 = X . We next
analyze event Ek+1 conditioned on ∩i≤kEi. For simplicity, we’ll use notations ψ(·) := ψdk(·),
θ? := θdk and η(·) = ηdk(·) in the analysis of the k-th iteration.

Step 1.1: Concentration under mis-specifications. Let {x1,x2, . . . ,xNk} be the arms pulled
at the k-th iteration of Algorithm 1 and {y1, . . . , yNk} be the corresponding rewards. The least
square estimator θ̂k = A−1

k bk ∈ Rdk is constructed with Ak =
∑Nk
i=1ψ(xi)ψ(xi)

> and bk =∑Nk
i=1ψ(xi)yi. Note that yi = h(xi) + ξi = ψ(xi)

>θ? + η(xi) + ξi are i.i.d. generated with
1-sub-Gaussian noise ξi. Fix any y ∈ Y(ψ(Ŝk)), we have

∣∣∣〈y, θ̂k − θ?〉∣∣∣ =

∣∣∣∣∣∣y>A−1
k

Nk∑
j=1

ψ(xi)yi − y>θ?

∣∣∣∣∣∣
=

∣∣∣∣∣∣y>A−1
k

Nk∑
j=1

ψ(xi)
(
ψ(xi)

>θ? + η(xi) + ξi
)
− y>θ?

∣∣∣∣∣∣
=

∣∣∣∣∣∣y>A−1
k

Nk∑
j=1

ψ(xi)(η(xi) + ξi)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣y>A−1
k

Nk∑
j=1

ψ(xi)η(xi)

∣∣∣∣∣∣+

∣∣∣∣∣∣
Nk∑
j=1

y>A−1
k ψ(xi)ξi

∣∣∣∣∣∣. (7)

We now bound the two terms in Eq. (7) separately as follows. Since η(xi) ≤ γ̃(d) by construction,
for the first term, we have∣∣∣∣∣∣y>A−1

k

Nk∑
j=1

ψ(xi)η(xi)

∣∣∣∣∣∣ ≤ γ̃(d)

Nk∑
i=1

∣∣y>A−1
k ψ(xi)

∣∣
= γ̃(dk)

Nk∑
i=1

√(
y>A−1

k ψ(xi)
)2

≤ γ̃(dk)

√√√√Nk

Nk∑
i=1

(
y>A−1

k ψ(xi)
)2

(8)

= γ̃(dk)

√√√√Nk

Nk∑
i=1

y>A−1ψ(xi)ψ(xi)>A
−1
k y

= γ̃(dk)
√
Nk ‖y‖2A−1

k

≤ γ̃(dk)

√
(1 + ζ) τ(Y(ψ(Ŝk))) (9)

16

where Eq. (8) comes from Jensen’s inequality; Eq. (9) comes from the guarantee of rounding in
Eq. (1).

The second term in Eq. (7) is a (weighted) sum of independent random variables ξi. Since ξis are

1-sub-Gaussian, then (
∑Nk
j=1 y

>A−1
k ψ(xi)ξi) is

√∑Nk
j=1(y>A−1

k ψ(xi))2-sub-Gaussian. Since√∑Nk
j=1(y>A−1

k ψ(xi))2 = ‖y‖A−1
k

, a standard Hoeffding’s inequality leads to the following
bound

P

∣∣∣∣∣∣
Nk∑
j=1

y>A−1
k ψ(xi)ξi

∣∣∣∣∣∣ ≥ ‖y‖A−1
k

√
2 log

(
|Ŝk|2/δk

) ≤ δk

|Ŝk|2/2

Since there are at most |Ŝk|2/2 directions in Y(ψ(Ŝk)), taking a union bound over all possible
directions, we have

P

∀y ∈ Y(ψ(Ŝk)) :

∣∣∣∣∣∣
Nk∑
j=1

y>A−1
k ψ(xi)ξi

∣∣∣∣∣∣ ≥ ‖y‖A−1
k

√
2 log

(
|Ŝk|2/δk

) ≤ δk. (10)

Plugging Eq. (9) and Eq. (10) into Eq. (7), we have that for any y ∈ Y(ψ(Ŝk)),∣∣∣〈y, θ̂k − θ?〉∣∣∣ ≤ γ̃(dk)

√
(1 + ζ) τ(Y(ψ(Ŝk))) + ‖y‖A−1

k

√
2 log

(
|Ŝk|2/δk

)
=: ω̃k(y) (11)

with probability at least 1− δk.

Step 1.2: Correctness. We prove the result under the event described in Eq. (11), which holds with
(conditional) probability at least 1− δk. We know that x? ∈ Ŝk ⊆ Sk holds conditioned on ∩i≤kEi.
We now prove it for iteration k + 1. Recall the elimination criteria is

Ŝk+1 = Ŝk \ {x ∈ Ŝk : ∃x′ such that (ψ(x′)−ψ(x))>θ̂k ≥ ωk(ψ(x′)−ψ(x))}.

Step 1.2.1: x? ∈ Ŝk+1. Let x̂ ∈ Ŝk be any arm such that x̂ 6= x?. We have

(ψ(x̂)−ψ(x?))
>θ̂k ≤ (ψ(x̂)−ψ(x?))

>θ? + ω̃k(ψ(x̂)−ψ(x?))

= h(x̂)− η(x̂)− (h(x?)− η(x?)) + ω̃k(ψ(x̂)−ψ(x?))

≤ −∆(x̂) + (2γ̃(dk) + ω̃k(ψ(x̂)−ψ(x?)))

< (2γ̃(dk) + ω̃k(ψ(x̂)−ψ(x?)))

= ωk(ψ(x̂)−ψ(x?)).

As a result, the optimal arm x? remains in Ŝk+1.

Step 1.2.2: Ŝk+1 ⊆ Sk+1. For any x ∈ Sck+1∩Ŝk, we have ∆(x) = h(x?)−h(x) ≥ 4 ·2−(k+1) =

2 · 2−k by definition. Since x? ∈ Ŝk, we have

(ψ(x?)−ψ(x))>θ̂k ≥ (ψ(x?)−ψ(x))>θ? − ω̃k(ψ(x?)−ψ(x))

= h(x?)− η(x?)− (h(x)− η(x))− ω̃k(ψ(x?)−ψ(x))

≥ ∆(x)− (2γ̃(dk) + ω̃k(ψ(x?)−ψ(x)))

= ∆(x)− ωk(ψ(x?)−ψ(x))

≥ ωk(ψ(x?)−ψ(x)), (12)

where Eq. (12) comes from the fact that ωk(ψ(x?) − ψ(x)) ≤ 2−k by the selection of Nk (as
discussed later) and the guarantees from the rounding procedure Eq. (1). As a result, any x ∈
Sck+1 ∩ Ŝk will be eliminated and Ŝk+1 ⊆ Sk+1.

To summarize, we prove the induction at iteration k + 1, i.e.,

P(Ek+1| ∩i<k+1 Ei) ≥ 1− δk.

17

To show the selection of Nk guarantees Eq. (12), it suffices to show that 2−k − εk ≥ 2−k/2. We first
notice the following inequalities:

(1 + ζ) τ(Y(ψ(Ŝk))) = (1 + ζ) inf
λ∈ΛX

sup
y∈Y(ψ(Ŝk))

‖y‖2Aψ(λ)−1

≤ (1 + ζ) inf
λ∈ΛX

sup
y∈Y(ψ(X))

‖y‖2Aψ(λ)−1

= g(d, ζ). (13)

Recall that γ(d) = (16 + 8
√
g(d, ζ))γ̃(d). At each the k-th iteration with k ≤ n := dlog2(2/ε)e, we

have

εk ≤ γ(dk)/8 (14)

≤ 2−k/2, (15)

where Eq. (14) comes from Eq. (13), and Eq. (15) comes from the definition of dk = deff(4 · 2−k).
This implies that 2−k − εk ≥ 2−k/2 and thus Nk is well-defined.

Step 2: The error probability. From the analysis in Step 1, we have

P(Ek+1|Ek ∩ · · · ∩ E1) ≥ 1− δk.

Let E = ∩n+1
k=1Ek, we then have

P(E) =

n+1∏
k=1

P(Ek|Ek−1 ∩ · · · ∩ E1)

=

n+1∏
k=1

(1− δk−1)

≥
∞∏
k=1

(
1− δ/k2

)
=

sin(πδ)

πδ
≥ 1− δ, (16)

where we use the fact that sin(πδ)/πδ ≥ 1 − δ for any δ ∈ (0, 1) in Eq. (16). We analyze the
following steps under the good event E .

Step 3: Sample complexity upper bound. As one can see, the total sample complexity N is upper
bounded by

N ≤
n∑
k=1

Nk

=

dlog2(2/ε)e∑
k=1

max
{⌈

(2−k − εk)−22(1 + ζ) τk log(|Ŝk|2/δk)
⌉
, rdk(ζ)

}

≤
dlog2(2/ε)e∑

k=1

((
(2−k − εk)−22(1 + ζ) τk log(|Ŝk|2/δk)

)
+ (rdk(ζ) + 1)

)

≤
dlog2(2/ε)e∑

k=1

((
(22k)10 τk log(k2|X |2/δ)

)
+ (rdk(ζ) + 1)

)
.

18

We analyze ρ?dk(22−k) in the following to obtain an instance dependent sample complexity upper
bound.

ρ?dk(22−k) = inf
λ∈ΛX

sup
x∈X\{x?}

‖ψdk(x?)−ψdk(x)‖2Aψdk (λ)−1

max{∆(x), 4 · 2−k}2

= inf
λ∈ΛX

sup
i≤k

sup
x∈Si\{x?}

‖ψdk(x?)−ψdk(x)‖2Aψdk (λ)−1

max{∆(x), 4 · 2−k}2

≥ sup
i≤k

inf
λ∈ΛX

sup
x∈Si\{x?}

‖ψdk(x?)−ψdk(x)‖2Aψdk (λ)−1

max{∆(x), 4 · 2−k}2

≥ sup
i≤k

inf
λ∈ΛX

sup
x∈Si\{x?}

‖ψdk(x?)−ψdk(x)‖2Aψdk (λ)−1

max{4 · 2−i, 4 · 2−k}2

≥ 1

k

k∑
i=1

inf
λ∈ΛX

sup
x∈Si\{x?}

‖ψdk(x?)−ψdk(x)‖2Aψdk (λ)−1

16 · 2−2i

≥ 1

k

k∑
i=1

inf
λ∈ΛX

sup
x,x′∈Si

‖ψ(x)−ψ(x′)‖2Aψ(λ)−1/4

16 · 2−2i
(17)

=
1

k

k∑
i=1

(
22i
)
τ(Y(ψ(Si)))/64

≥ 1

64k
(22k)τ(Y(ψ(Sk))),

where Eq. (17) comes from the fact that we can writeψ(x)−ψ(x′) = ψ(x)−ψ(x?)+ψ(x?)−ψ(x′)
and a triangle inequality.

