Supplementary Material
A Proof of Proposition 2

Proposition 2. (From main text) The Bayes error of flow models is monotonically increasing in T.
That is, for 0 < 7 < 7/, we have that Egayes(Pr) < Epayes(Pr')-

Proof. Note that at temperature 7, the Bayes error is given by

gBayes = Zﬂk/H 1 ij+b]k > O)N(dz M, T ) (16)
= J#k
K
= Zﬂ' /HlNkz—l—— 0)N(dz; 0,1) (17)
k=1 Jj#k

where &, = 257V (uy, — ), bjr = (r — ;) TS (. — p5) > 0. Then it easy to see that
for 0 < 7 < 7’ and z € R%, we have that

b
[[1@a jkz+—>o ) > [[1& (ajyz+ 2 k> 0) (18)
Jj#k J#k
which implies that Egayes (Pr) < Epayes(Pr/)- O

B Further empirical results

B.1 Hardness of Classes

In addition to measuring the difficulty of classification tasks relative to one another, it also may be of

interest to evaluate the relative difficulty of individual classes within a particular task. A natural way

to do this is by looking at the error of one-vs-all classification tasks. Specifically, for a given class

j € K, we consider (x, 1) drawn from the distribution p_;(x) = - ", 2; ™ipi(x), and (x,0)
J

from p;(x). The optimal Bayes classifier in this task is

0 if —logp;(x) < —logp_;(x),
CBayeS (X) {1 otherwise .

Unfortunately, in this case, the Bayes error cannot be computed with HDR integration, since p_; is
now a mixture of Gaussians. However, we can get a reasonable approximation for the error (though
less accurate than exact integration would be) in this case using a simple Monte Carlo estimator:
EBayes = % Z?; 1(Chayes(x1) # y1), where y; ~ Unif{0,1} and x; | y; ~ yip—; + (1 — y1)p; as
prescribed above.

The one-vs-all errors by class on CIFAR are shown in Figure 5. It is observed that the errors between
the hardest class and the easiest class is huge. On CIFAR-100 the error of the hardest class, squirrel,
is almost 5 times that of the easiest class, wardrobe.
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Figure 5: Classes Ranked by Hardness



B.2 Additional samples and Bayes errors from flow models

Below we include examples generating by the trained flow models, and additional datasets generated
at different temperatures, and hence Bayes errors.
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(a) 7=0.2, Epayes =1.11e-16 (b) 7=1.0, Eayes =1.07e-4
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Figure 6: Generated MNIST Samples with Different Temperatures
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(a) 7=0.2, Epayes =1.11e-16 (b) 7=1.0, Epayes =8.03e-3

ﬂ
E:

Edi3

NHEEEE g
SR AT

S BGS  a

(c) T=1.4, Epayes =7.21e-2 (d) 7=3.0, Epayes =4.80e-1

Figure 7: Generated Kuzushiji-MNIST Samples with Different Temperatures
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(a) airplane (b) automobile (c) bird (d) cat (e) deer
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(f) dog (g) frog (h) horse (1) ship (j) truck

Figure 8: Samples generated from conditional GLOW model trained on CIFAR-10.
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Figure 9: Samples generated from conditional GLOW model trained on CIFAR-100.
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Figure 10: Samples generated from conditional GLOW model trained on EMNIST (balanced).

Estimated Bayes Error is 0.09472.
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