We have τk = τ(Y(ψdk(Ŝk))) ≤ τ(Y(ψdk(Sk))) since Ŝk ⊆ Sk. Thus, we have

(22k)τk ≤ 64k ρ?dk(22−k).

As a result, we have

N ≤ 640

dlog2(2/ε)e∑
k=1

((
k ρ?dk(22−k) log(k2|X |2/δ)

)
+ (rdk(ζ) + 1)

)
≤ Õ

(
deff(ε) ·max{∆min, ε}−2

)
, (18)

where Eq. (18) is discussed as follows.

Since we clearly have 22−k ≥ ε when k ≤ n := dlog2(2/ε)e, we have

ρ?dk(22−k) = ρ?dk(ε)

= inf
λ∈ΛX

sup
x∈X\{x?}

‖ψdk(x?)−ψdk(x)‖2Aψd (λ)−1

max{h(x?)− h(x), ε}2

≤ inf
λ∈ΛX

sup
x∈X\{x?}

‖ψdk(x?)−ψdk(x)‖2Aψd (λ)−1 ·max{∆min, ε}−2

≤ 4dk ·max{∆min, ε}−2 (19)

= 4deff(4 · 2−k) ·max{∆min, ε}−2

≤ 4deff(ε) ·max{∆min, ε}−2, (20)

where Eq. (19) comes from Kiefer–Wolfowitz Theorem [27] and Eq. (20) comes from the fact that
22−k ≥ ε and the definition of deff(ε). Similarly, we have rdk(ζ) ≤ O(dk/ζ

2) ≤ O(deff(ε)).

19

B.2 Proof of Proposition 1

Proposition 1. Suppose maxx∈X |h(x) − 〈ψd(x),θd〉| ≤ γ̃(d). For any ε ≥ γ̃(d), we have
ρ?d(ε) ≤ 9ρ̃?d(ε). When γ̃(d) < ∆min/2, ρ̃?d(0) represents the sample complexity of a closely-related
linear bandit problem without model misspecifications, i.e., h̃(x) = 〈ψd(x),θd〉.

Proof. Recall that

ρ?d(ε) = inf
λ∈ΛX

sup
x∈X\{x?}

‖ψd(x?)−ψd(x)‖2Aψd (λ)−1

max{∆x, ε}2
,

ρ̃?d(ε) = inf
λ∈ΛX

sup
x∈X\{x?}

‖ψd(x?)−ψd(x)‖2Aψd (λ)−1

max{〈ψd(x?)−ψd(x),θd〉, ε}2
,

and

∆x = h(x?)− h(x) = 〈ψ(x?)−ψ(x),θd〉+ η(x?)− η(x), (21)

where |η(x)| ≤ γ for any x ∈ X .

To relate ρ?(ε) with ρ̃?(ε), we only need to relate max{∆x, ε} with max{〈ψd(x?)−ψd(x),θd〉, ε}.
From Eq. (21) and the fact that ε ≥ γ, we know that

〈ψd(x?)−ψd(x),θd〉 ≤ ∆x + 2γ ≤ ∆x + 2ε ≤ 3 max{∆x, ε},
and thus

max{〈ψd(x?)−ψd(x),θd〉, ε} ≤ 3 max{∆x, ε}.
As a result, we have ρ?(ε) ≤ 9ρ̃?(ε).

When γ < ∆min/2, we have

〈ψd(x?)−ψd(x),θd〉 ≥ ∆x − 2γ > 0,

which implies that x? is still the optimal arm in the perfect linear bandit problem h̃(x) = 〈ψd(x),θd〉
in Rd. Thus, ρ̃?(0) log(1/2.4δ) gives the lower bound for best arm identification in the perfect linear
bandit model [38, 13, 10]; and ρ̃?(ε) can be viewed as a complexity measure with ε relaxation.

B.3 Example for high-dimensional linear bandits

Example. Let X1⊕X2 = {xi + xj : xi ∈ X1,xj ∈ X2}. Consider a high dimensional linear bandit
problem in RD with an action set X = {x1,x1 ⊕ {ηei}Di=1,x2 ⊕ {ηei}Di=1}. For any ε ∈ (0, 1/4),
we select x1, x2 and η > 0 such that: (1) ‖x1‖2 = 1; (2) 〈x1,x2〉 = 1 − 2ε; (3) 〈x1, ei〉 < 0;
and (4) 8

√
2(2 +

√
5D)Dη ≤ ε. We select θ? = x1 (thus ‖θ?‖2 = 1), which implies that arm

x? = x1 is the optimal arm, arms in {x1 ⊕ {ηei}Di=1} are ε-optimal and arms in {x2 ⊕ {ηei}Di=1}
have sub-optimality gap > ε but < 3ε (note that we must have η < ε be construction). As an example,
one can select x1 = −1/

√
D (1 ∈ RD represents the all 1 vector) and x2 = (1 − 2ε)x1 with a

sufficiently small η.

Analysis. LetX ∈ R(2D+1)×D be the data matrix whose rows are x ∈ X ; and let X̃ ∈ R(2D+1)×D

be the matrix such that its first (D + 1) rows are all x1 and its last D rows are all x2. One can
clearly see that X̃ is (at most) rank 2, and X = X̃ + E where E = [0>; ηID; ηID] (and thus
‖E‖2 =

√
2η). Let {σi}Di=1 represents the singular values of matrixX and let {σ̃i}Di=1 represents

the singular values of matrix X̃ . Perturbation theory on SVD [39] implies that

|σi − σ̃i| ≤ ‖E‖2 =
√

2η, ∀i ∈ [D].

Since σ̃i = 0 for i > 2, we have

γ̃(2) = ‖θ?‖2 ·

(∑
i>2

σi

)
<
√

2Dη.

20

The fourth requirement in the construction implies that deff(ε) ≤ 2. To identify a ε-optimal arm,
Algorithm 3 will first project the action set into a two-dimensional subspace and then perform arm
elimination. Invoking Theorem 4, we know that the sample complexity is upper bounded by Õ(1/ε2),
which is independent of D (besides logarithmic dependence on |X |).
We now analyze the sample complexity of RAGE [13]. To identifying an ε-optimal arm, we would run
RAGE for n = dlog2(2/ε)e iterations in RD, and its sample complexity upper bound scales as

n∑
k=1

max

{
2(1 + ζ)22k inf

λ∈ΛX
sup

y∈Y(Sk)

‖y‖2A(λ)−1 log(k2|X |2/δ), rD(ζ)

}
.

Consider the round k = blog2(1/ε)c. The sample complexity bound at that round is larger than

22blog2(1/ε)c inf
λ∈ΛX

sup
y∈Y(Sblog2(1/ε)c)

‖y‖2A(λ)−1 ≥
1

4ε2
inf
λ∈ΛX

sup
y∈Y(X)

‖y‖2A(λ)−1 ,

since Sblog2(1/ε)c = X by construction (note that all arms in X are 4ε-optimal). Since span({x? −
x}x∈X) = RD by construction, applying Lemma 1 in Appendix A shows that

1

4ε2
inf
λ∈ΛX

sup
y∈Y(X)

‖y‖2A(λ)−1 = Ω(D/ε2).

C Arm elimination with a fixed embedding

We only consider the case when γ̃(d) > 0. Otherwise, one can simply apply RAGE to identify the best
arm (when it is unique) or to identify an ε-optimal arm (by stopping RAGE after O(log(1/ε)) rounds).

C.1 The algorithm

Algorithm 3 Arm Elimination with Fixed Embedding and Induced Misspecification

Input: Action set X , confidence parameter δ, embedding dimension d and rounding approximation
factor ζ.

1: Construct the compressed feature representation ψ(X) = ψd(X) with the induced misspecifica-
tion level γ̃(d).

2: Set Ŝ1 = S1, γ(d) = (16 + 8
√
g(d, ζ)) γ̃(d), and n = dlog2(2/γ(d))e.

3: for k = 1, 2, . . . , n do
4: Set δk = δ/k2.
5: Set λk and τk be the design and the value of the following optimization problem

inf
λ∈ΛX

sup
y∈Y(ψ(Ŝk))

‖y‖2Aψ(λ)−1 .

6: Set εk = 2γ̃(d) + γ̃(d)
√

(1 + ζ) τk,
and set Nk = max{d(2−k − εk)−22(1 + ζ) τk log(|Ŝk|2/δk)e, rd(ζ)}.

7: Get {x1,x2, . . . ,xNk} = ROUND(λk, Nk, d, ζ).
8: Pull arms {x1,x2, . . . ,xNk} and receive rewards {y1, . . . , yNk}.
9: Set θ̂k = A−1

k bk, whereAk =
∑Nk
i=1ψ(xi)ψ(xi)

> and bk =
∑Nk
i=1ψ(xi)yi.

10: Eliminate arms with respect to criteria

Ŝk+1 = Ŝk \ {ψ(x) ∈ Sk : ∃x′ such that (ψ(x′)−ψ(x))>θ̂k ≥ ωk(ψ(x′)−ψ(x))},

where ωk(y) = εk + ‖y‖A−1
k

√
2 log(|Ŝk|2/δk).

11: end for
Output: Output any arm in Ŝn+1.

21

C.2 Sample complexity analysis

Theorem 4. With probability of at least 1− δ, Algorithm 3 correctly outputs an γ(d)-optimal arm
with sample complexity upper bounded by

N ≤ 640 ρ?d(γ(d)) log2

(
4

γ(d)

)
log

(
log2(4/γ(d))|X |2

δ

)
+ (rd(ζ) + 1) log2

(
4

γ(d)

)
. (22)

Remark 6. Algorithm 3 can be viewed as a modified version of Algorithm 1 with a fixed embedding.
When we choose d = deff(ε) as the input, Algorithm 3 will output an ε-optimal arm.

Proof. The proof is very similar to the proof of Theorem 1 (we re-define ψ(·) := ψd(·) with the
fixed d).

We first notice that

εk ≤ (2 +
√
g(d, ζ))γ̃(d)

= γ(d)/8

≤ 2−dlog2(2/γ(d))e/2

≤ 2−k/2,

for any 1 ≤ k ≤ n = dlog2(2/γ(d))e. Thus, Nk is well-defined and Step 1 and 2 from the proof of
Theorem 1 hold true.

We now analyze the sample complexity. As one can see, the total sample complexity N is upper
bounded by

N ≤
n∑
k=1

Nk

=

dlog2(2/γ(d))e∑
k=1

max
{⌈

(2−k − εk)−22(1 + ζ) τ(Y(ψ(Ŝk))) log(|Ŝk|2/δk)
⌉
, rd(ζ)

}

≤
dlog2(2/γ(d))e∑

k=1

(
(2−k − εk)−22(1 + ζ) τ(Y(ψ(Ŝk))) log(|Ŝk|2/δk)

)
+ (rd(ζ) + 1) log2(4/γ(d))

≤
dlog2(2/γ(d))e∑

k=1

(
22k
)
10 τ(Y(ψ(Sk))) log(k2|X |2/δ) + (rd(ζ) + 1) log2(4/γ(d)), (23)

where we use the fact that εk ≤ 2−k/2, Ŝk ⊆ Sk ⊆ X , δk = δ/k2 and ζ ≤ 1/4 in Eq. (23).

22

We analyze the instance dependent sample complexity ρ?(γ(d)) next.

ρ?(γ(d)) = inf
λ∈ΛX

sup
x∈X\{x?}

‖ψ(x?)−ψ(x)‖2Aψ(λ)−1

max{∆(x), γ(d)}2

= inf
λ∈ΛX

sup
k≤dlog2(2/γ(d))e

sup
x∈Sk\{x?}

‖ψ(x?)−ψ(x)‖2Aψ(λ)−1

max{∆(x), γ(d)}2

≥ sup
k≤dlog2(2/γ(d))e

inf
λ∈ΛX

sup
x∈Sk\{x?}

‖ψ(x?)−ψ(x)‖2Aψ(λ)−1

max{∆(x), γ(d)}2

≥ sup
k≤dlog2(2/γ(d))e

inf
λ∈ΛX

sup
x∈Sk\{x?}

‖ψ(x?)−ψ(x)‖2Aψ(λ)−1

max{4 · 2−k, γ(d)}2

≥ 1

dlog2(2/γ(d))e

dlog2(2/γ(d))e∑
k=1

inf
λ∈ΛX

sup
x∈Sk\{x?}

‖ψ(x?)−ψ(x)‖2Aψ(λ)−1

max{4 · 2−k, γ(d)}2

≥ 1

dlog2(2/γ(d))e

dlog2(2/γ(d))e∑
k=1

inf
λ∈ΛX

sup
x,x′∈Sk

‖ψ(x)−ψ(x′)‖2Aψ(λ)−1/4

max{4 · 2−k, γ(d)}2
(24)

=
1

dlog2(2/γ(d))e

dlog2(2/γ(d))e∑
k=1

(
22k
)
τ(Y(ψ(Sk)))/64, (25)

where Eq. (24) comes from the fact that we can writeψ(x)−ψ(x′) = ψ(x)−ψ(x?)+ψ(x?)−ψ(x′)
and apply triangle inequality; Eq. (25) comes from the definition of τ(Y(ψ(Sk))) and the fact that
4 · 2−k ≥ γ(d) when 1 ≤ k ≤ dlog2(2/γ(d))e.
By comparing terms in Eq. (23) and terms in Eq. (25), we now relate the complexity bound N with
the instance-dependent complexity ρ?(γ(d)) as follows:

N ≤ 640 ρ?(γ(d)) log2

(
4

γ(d)

)
log

(
log2(4/γ(d))|X |2

δ

)
+ (rd(ζ) + 1) log2

(
4

γ(d)

)
.

D Arm elimination with unknown misspecifications

We consider of version of Algorithm 3 with unknown mis-specification level γ̃(·). As explained
in Appendix C, we only consider the case when γ̃(d) > 0. We (re-)define some notations for this
section as follows.

We set n(d) as a critical value for the number of iteration

n(d) = max
{
k̃ ∈ N : ∀k ≤ k̃,

(
2 +

√
(1 + ζ)τ(Y(ψd(Sk)))

)
γ̃(d) ≤ 2−k/2

}
,

which captures the largest number of iterations such that the induced misspecification error is still
well-controlled. Note that n(d) crucially depends on the action set ψd(X) and cannot be calculated
due to unknown identities of {Sk}. We then define γ(d), which quantifies the optimality of the
identified arm as γ(d) = 2 ·2−n(d). We also introduce the notation gk(d, ζ) = (1+ ζ)τ(Y(ψd(Sk))).
Proposition 2. The following inequalities hold.

n(d) ≥ blog2(1/(2(2 +
√
g(d, ζ))γ̃(d)))c and γ(d) ≤ 8(2 +

√
g(d, ζ))γ̃(d) = γ(d).

Proof. Since τ(Y(ψd(Sk))) ≤ τ(Y(ψd(X))) according to Kiefer-Wolfowitz theorem [27] and
ζ ∈ [1/10, 1/4], we have

2 +
√

(1 + ζ)τ(Y(ψd(Sk))) ≤ 2 +
√
g(d, ζ),

which implies that

n(d) ≥ blog2(1/(2(2 +
√
g(d, ζ))γ̃(d)))c.

The upper bound on γ(d) immediately follows.

23

Algorithm 4 Arm Elimination with Fixed Embedding and Unknown Misspecification

Input: Action set X , confidence parameter δ, embedding dimension d and rounding approximation
factor ζ.

1: Construct the compressed feature representation ψ(X) = ψd(X) with the induced mis-
specification level γ̃(d).

2: Set Ŝ1 = X , and randomly select x̂? ∈ Ŝ1 as the recommendation.
3: for k = 1, 2, . . . do
4: Set δk = δ/k2.
5: Set λk and τk be the design and the value of the following optimization problem

inf
λ∈ΛX

sup
y∈Y(ψ(Ŝk))

‖y‖2Aψ(λ)−1 .

6: Set Nk = max{d22k 8(1 + ζ) τk log(|Ŝk|2/δk)e, rd(ζ)}.
7: Set {x1,x2, . . . ,xNk} = ROUND(λk, Nk, d, ζ).
8: Pull arms {x1,x2, . . . ,xNk} and receive rewards {y1, . . . , yNk}.
9: Set θ̂k = A−1

k bk, whereAk =
∑Nk
i=1ψ(xi)ψ(xi)

> and bk =
∑Nk
i=1ψ(xi)yi.

10: Update x̂? = arg maxx∈Ŝk〈ψ(x), θ̂k〉, and eliminate arms with respect to criteria

Ŝk+1 = Ŝk \ {ψ(x) ∈ Ŝk : (ψ(x̂?)−ψ(x))>θ̂k ≥ 2−k}.

11: end for

Theorem 5. Suppose γ̃(d) is unknown. With probability of at least 1−δ, Algorithm 4 starts to output
a γ(d)-optimal arm after at most N samples where

N ≤ 640 ρ?(γ(d)) log2(n(d)) log

(
(n(d)|X |)2

δ

)
+ (r(ζ) + 1)n(d).

Remark 7. An arm with slightly smaller optimality gap γ(d) is identified, with slightly larger sample
complexity, in the unverifiable way by Algorithm 4. In fact, the same can be achieved by Algorithm 3
if an upper bound on the number of iteration k is not set. The optimality gap γ(d), however, cannot
be quantified without knowing h(·). That’s the reason for us to set an upper bound on the number of
iterations in Algorithm 3.

Proof. The proof is similar to the proof of Theorem 1 and Theorem 4, we provide it here for
completeness. We decompose the proof into three steps: (1) prove correctness through induction; (2)
bound the error probability; and (3) upper bound the sample complexity. For simplicity, we’ll use
notations ψ(·) := ψd(·), θ? := θd and η(·) = ηd(·) in the proof.

Step 1: The induction. We define event
Ek = {x? ∈ Ŝk ⊆ Sk},

and prove through induction that
P(Ek+1| ∩i≤k Ei) ≥ 1− δk,

where δ0 := 0 and k ≤ n(d). Recall that Sk = {x ∈ X : ∆x < 4 · 2−k} (with S1 = X), and
thus Sn(d)+1 contains the set of γ(d)-optimal arms. Note that as long as Ŝk+1 ⊆ Sk+1 holds true,
Algorithm 4 will have Ŝn ⊆ Ŝk+1 for n > k+ 1 due to the nature of the elimination-styled algorithm.

The base case {x? ∈ Ŝ1 ⊆ S1} holds by definition of Ŝ1 = S1 = X . We next analyze event Ek+1

conditioned on ∩i≤kEi.
Step 1.1: Concentration under mis-specifications. This step is almost the same as the Step 1.1 as
analyzed in the proof of Theorem 1 since the unknown mis-specification level γ̃(d) is only used in
the analysis. As a result, with probability at least 1− δk, for any y ∈ Y(ψ(Ŝk)),∣∣∣〈y, θ̂k − θ?〉∣∣∣ ≤ γ̃(d)

√
(1 + ζ) τ(Y(ψ(Ŝk))) + ‖y‖A−1

k

√
2 log

(
|Ŝk|2/δk

)
≤
√
gk(d, ζ)γ̃(d) + ‖y‖A−1

k

√
2 log

(
|Ŝk|2/δk

)
, (26)

24

where Eq. (26) comes from the fact that τ(Y(ψ(Ŝk))) ≤ τ(Y(ψ(Sk))). In the following, we define

ωk(y) := ‖y‖A−1
k

√
2 log

(
|Ŝk|2/δk

)
.

Step 1.2: Correctness. We prove the result under the event described in Eq. (26), which holds with
(conditional) probability at least 1− δk. We know that x? ∈ Ŝk ⊆ Sk holds conditioned on ∩i≤kEi.
We now prove it for iteration k + 1. Recall the elimination criteria is

Ŝk+1 = Ŝk \ {ψ(x) ∈ Ŝk : (ψ(x̂?)−ψ(x))>θ̂k ≥ 2−k},

where x̂? = arg maxx∈Ŝk〈ψ(x), θ̂k〉.

Step 1.2.1: x? ∈ Ŝk+1. We trivially have x? ∈ Ŝk+1 if x̂? = x?. Suppose x̂? 6= x?, we have

(ψ(x̂?)−ψ(x?))
>θ̂k ≤ (ψ(x̂?)−ψ(x?))

>θ? +
√
gk(d, ζ)γ̃(d) + ωk(ψ(x̂?)−ψ(x?))

= h(x̂?)− η(x̂?)− (h(x?)− η(x?)) +
√
gk(d, ζ)γ̃(d) + ωk(ψ(x̂?)−ψ(x?))

≤ −∆(x̂?) +
(

2γ̃(d) +
√
gk(d, ζ)γ̃(d) + ωk(ψ(x̂?)−ψ(x?))

)
(27)

< 2−k/2 + 2−k/2 (28)

= 2−k,

where Eq. (28) comes from the definition of n(d) and the fact that ωk(ψ(x̂?)− ψ(x?)) ≤ 2−k/2
(due to the selection of Nk and the guarantee of the rounding procedure in Eq. (1)). As a result, the
optimal arm x? remains in Ŝk+1.

Step 1.2.2: Ŝk+1 ⊆ Sk+1. For any x ∈ Sck+1 ∩ Ŝk, we have ∆(x) = h(x?) − h(x) ≥ 4 ·
2−(k+1) = 2 · 2−k by definition. Since (ψ(x̂?) − ψ(x?))

>θ̂k ≥ 0, we only need to lower bound
(ψ(x?)−ψ(x))>θ̂k.

(ψ(x?)−ψ(x))>θ̂k ≥ (ψ(x?)−ψ(x))>θ? −
√
gk(d, ζ)γ̃(d)− ωk(ψ(x?)−ψ(x))

= h(x?)− η(x?)− (h(x)− η(x))−
√
gk(d, ζ)γ̃(d)− ωk(ψ(x?)−ψ(x))

≥ 2 · 2−k − (2 +
√
gk(d, ζ))γ̃(d)− ωk(ψ(x?)−ψ(x))

≥ 2 · 2−k − 2−k/2− 2−k/2 (29)

≥ 2−k,

where Eq. (29) comes from a similar analysis as in Eq. (28). As a result, any x ∈ Sck+1 ∩ Ŝk will be
eliminated and we have Ŝk+1 ⊆ S̃k+1.

To summarize, we prove the induction at iteration k + 1, i.e.,
P(Ek+1| ∩i<k+1 Ei) ≥ 1− δk.

Step 2: The error probability. Using exactly the same argument as appeared in Step 2 in the proof
of Theorem 4, we have

P
(
∩k+1
i=1 Ei

)
≥ 1− δ.

Step 3: Sample complexity upper bound. Up to iteration k ≤ n(d), the sample complexity of
Algorithm 4 can be upper bounded by

N =

n(d)∑
k=1

Nk

=

n(d)∑
k=1

max
{⌈

22k 8(1 + ζ) τk log(|Ŝk|2/δk)
⌉
, rd(ζ)

}

≤
n(d)∑
k=1

(
22k10 τ(Y(ψ(Sk))) log(k2|X |2/δ)

)
+ (rd(ζ) + 1)n(d). (30)

25

Following a similar analysis as in Eq. (25) (note that 4 · 2−k ≥ γ(d) for k ≤ n(d) by definition), we
bound the instance dependent sample complexity as follows.

N ≤ 640 ρ?(γ(d)) log2(n(d)) log

(
(n(d)|X |)2

δ

)
+ (r(ζ) + 1)n(d).

E Omitted materials for Section 4

E.1 Mercer’s theorem and corollary

Let P be a non-negative measure over the compact metric space Z , we define the kernel integral
operator as follows

TK(f)(x) =

∫
Z
K(x, z)f(z)dP(z).

Theorem 6 (Mercer’s theorem, see Wainwright [44]). Suppose Z is compact, the kernel function K
is continuous, positive semi-definite and satisfies the Hilbert-Schmidt condition. Then there exist a
sequence of eigenfunctions {φj}∞j=1 that form an orthornormal basis of L2(Z;P), and non-negative
eigenvalues {µj}∞j=1 such that

TK(φj) = µjφj for j = 1, 2, . . .

Moreover, the kernel function has the expansion

K(x, z) =

∞∑
j=1

µjφj(x)φj(z).

Corollary 1 (Mercer’s corollary, see Wainwright [44]). Consider a kernel satisfying the conditions
of Mercer’s theorem with associated eigenfunctions {φj}∞j=1 and non-negative eigenvalues {µj}∞j=1.
It induces the reproducing kernel Hilbert space

H :=

h =

∞∑
j=1

θjφj : for some {θj}∞j=1 ∈ `2(N) with
∞∑
j=1

θ2
j/µj <∞

,
along with inner product

〈h1, h2〉H :=

∞∑
j=1

〈h1, φj〉〈h2, φj〉
µj

,

where 〈·, ·〉 denotes the inner product in L2(Z;P).

Remark 8. The RKHS induced by any kernel is unique.

E.2 Proof of Theorem 2

Theorem 2. Suppose Assumption 1 holds. For any ε > 0, the following statements hold when we
specialize Algorithm 1 to the kernel setting.

1. Suppose K has (Ck, β)-polynomial eigenvalue decay. We have deff(ε) ≤ O(ε−2/(2β−3)),
and the sample complexity of identifying an ε-optimal arm is upper bounded by
Õ(ε−2/(2β−3) max{∆min, ε}−2).

2. Suppose K has (Ck, β)-exponential eigenvalue decay. We have deff(ε) ≤ O(log(1/ε)), and the
sample complexity of identifying an ε-optimal arm is upper bounded by Õ(max{∆min, ε}−2).

26

Proof. We only need calculate the deff(ε) under different assumptions, and the sample complexity
bounds follow from Theorem 1. Since g(d, ζ) ≤ 5d, we have

deff(ε) ≤ min

{
d ≥ 1 : (16 + 8

√
5d)Cφ

√∑
j>d

µj ≤ ε
}
.

We analyze an upper bound of deff(ε) in the following.

Case 1: Polynomial eigenvalue decay. When K has (Ck, β)-polynomial eigenvalue decay, we have,
with β > 3, µj ≤ Ckj−β for all j ≥ 1. Since√∑

j>d
µj ≤ C1/2

k

√∫ ∞
x=d

x−βdx ≤
C

1/2
k

β − 1
d1−β ,

we then have

(16 + 8
√

5d)Cφ

√∑
j>d

µj ≤
(16 + 8

√
5d)CφC

1/2
k d1−β

β − 1

≤
16
√

5CφC
1/2
k d3/2−β

β − 1
, (31)

where we use the fact that 2 ≤
√

5d for any d ≥ 1 in Eq. (31). Since Eq. (31) is decaying in d (recall
β > 3/2), it suffices to set

d =

(

16
√

5CφC
1/2
k

ε(β/2− 1)

)2/(2β−3)
 = O

(
ε−2/(2β−3)

)
to make it smaller than or equal to ε. This also gives an upper bound of deff(ε).

Case 2: Exponential eigenvalue decay. When K has (Ck, β)-exponential eigenvalue decay, we
have, with β > 0, µj ≤ Ck exp(−βj) for all j ≥ 1. Since√∑

j>d

µj ≤
C

1/2
k e−βd

β
,

we then have (with 2 ≤
√

5d for any d ≥ 1)

(16 + 8
√

5d)Cφ

√∑
j>d

µj ≤
(16 + 8

√
5d)CφC

1/2
k e−βd

β

≤
16
√

5CφC
1/2
k

√
de−βd

β

=
16
√

5CφC
1/2
k

β
e1/2·log d−βd

To have (16 + 8
√

5d)Cφ
√∑

j>d µj ≤ ε, it suffices to have

eβd−1/2·log d ≥ 1

τ
:=

16
√

5CφC
1/2
k

εβ
.

Since x ≥ 2a log a =⇒ x ≥ a log x for any a > 0 [37]. We know that βd − 1/2 · log d ≥ βd/2
when d ≥ 2/β · log(1/β). Thus, it suffices to have

d ≥

max

2 log(1/β)

β
,

2 log

(
16
√

5CφC
1/2
k

εβ

)
β

=

⌈
2 log

(
max

{
16
√

5Cφ
√
Ck

εβ
,

1

β

})
/β

⌉
= O(log(1/ε)).

This gives an upper bound of deff(ε).

27

F Details and proofs for Section 5

F.1 Omitted details for Section 5

Details of Gradient Descent For the completeness, we present the gradient descent algorithm in
Algorithm 5, which is originally used in [47] as a subroutine for the NeuralUCB algorithm.

Algorithm 5 Gradient Descent

1: Input: Regularization parameter α, step size η, number of gradient descent steps J , network
width m, contexts {xi}Ni=1, rewards {ri}Ni=1, initial parameter θ(0).

2: Define L(θ) =
∑N
i=1(f(xi;θ)− ri)2/2 +mα‖θ − θ(0)‖22/2.

3: for j = 0, . . . , J − 1 do
4: θ(j+1) = θ(j) − η∇L(θ(j))
5: end for
6: Return θ(J).

Definition of Neural Tangent Kernel We define the Neural Tangent Kernel (NTK) gram matrix as
follows.

Definition 3 ([17, 47]). Given arm set X , defineH(l), H̃(l),Σ(l) ∈ R|X |×|X| as follows:

H̃(1)(x,x′) = Σ(1)(x,x′) = 〈x,x′〉,A(l)(x,x′) =

(
Σ(l)(x,x) Σ(l)(x,x′)
Σ(l)(x,x′) Σ(l)(x′,x′)

)
,

Σ(l+1)(x,x′) = 2E(u,v)∼N(0,A(l)(x,x′)) max{u, 0}max{v, 0},

H̃(l+1)(x,x′) = 2H̃(l)(x,x′)E(u,v)∼N(0,A(l)(x,x′)) 1(u ≥ 0)1(v ≥ 0) + Σ(l+1)(x,x′).

Then,H = (H̃(L) + Σ(L))/2 is called the neural tangent kernel matrix on the arm set X .

The gram matrix H is defined over all arms X , and H(x,x′) can be regarded as the limitation
of g(x;θ0)>g(x′;θ0)/m when m goes infinity [17]. H plays an important role in our theoretical
analysis of Algorithm 2.

Formal Version of Theorem 3 Next we present the formal version of Theorem 3.

Theorem 7. Under Assumption 2, let h := [h(x)] ∈ R|X | denote the vector consisting of all rewards
from arm set X . Let S be some constant satisfying S ≥

√
h>H−1h. Then there exist constants

C1, C2 > 0 such that for any ε, if we set the parameters in Algorithm 2 as follows:

α = min{1, log(|X |2)/S}, n = dlog(1/ε)e,
ε̄2 = min{α2/(r2

|X |(ζ)L), ε2/((1 + ζ)|X |S), ε7α3/((1 + ζ)3|X |3 log3
(
|X |2/δn

)
L2)},

A =deff(ε̄2/|X |), ηk = C1(mα+NkmL)−1, Jk = log(C2ε
2α/(NkL))/(ηkmL),

then when m = poly(|X |, L, λ−1
0 , log(|X |/δk), Nk, α, ε̄

−1), with probability at least 1 − δ, Ŝn+1

only includes arm x satisfying ∆x ≤ ε, and the total sample complexity of Algorithm 2 is bounded by

N = Õ

(
(1 + ζ)deff(ε̄2/|X |)/ε2 + rdeff (ε̄2/|X |)(ζ)

)
= Õ

(
deff(ε̄2/|X |)ε−2

)
.

Remark 9. Note that Nk ∼ 4k, therefore m actually depends on ε polynomially given the selection
of m.

Remark 10. It is worth noting that the parameter selection depends on S, which is the upper bound
of the quantity

√
h>H−1h. Since

√
h>H−1h ≤ ‖h‖2λmin(H)−1/2 ≤

√
|X |/λ0, S =

√
|X |/λ0

is always a valid upper bound. Moreover, if the reward function h belongs to the RKHS space
spanned by NTK with norm ‖h‖H, then we can set a tighter upper bound S = ‖h‖H which ensures
S ≥

√
h>H−1h [47].

28

F.2 Proof of Theorem 7

To prove Theorem 7, we need the following lemmas. For simplicity, we first denote Z̄k,Zk ∈
Rp×pb̄k ∈ Rp,Ak ∈ Rdk×dk , bk, θ̂k ∈ Rdk as follows.

Zk = αI +

Nk∑
i=1

g(xi;θk−1)g(xi;θk−1)>/m, Z̄k = αI +

Nk∑
i=1

g(xi;θ0)g(xi;θ0)>/m,

b̄k =

Nk∑
i=1

yig(xi;θ0)/
√
m,

Ak = αI +

Nk∑
i=1

ψdk(xi)ψdk(xi)
>, bk =

Nk∑
i=1

ψdk(xi)yi, θ̂k = A−1
k bk, (32)

where {xi}Nki=1 are arms selected at round k. We first present several lemmas which provide error
bounds between neural network functions and their linear estimations.
Lemma 2 (Theorem 3.1, [2]). Fix ε > 0 and δ ∈ (0, 1). Suppose that

m = Ω

(
L6|X |16 log(|X |2L/δ)

ε8

)
,

then with probability at least 1− δ, for any x,x′ ∈ X , we have

|〈g(x;θ0), g(x′;θ0)〉/m−H(x,x′)| ≤ ε2/(2|X |4). (33)

Lemma 3 (Lemma 4.1, [8]). There exist positive constants C̄1, C̄2, Cf such that for any δ > 0, if τ
satisfies that

C̄1m
−3/2L−3/2[log(|X |L2/δ)]3/2 ≤ τ ≤ C̄2L

−6[logm]−3/2,

then with probability at least 1− δ, for all θ̃, θ̂ satisfying ‖θ̃− θ0‖2 ≤ τ, ‖θ̂− θ0‖2 ≤ τ and x ∈ X
we have ∣∣∣f(x; θ̃)− f(x; θ̂)− 〈g(x; θ̂), θ̃ − θ̂〉

∣∣∣ ≤ Cfτ4/3L3
√
m logm.

Lemma 4 (Lemma B.3, [8]). There exist positive constants C̄1, C̄2, Cg,1, Cg,2 such that for any
δ > 0, if τ satisfies that

C̄1m
−3/2L−3/2[log(|X |L2/δ)]3/2 ≤ τ ≤ C̄2L

−6[logm]−3/2,

then with probability at least 1− δ, for any ‖θ − θ0‖2 ≤ τ and x ∈ X we have

‖g(x;θ)‖2 ≤ Cg,1
√
mL, ‖g(x;θ)− g(x;θ0)‖2 ≤ Cg,2τ1/3

√
m logmL7/2/2.

Lemma 5 (Lemma 5.1, [47]). There exists a positive constant C̄ such that for any δ ∈ (0, 1), if
m ≥ C̄|X |4L6 log(|X |2L/δ)/λ4

0, then with probability at least 1− δ, there exists a θ? ∈ Rp such
that for any x ∈ X ,

h(x) = 〈g(x;θ0),θ? − θ0〉,
√
m‖θ? − θ0‖2 ≤

√
2S. (34)

Lemma 6 (Lemma B.2, [47]). There exist constants {C̄i}5i=1 > 0 such that for any δ > 0, if for all
Nk, η,m satisfy

2
√
Nk/(mα) ≥ C̄1m

−3/2L−3/2[log(|X |L2/δ)]3/2,

2
√
Nk/(mα) ≤ C̄2 min

{
L−6[logm]−3/2,

(
m(αη)2L−6N−1

k (logm)−1
)3/8}

,

η ≤ C̄3(mα+NkmL)−1,

m1/6 ≥ C̄4

√
logmL7/2N

7/6
k α−7/6(1 +

√
Nk/α),

then with probability at least 1− δ, we have that ‖θk − θ0‖2 ≤ 2
√
Nk/(mα) and

‖θk − θ0 − Z̄−1
k b̄t/

√
m‖2

≤ (1− ηmα)J/2
√
Nk/(mα) + C̄5m

−2/3
√

logmL7/2N
5/3
k α−5/3(1 +

√
Nk/α).

29

Lemma 7 (Lemma B.3, [47]). There exist constants {C̄i}5i=1 > 0 such that for any δ > 0, if m
satisfies that

C̄1m
−3/2L−3/2[log(|X |L2/δ)]3/2 ≤ 2

√
Nk/(mλ) ≤ C̄2L

−6[logm]−3/2,

then with probability at least 1− δ, we have

‖Z̄k −Zk‖F ≤ C̄3m
−1/6

√
logmL4N

7/6
k α−1/6,

Based on previous lemmas, we can define the random event Eneural
k as follows:

Eneural
k :=

{
∃ positive constants {Ci}5i=1, ∀x,x′ ∈ X ,

|〈g(x;θ0), g(x′;θ0)〉/m−H(x,x′)| ≤ ε2/(2|X |4),∣∣∣f(x;θk)− 〈g(x;θ0),θk − θ0〉
∣∣∣ ≤ C1N

2/3
k m−1/6α−2/3L3

√
logm,

‖g(x;θ0)‖2, ‖g(x;θk−1)‖2 ≤ C2

√
mL,

‖g(x;θk−1)− g(x;θ0)‖2 ≤ C3N
1/6
k−1α

−1/6m1/6
√

logmL7/2, (35)

∃θ? ∈ Rp, h(x) = 〈g(x;θ0),θ? − θ0〉,
√
m‖θ? − θ0‖2 ≤

√
2S,

‖θk − θ0 − Z̄−1
k b̄t/

√
m‖2

≤ (1− ηmα)J/2
√
Nk/(mα) + C4m

−2/3
√

logmL7/2N
5/3
k α−5/3(1 +

√
Nk/α),

‖Z̄k −Zk‖F ≤ C5m
−1/6

√
logmL4N

7/6
k α−1/6.

}
It can be verified that when m = poly(|X |, L, λ−1

0 , log(|X |/δk), Nk, α, ε̄
−1), P(Eneural

k) ≥ 1− δk.

Suppose event Eneural
k holds, then we have the following lemmas.

Lemma 8. Let m = poly(|X |, L, λ−1
0 , log(|X |/δk), Nk, α, ε̄

−1), then under event Eneural
k , we have

|f(x;θk)− 〈ψdk(x), θ̂k〉|

≤ C[(1− ηmα)J/2
√
NkL/α+ 4N3

k ε̄
2L2/α3 +N2

kLε̄
2/α2 + ε̄2Nk/α]. (36)

Proof. See Appendix F.3.1.

Lemma 9. Let m = poly(|X |, L, λ−1
0 , log(|X |/δk), Nk, α, ε̄

−1), then under event Eneural
k , there

exists an θ̂?k ∈ Rdk such that |h(x)− 〈ψdk(x), θ̂?k〉| ≤ 2Sε̄, ‖θ̂?k‖2 ≤
√

2S.

Proof. See Appendix F.3.2.

We use θ̂?k to denote the underlying vector, and we avoid using double subscripts for the simplicity of
notions.

Lemma 10. Let m = poly(|X |, L, λ−1
0 , log(|X |/δk), Nk, α, ε̄

−1), then under event Eneural
k , we have

dk ≤ deff(ε̄2/|X |).

Proof. See Appendix F.3.3.

Now we begin to prove Theorem 7.

Proof of Theorem 7. We follow the main steps of the proof of Theorem 4.

30

Step 1.1: By Lemma 9, we know that there exists θ̂?k such that for any x ∈ X , h(x) =

〈ψdk(x), θ̂?k〉+ η(x), where |η(x)| ≤ 2Sε̄. Therefore, for any y ∈ Y(ψdk(Ŝk)), we have∣∣∣〈y, θ̂k − θ̂?k〉∣∣∣ =

∣∣∣∣∣∣y>A−1
k

Nk∑
j=1

ψdk(xi)yi − y>θ̂?k

∣∣∣∣∣∣
=

∣∣∣∣∣∣y>A−1
k

Nk∑
j=1

ψdk(xi)
(
ψdk(xi)

>θ̂?k + η(xi) + ξi

)
− y>θ̂?k

∣∣∣∣∣∣
=

∣∣∣∣∣∣y>A−1
k

Nk∑
j=1

ψdk(xi)(η(xi) + ξi)− αy>A−1
k θ̂

?
k

∣∣∣∣∣∣
≤

∣∣∣∣∣∣y>A−1
k

Nk∑
j=1

ψdk(xi)η(xi)

∣∣∣∣∣∣+

∣∣∣∣∣∣
Nk∑
j=1

y>A−1
k ψdk(xi)ξi

∣∣∣∣∣∣+ α
∣∣∣y>A−1

k θ̂
?
k

∣∣∣.
(37)

Following the proof of Theorem 4, the first and second terms in (37) can be bounded as follows, with
probability at least 1− δk for any y ∈ Y(ψdk(Ŝk)):∣∣∣∣∣∣y>A−1

k

Nk∑
j=1

ψdk(xi)η(xi)

∣∣∣∣∣∣ ≤ 2Sε̄

√
(1 + ζ) τ(Y(ψdk(Ŝk)))

∣∣∣∣∣∣
Nk∑
j=1

y>A−1
k ψdk(xi)ξi

∣∣∣∣∣∣ ≤ ‖y‖A−1
k

√
2 log

(
|Ŝk|2/δk

)
(38)

The last term in (37) can be bounded as

α
∣∣∣y>A−1

k θ̂
?
k

∣∣∣ ≤ √α‖θ̂?k‖2‖y‖A−1
k
≤
√

2αS‖y‖A−1
k
.

Therefore, we have∣∣〈y, θ̂k − θ̂?k〉∣∣
≤ 2Sε̄

√
(1 + ζ) τ(Y(ψdk(Ŝk))) + ‖y‖A−1

k

(√
2 log

(
|Ŝk|2/δk

)
+
√

2αS
)

:= ω̃k(ψdk(x)−ψdk(x′)). (39)
Similar to the proof of Theorem 4, since by the property of rounding procedure, we have

‖y‖A−1
k
≤ max
y′∈Y(ψdk (Ŝk))

‖y′‖A−1
k
≤
√

(1 + ζ)/Nk‖y′‖Aψdk (λk)−1 ≤ 2
√

(1 + ζ)dk/Nk. (40)

Meanwhile, according to Kiefer–Wolfowitz Theorem, we have

τ(Y(ψdk(Ŝk))) = inf
λ∈ΛX

sup
y∈Y(ψdk (Ŝk))

‖y‖2Aψdk (λ)−1 ≤ inf
λ∈ΛX

sup
y∈Y(ψdk (X))

‖y‖2Aψdk (λ)−1 ≤ 4dk.

(41)
Submitting (40) and (41) into (39), we have∣∣〈y, θ̂k − θ̂?k〉∣∣ ≤ 4Sε̄

√
(1 + ζ)dk + 2

√
(1 + ζ)dk/Nk

(√
2 log(|X |2/δk) +

√
2αS

)
, (42)

Step 1.2: We show that x? ∈ Ŝk+1 for any 0 ≤ k ≤ n− 1 first. For any x̂ ∈ Ŝk, we have
f(x̂)− f(x?)

≤ 〈ψdk(x̂), θ̂k〉 − 〈ψdk(x?), θ̂k〉+ |f(x̂)− 〈ψdk(x̂), θ̂k〉|+ |f(x?)− 〈ψdk(x?), θ̂k〉|︸ ︷︷ ︸
I1

≤ ω̃k(ψdk(x̂)−ψdk(x?)) + h(x̂)− η(x̂)− h(x?) + η(x?) + I1
≤ 4Sε̄+ ω̃k(ψdk(x̂)−ψdk(x?)) + I1, (43)

31

To further bound (43), we have

4Sε̄+ ω̃k(ψdk(x̂)−ψdk(x?)) + I1
≤ 4Sε̄

+ 4Sε̄
√

(1 + ζ)d+ 2
√

(1 + ζ)d/Nk

(√
2 log(|X |2/δk) +

√
2αS

)
+ 2C[(1− ηmα)J/2

√
NkL/α+ 4N3

k ε̄
2L2/α3 +N2

kLε̄
2/α2 + ε̄2Nk/α]

≤ 8Sε̄
√

(1 + ζ)deff(ε̄2/|X |) + 4
√

(1 + ζ)deff(ε̄2/|X |)/Nk
√

log(|X |2/δk)

+ 2C[(1− ηmα)J/2
√
NkL/α+ 6N3

k ε̄
2L2/α3] (44)

where the first inequality holds due to Lemma 8 and (42), the second inequality holds since α ≤
min{1, log(|X |2)/S}. Now, according to the choice of Nk, we have

4
√

(1 + ζ) log(|X |2/δk)deff(ε̄2/|X |)/Nk ≤ 2−k/8, (45)

where the inequality holds due to the selection of Nk. According to the choice of ε̄, we have

8Sε̄
√

(1 + ζ)deff(ε̄2/|X |) ≤ ε/8,
According to the choice of Nk, ε̄, we have

12CN3
k ε̄

2L2/α3

≤ 12C · 10243(1 + ζ)3 log3
(
|X |2/δk

)
d3(ε̄2/|X |)ε−6ε̄2L2/α3 + 12Crd(ζ)3ε̄2L2/α3

≤ ε/8, (46)

According to the choice of J , we have

2C(1− ηmα)J/2
√
NkL/α ≤ ε/8. (47)

Therefore, substituting these bounds into (44), we have

4Sε̄+ ω̃k(ψdk(x̂)−ψdk(x?)) + I1 ≤ 2−k/8 + 3ε/8, (48)

Therefore, x? ∈ Ŝk+1.

Step 1.3: Next, we show that for any k = n, any x ∈ Ŝk satisfying ∆(x) ≥ ε will be eliminated. In
other words, all the arms x′ remaining in Ŝk+1 satisfy ∆(x′) ≤ ε. Suppose ∆(x) ≥ ε and x ∈ Ŝk,
then we have ∆(x) = ε ≥ 4 · 2−(k+1) = 2 · 2−k by the selection of k. Now we have

f(x?)− f(x) ≥ 〈ψdk(x?), θ̂k〉 − 〈ψdk(x), θ̂k〉 − |f(x)− 〈ψdk(x), θ̂k〉|+ |f(x?)− 〈ψdk(x?), θ̂k〉|︸ ︷︷ ︸
I2

≥ h(x?)− h(x)− η(x?) + η(x)− ω̃k(ψdk(x?)−ψdk(x))− I2
≥ ∆(x)− (4Sε̄+ ω̃k(ψdk(x)−ψdk(x?)) + I2), (49)

Similar to (48), (49) can be bounded by 2−k/8 + 3ε/8. Therefore, when k > n = log(1/ε), we have
f(x?)− f(x) ≥ ε− ε/2 = ε/2 > 2−k/8 + 3ε/8, which suggests that x will be eliminated.

Step 1.4: The probability for all the events hold simultaneously in round k = 1, . . . , n can be
bounded by a union bound, the same as (16).

Step 1.5: Finally we bound the total sample complexity, which is

N =

n∑
k=1

Nk

= Õ

(
(1 + ζ)deff(ε̄2/|X |)

n∑
k=1

(4k + rdk(ζ))

)
= Õ

(
(1 + ζ)deff(ε̄2/|X |)/ε2 + rdeff (ε̄2/|X |)(ζ)

)
.

32

F.3 Proof of Lemmas

In this section we propose the proofs of lemmas in Appendix F.2. We first propose the following
proposition, which can be directly derived by the construction rule of ψdk introduced in Algorithm 2.

Proposition 3. For any x ∈ X , we have

ψdk(x) =

d∑
j=1

ax,jejej , g(x;θk−1)/
√
m =

|X |∑
j=1

ax,jejbj = B>X [ψ(x); εx], ‖εx‖2 ≤ ε̄,

where bj ∈ Rp are orthogonal unit vectors in p-dimensional space,BX = [b>1 ; , . . . , b>|X|] ∈ R|X |×p.

In the following proofs, for simplicity, let ψ(·) denote ψdk(·).

F.3.1 Proof of Lemma 8

In detail, to prove Lemma 8, we need the following lemmas.

Lemma 11. Let m = poly(|X |, L, λ−1
0 , log(|X |/δk), Nk, α, ε̄

−1), then under event Eneural
k , we have

|f(x;θk)− 〈g(x;θ0), Z̄−1
k b̄t/

√
m〉| ≤ C(1− ηmλ)J/2

√
NkL/α. (50)

Proof of Lemma 11. By Lemma 3, we have for all x ∈ X ,∣∣∣f(x;θk)− 〈g(x;θ0),θk − θ0〉
∣∣∣ =

∣∣∣f(x;θk)− f(x;θ0)− 〈g(x;θ0),θk − θ0〉
∣∣∣

≤ 3CfN
2/3
k m−1/6α−2/3L3

√
logm,

where we use the fact that f(xj ;θ0) = 0 due to the initialization scheme adapted by Algorithm 2,
and ‖θk − θ0‖2 ≤ 2

√
Nk/(mα) from Lemma 6. Therefore, we have

|f(x;θk)− 〈g(x;θ0), Z̄−1
k b̄t/

√
m〉|

≤ |f(x;θk)− 〈g(x;θ0),θk − θ0〉|+ ‖θk − θ0 − Z̄−1
k b̄t/

√
m‖2‖g(x;θ0)‖2

≤ 3CfN
2/3
k m−1/6α−2/3L3

√
logm

+ [(1− ηmα)J/2
√
Nk/(mα) + C̄5m

−2/3
√

logmL7/2N
5/3
k α−5/3(1 +

√
Nk/α)]Cg,1

√
mL

≤ C(1− ηmα)J/2
√
NkL/α,

where the first inequality holds due to triangle inequality, the second one holds due to Lemma 4 and
Lemma 6, the last one holds since m = poly(L,Nk−1, α, log(1/δ)).

We also need the following lemma.

Lemma 12. Suppose α ≥ 2Cg,1Nk ε̄
√
L andm = poly(L,Nk−1, α, log(1/δ)), then with probability

at least 1− δ, for all x ∈ X , we have

〈ψ(x), θ̂k〉 − 〈Z̄−1
k b̄t/

√
m, g(x;θ0)〉 ≤ Cψ(NkLα/λ

2
k + ε̄2/λ2

kN
2
kL+ ε̄2Nk/α). (51)

Proof of Lemma 12. For each x ∈ X , we have

〈ψ(x), θ̂k〉 − 〈Z̄−1
k b̄t/

√
m, g(x;θ0)〉

=

∣∣∣∣〈ψ(x),A−1
k

Nk∑
i=1

ψ(xi)yi

〉
−
〈
g(x;θ0)√

m
, Z̄−1

k

Nk∑
i=1

Nk∑
i=1

yig(xi;θ0)/
√
m

〉∣∣∣∣
≤

Nk∑
i=1

∣∣∣∣〈ψ(x),A−1
k ψ(xi)

〉
−
〈
g(x;θ0)√

m
, Z̄−1

k g(xi;θ0)/
√
m

〉∣∣∣∣, (52)

33

where the last line holds due to triangle inequality. Then, to bound (52), we first decompose it to two
terms by triangle inequality:∣∣∣∣〈ψ(x),A−1

k ψ(xi)

〉
−
〈
g(x;θ0)√

m
, Z̄−1

k g(xi;θ0)/
√
m

〉∣∣∣∣
≤
∣∣∣∣〈ψ(x),A−1

k ψ(xi)

〉
−
〈
g(x;θk−1)√

m
,Z−1

k g(xi;θk−1)/
√
m

〉∣∣∣∣︸ ︷︷ ︸
I1

+

∣∣∣∣〈g(x;θ0)√
m

, Z̄−1
k g(xi;θ0)/

√
m

〉
−
〈
g(x;θk−1)√

m
,Z−1

k g(xi;θk−1)/
√
m

〉∣∣∣∣︸ ︷︷ ︸
I2

. (53)

To bound I1: Let x′ denote xi. First we write
〈
g(x;θk−1),Z−1

k g(x′;θk−1)
〉
/m as products of

block matrices, as follows:〈
g(x;θk−1)√

m
,Z−1

k

g(x′;θk−1)√
m

〉
=

〈
B>X [ψ(x); εx],

(
αI +B>X

Nk∑
j=1

[ψ(xj); εxj][ψ(xj); εxj]
>BX

)−1

B>X [ψ(x′); εx′]

〉

=

〈
[ψ(x); εx],

(
αI +

Nk∑
j=1

[ψ(xj); εxj][ψ(xj); εxj]
>
)−1

[ψ(x′); εx′]

〉
, (54)

where the first equality holds due to Proposition 3. To further bound (54), we give the matrix inverse
an explicit expression. DenoteM ,N ,P ,Q as follows:

M =

Nk∑
j=1

ψ(xj)ε
>
xj , N =

Nk∑
j=1

εxjε
>
xj ,

P = Ak −M(N + αI)−1M>, Q = (N + αI)−1 + (N + αI)−1M>P−1M(N + αI)−1,

then we have(
αI +

Nk∑
j=1

[ψ(xj); εxj][ψ(xj); εxj]
>
)−1

=

(
Ak, M
M>, N + αI

)−1

=

(
P−1 −A−1

k MP−1

P−1M>A−1
k , Q

)
, (55)

where the second equality holds due to the block matrix inverse formula. Then substituting
(55) into (54) and considering the difference between

〈
g(x;θk−1),Z−1

k g(x′;θk−1)
〉
/m and〈

ψ(x),A−1
k ψ(x′)

〉
, we have∣∣〈g(x;θk−1),Z−1

k g(x′;θk−1)
〉
/m−

〈
ψ(x),A−1

k ψ(x′)
〉∣∣

=
∣∣ψ(x)>(P−1 −A−1

k)ψ(x′) + ε>xP
−1M>A−1

k ψ(x′)

+ψ(x)A−1
k MP−1εx′ + ε>xQε

>
x′

∣∣
≤ ‖ψ(x′)‖2‖ψ(x)‖2‖P−1 −A−1

k ‖2 + ‖Q‖2‖εx‖2‖εx′‖2
+ ‖P−1‖2‖M‖2‖A−1

k ‖2(‖εx‖2‖ψ(x′)‖2 + ‖εx′‖2‖ψ(x)‖2), (56)

where we use triangle inequality in the inequality. To bound (56), we have the following inequalities:

∀x ∈ X , ‖ψ(x)‖2 ≤ ‖g(x;θk−1)‖2/
√
m ≤ Cg,1

√
L, (57)

where the first inequality holds since ψ(x) is the truncation of g(x;θk−1)/
√
m, the second one

holds due to Lemma 4. Use the fact that α ≥ 2Cg,1Nk ε̄
√
L, we also have

Ak � P � Ak − ‖M‖22/α � Ak − C2
g,1N

2
k ε̄

2L/α � Ak − α/2 · I, (58)

34

and

‖Q‖2 ≤ ‖(N + αI)−1‖2 + ‖(N + αI)−1‖22‖M‖22‖P−1‖2 ≤ α−1 + α−3N2
kC

2
g,1Lε̄

2 ≤ 2/α.
(59)

Lastly, we have

‖A−1
k − P

−1‖2 = ‖P−1(P −Ak)A−1
k ‖2 ≤ ‖A

−1
k ‖2‖P

−1‖2‖Ak − P ‖2 ≤ C2
g,1N

2
k ε̄

2L/α3,
(60)

where the bounds of ‖A−1
k ‖2, ‖P−1‖2 and ‖Ak−P ‖2 come from (58) and (59). Finally, substituting

(57), (58), (59), (60) into (56), we can bound I1 as

I1 ≤ C4
g,1N

2
k ε̄

2L2/α3 + 4ε̄2/α2NkL+ 2ε̄2/α. (61)

To bound I2: To bound I2, we have

I2 ≤
∣∣∣∣〈g(x;θ0)√

m
, Z̄−1

k g(xi;θ0)/
√
m

〉
−
〈
g(x;θk−1)√

m
, Z̄−1

k g(xi;θ0)/
√
m

〉∣∣∣∣
+

∣∣∣∣〈g(x;θk−1)√
m

, Z̄−1
k g(xi;θ0)/

√
m

〉
−
〈
g(x;θk−1)√

m
,Z−1

k g(xi;θ0)/
√
m

〉∣∣∣∣
+

∣∣∣∣〈g(x;θk−1)√
m

,Z−1
k g(xi;θ0)/

√
m

〉
−
〈
g(x;θk−1)√

m
,Z−1

k g(xi;θk−1)/
√
m

〉∣∣∣∣
≤ ‖g(x;θ0)− g(x;θk−1)‖2/

√
m‖Z̄−1

k ‖2‖g(xi;θ0)‖2/
√
m

+ ‖g(xi;θk−1)‖2/
√
m‖Z̄−1

k −Z
−1
k ‖2‖g(xi;θ0)‖2/

√
m

+ ‖g(xi;θk−1)‖2/
√
m‖Z−1

k ‖2‖g(x;θ0)− g(x;θk−1)‖2/
√
m

≤ 2Cg,1Cg,2N
1/6
k−1α

−7/6m−1/3
√

logmL4 + C2
g,1L

5 · C̄4m
−1/6

√
logmN

7/6
k α−13/6, (62)

where the first inequality holds due to triangle inequality, the third one holds due to Lemma 4 and the
fact

‖Z̄−1
k −Z

−1
k ‖2 ≤ ‖Z̄

−1
k ‖2‖Z

−1
k ‖2‖Z̄k −Zk‖2 ≤ C̄4L

4m−1/6
√

logmN
7/6
k α−13/6, (63)

where the last inequality holds due to the fact Z̄k,Zk � αI and Lemma 7.

Final bound: Substituting (61) and (62) into (52) ends our proof.

Then we begin our proof, which is a direct combination of Lemma 11 and Lemma 12.

Proof of Lemma 8. Adding (50) with (51) finishes our proof.

F.3.2 Proof of Lemma 9

Proof of Lemma 9. First, by Lemma 5, we know that there exists θ? ∈ Rp such that

h(x) = 〈g(x;θ0),θ? − θ0〉,
√
m‖θ? − θ0‖2 ≤

√
2S. (64)

By Proposition 3, we have

ψ(x) =

d∑
j=1

ux,jejej , g(x;θk−1)/
√
m =

|X |∑
j=1

ux,jejbj = B>X [ψ(x); εx], ‖εx‖2 ≤ ε̄. (65)

Therefore, suppose BX
√
m(θ? − θ0) = [r; t], r ∈ Rd, t ∈ R|X |−d, set θ̂? = r, we have ‖θ̂?‖2 ≤√

m‖θ? − θ0‖2 ≤
√

2S, and

|〈ψ(x), θ̂?〉 − 〈g(x;θk−1),θ? − θ0〉| = |ψ(x)>r − [ψ(x)>, ε>x]BX
√
m(θ? − θ0)|

= |ψ(x)>r −ψ(x)>r − ε>x t|
≤ ε̄‖
√
m(θ? − θ0)‖2

≤
√

2Sε̄, (66)

35

where the last inequality holds due to (64). Therefore, we have

|h(x)− 〈φ(x), θ̂?〉|

= |〈g(x;θ0),θ? − θ0〉 − 〈φ(x), θ̂?〉|

≤ ‖θ? − θ0‖2‖g(x;θ0)− g(x;θk−1)‖2 + |〈ψ(x), θ̂?〉 − 〈g(x;θk−1),θ? − θ0〉|

≤
√

2SCg,2N
1/6
k−1α

−1/6m−1/3
√

logmL7/2 +
√

2Sε̄

≤ 2Sε̄,

where at the last line we use the fact that m = poly(L,Nk−1, α).

F.3.3 Proof of Lemma 10

Proof of Lemma 10. First we bound |〈g(x;θ0), g(x′;θ0)〉/m−〈g(x;θ0), g(x′;θ0)〉/m|. We have
|〈g(x;θ0), g(x′;θ0)〉/m− 〈g(x;θk−1), g(x′;θk−1)〉/m|
≤ |〈g(x;θ0), g(x′;θ0)〉/m− 〈g(x;θ0), g(x′;θk−1)〉/m|

+ |〈g(x;θ0), g(x′;θk−1)〉/m− 〈g(x;θ0), g(x′;θk−1)〉/m|

≤ 2Cg,1Cg,2N
1/6
k−1α

−1/6m−1/3
√

logmL4, (67)
where the first inequality holds due to triangle inequality, the second one holds due to (35). Therefore,
when m = poly(|X |, L, λ−1

0 , log(|X |/δk), Nk, α, ε̄
−1), we have

|〈g(x;θk−1), g(x′;θk−1)〉/m−H(x,x′)|
≤ |〈g(x;θ0), g(x′;θ0)〉/m−H(x,x′)|

+ |〈g(x;θ0), g(x′;θ0)〉/m− 〈g(x;θk−1), g(x′;θk−1)〉/m|

≤ |〈g(x;θ0), g(x′;θ0)〉/m−H(x,x′)|+ 2Cg,1Cg,2N
1/6
k−1α

−1/6m−1/3
√

logmL4

≤ ε̄2/(2|X |4). (68)
Next, by the definition of deff(ε), we know that

|X |∑
i=deff (ε̄2/|X |)+1

λi(H) ≤ ε̄2/|X |, (69)

which suggests that
|X |∑

i=deff (ε̄2/|X |)+1

λi(GG
>) ≤

|X |∑
i=deff (ε̄2/|X |)+1

λi(H) +

|X |∑
i=deff (ε̄2/|X |)+1

‖GG> −H‖2

≤ ε̄2/(2|X |) + |X |3 ·max
x,x′
|〈g(x;θk−1), g(x′;θk−1)〉/m−H(x,x′)|

≤ ε̄2/(2|X |) + ε̄2/(2|X |)
= ε̄2/|X |. (70)

Finally, we have

|X |∑
i=deff (ε̄2/|X |)+1

λi(G) =

|X |∑
i=deff (ε̄2/|X |)+1

√
λi(GG>) ≤

√√√√√|X | |X |∑
i=deff (ε̄2/|X |)+1

λi(GG>) ≤ ε̄.

(71)

G Implementation details

We provide further details of experiments presented in Section 6. We ran all experiments on a Xeon
Gold 6130 CPU, except for NeuralEmbedding where we used an Nvidia GeForce RTX2080Ti GPU.
All the datasets we are using are either synthetic or publicly available and do not contain personally
identifiable information or offensive consent.

36

G.1 Experimental setups

All algorithms are run at confidence level of δ = 0.05, and a misspecification level of ε = 0.1.
For each algorithm that requires computing a design λ (or the associated value τ of the minimax
optimization problem), we employed a Frank-Wolfe algorithm and set the step-size and convergence
rate in the same way as in [13]. Since our algorithms are all elimination-styled, the (empirical) sample
complexity is calculated as the number of samples pulled when the set of uneliminated arms only
consists of ε-optimal arms. All algorithms were forced to stop when the number of pulls reaches 107

(and such a case was reported as a failure). We choose 107 as the stopping criteria since continuing
running an algorithm after pulling a large number of arms (107) is likely to raise memory issues on
the running machine. For a fair comparison, each experiment is repeated 50 times and we report
sample complexity results based on successful instances runs.

KernelEmbedding was instantiated with Gaussian kernel K(xi,xj) = exp(−γ‖xi − xj‖22) over
action set X . To decide the value of γ in KernelEmbedding as well as C (in Section 3.2) in
KernelEmbedding and LinearEmbedding, for each dataset, we ran the method with several different
seeds, used a grid search over {10−5, 10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103}, and monitored
the interested metrics (empirical sample complexity and the success rate). For KernelEmbedding
and LinearEmbedding, we implemented Algorithm 1 for synthetic datasets; for Yahoo and MNIST
datasets, due to the difficulty of the data, e.g., nonlinearity, we found that Algorithm 1 with adaptive
embedding might compress arms into undesired inseparable subspaces in earlier rounds, which
worsens the empirical performance. As a result, we implemented a slightly modified version of
Algorithm 1 (i.e., Algorithm 3; see details in Remark 6) for Yahoo and MNIST datasets for better
empirical performance (sample complexity and success rate). To save computation, we use 4(1 + ζ)d
as an approximation of g(d, ζ) when computing dk for KernelEmbedding and LinearEmbedding
(recall that we always have g(d, ζ) ≤ 4(1 + ζ)d).8

The model used in Neural Embedding is a three-layer (i.e., two hidden layers) fully connected
neural network, where each hidden layer has 128 nodes. We used a Rectified Linear Unit (ReLU) as
our activation function. To overcome overfitting on real datasets, we add one dropout layer with 50%
dropout rate. The learning rate is set as 10−4 and the maximum training iteration number is set as
6, 000. A grid search over {10−5, 10−4, 10−3, 10−2, 10−1} is used to determine the ε̄ parameter (in
Algorithm 2).

G.2 Detailed descriptions of datasets

Synthetic dataset with linear rewards. We tested all methods with varying the number of arms (K)
and a fixed dimension (D = 20). To construct a set of arms X , we first randomly generate x1 = θ?
so that 〈θ?,x1〉 = 0.8; we then generate a x2 such that 〈θ?,x2〉 ≈ 0.4. After generating the two
principal arms x1 and x2, we constructed an action set X by adding randomly perturbated arms, i.e.,

X = {x1,x2,x1 ⊕
{
ηieij

}K
2 −1

i=1
,x2 ⊕

{
ηieij

}K
2 −1

i=1
}, where ij is randomly chosen from [D] and

ηi ∼ N (0, (10−5)2). We ensure span(X) = RD in the construction. We used Bernoulli reward with
x>θ? success probability in this experiment.

Synthetic dataset with nonlinear rewards. We tested all algorithms with increasing dimensions
(D) and a fixed number of arms (K = 200). The reward of an arm is set as the 2-norm of its
feature representation. We randomly generate x1 and x2 such that h(x1) = 0.8 and h(x2) = 0.4.
We construction our action set X by adding randomly perturbated arms, i.e., X = {x1,x2,x1 ⊕{
ηieij

}K
2 −1

i=1
,x2 ⊕

{
ηieij

}K
2 −1

i=1
}, where ij is randomly chosen from [D] and ηi ∼ N (0, (10−5)2).

We ensure span(X) = RD in the construction. We used Bernoulli reward with h(x) success
probability in this experiment.

Yahoo dataset. We used Yahoo! User Click Log Dataset R6A in this experiment.9 The dataset
contains the users’ click-through records from the Today news module on Yahoo! front page between
May 1st. 2009 and May 10th. 2009. Each user click log record consists of 6 article features and
6 user features, along with a binary variable stating whether or not a user clicked on the article.

8One can also determine dk in a binary search manner if monotonicity of (an upper bound of) γ(d) can be
guaranteed, e.g., see examples in the proof of Theorem 2.

9https://webscope.sandbox.yahoo.com

37

https://webscope.sandbox.yahoo.com

To process the data, we considered the records collected in the 1st day and randomly selected 200
records from it. We construct an arm setX ∈ R200×36 by taking the flattened outer product of the
user and the corresponding article feature vector. And in our further examination, we found that the
rank ofX is 35 instead of 36 (full rank). To ensure full rank, we preprocessX by projecting it into a
lower-dimensional space X̃ ∈ R200×35. The reward of each arm is determined as in Section 6. Noise
in the observed rewards was generated from a standard normal distribution.

MNIST dataset. The dataset is described as in Section 6. Noise in the observed rewards was
generated from a standard normal distribution.

G.3 Empirical effective dimension dk

For implementations with a fixed embedding (i.e., Algorithm 3), dk is fixed over all iterations. For
implementations with an adaptive embedding (i.e., Algorithm 1 and 2), dk is increasing with iteration
index k since we decrease tolerance to misspecification levels in later iterations. For experimental
results of synthetic dataset in Figure 1, due to the simplicity of the data, NeuralEmbdding is able
to compress arms in R2 and completed the elimination in one round, and Alg.1-KernelEmbedding
and Alg.1-LinearEmbedding are able to compress arms in R2 and completed the elimination in
two rounds. For experimental results of real-world datasets in Figure 2, our KernelEmbedding
and LinearEmbedding are implemented with fxied embedding (as discussed in Appendix G). For
NeuralEmbedding, at each iteration k, we calculated the averaged empirical value of dk; we also use
sk to denote the percentage of runs that have successfully completed the elimination process at round
k. We summarized the pair value (dk, sk) in Table 2.

Table 2: Empirical effective dimension and success rate on real-world datasets
NeuralEmbedding MNIST Yahoo

(d1, s1) (190.22, 82%) (72.70, 86%)
(d2, s2) (192.11, 98%) (167.57, 100%)

38

	Introduction
	Contribution and Outline
	Related Work

	Problem setting
	Bandit pure exploration with adaptive embedding
	Algorithm and analysis
	Application to high-dimensional linear bandits

	Pure exploration in RKHS
	Pure exploration with neural networks
	Experiments
	Conclusion
	Supporting materials
	Matrix inversion and rounding
	Supporting lemmas

	Omitted proofs for sec:activecompression
	Proof of thm:activeelimadaptive
	Proof of prop:complexitylinear
	Example for high-dimensional linear bandits

	Arm elimination with a fixed embedding
	The algorithm
	Sample complexity analysis

	Arm elimination with unknown misspecifications
	Omitted materials for sec:kernel
	Mercer's theorem and corollary
	Proof of thm:kernelelim

	Details and proofs for sec:neural
	Omitted details for Section 5
	Proof of Theorem 7
	Proof of Lemmas
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Lemma 10

	Implementation details
	Experimental setups
	Detailed descriptions of datasets
	Empirical effective dimension dk

