
7 Appendix A

7.1 Proofs for Theorem 1

Notation: Throughout this section, we use � and � to indicate the partial ordering on vectors where
a � b if a is not larger than b co-ordinate wise (� is defined analogously). We also use 0 to denote
the all 0’s vector and 1 denote the all 1’s vector (where the dimension is inferred from context). For a
vector 0 � w ∈ Rd, the norm ‖x‖2w ,

∑d
i=1 wix

2
i is the weighted-L2 norm.

Recall from eq. (2), the population expected 0-1 loss of a policy π is defined as

L(fπ, π, π∗) =
1

H

H∑
t=1

ESt∼fπt (·)

[
Ea∼π̂t(·|s) [1(a 6= π∗t (s)]

]
. (9)

Lemma 3. Suppose there is an online learning algorithm which outputs policies {π̂1, · · · , π̂N} se-
quentially according to any procedure where the learner samples the policy π̂i from some distribution
conditioned on tr1, · · · , tri−1, subsequently samples a trajectory tri by rolling out π̂i, repeating this
process forN iterations. Denote f̂ π̂

i

= {f̂ π̂i1 , · · · , f̂ π̂iH } where f̂ π̂
i

t denotes the empirical distribution
over states induced by the single trajectory tri at time t. Denote π̂ = 1

N

∑N
i=1 π̂

i as the mixture
policy. Then,

E
[
L(f π̂, π̂, π∗)

]
=

1

N

N∑
i=1

E
[
L(f̂ π̂

i

, π̂i, π∗)
]
. (10)

Proof. Since the trajectory tri is rolled out using π̂i, conditioned on π̂i, f̂ π̂
i

is conditionally unbiased
and in expectation equal to f π̂

i

(conditioned on π̂i). Therefore, for each i, since L(f, π̂, π∗) is a
linear function in f ,

E
[
L(f̂ π̂

i

, π̂i, π∗)
∣∣∣π̂i] = L(f π̂

i

, π̂i, π∗). (11)

Summing across i = 1, · · · , N and using the fact that L(f π̂, π̂, π∗) = 1
N

∑N
i=1 L(f π̂

i

, π̂i, π∗) and
taking expectation completes the proof.

The conclusion of this lemma is that is it suffices to minimize the empirical 0-1 loss under the
learner’s own one-trajectory empirical state distribution 1

N

∑N
i=1 L(f̂ π̂

i

, π̂i, π∗). Note that for any
policy π, the loss

L(f̂ π̂
i

, π, π∗) =
1

H

H∑
t=1

∑
s∈S

〈
πt(·|s), zit(s)

〉
(12)

where zit(s) =
{
f̂ π̂

i

t (s)(1− π∗(a|s))
}
a∈A
∈ ∆1

A is a linear function in the policy π. The constraint

on the policy variable π is that for each t ∈ [H] and s ∈ S, πt(·|s) ∈ ∆1
A.

Define the loss `i,s,t(π) =
∑
s∈S

〈
πt(·|s), zit(s)

〉
. Then the variable πt(·|s) lies in the simplex ∆1

A

and the vector zit(s) is co-ordinate wise ≥ 0 and ≤ 1.

To learn the sequence of policies returned by the learner, we use the normalized-EG algorithm of
[28] which is also known as Follow-the-regularized-leader / Online Mirror Descent with entropy
regularization for online learning. Formally, the online learning problem and the algorithm are as
defined in Section 2 of [28].

Theorem 8 (Adapted from Theorem 2.22 in [28]). Assume that the normalized EG algorithm is run
on a sequence of linear loss functions {〈zi, ·〉 : i = 1, · · · , T}, with η = 1/2 to return a sequence
of distributions w1, · · · , wT ∈ ∆1

A. Assume that for all t ∈ [H], 0 � zt � 1. For any u such that∑T
i=1〈zi, u〉 = 0,

T∑
t=1

〈wi − u, zi〉 ≤ 4 log(|A|). (13)
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This result is adapted from Theorem 2.22 in [28] by invoking the condition that 0 � zt � 1, so the
local norm ‖zt‖2wt can be upper bounded by 〈zt, wt〉. Choosing η = 1

2 , using the assumption that∑T
i=1〈zi, u〉 = 0 and simplifying results in the statement of Theorem 8.

Suppose the learner returns the sequence of policies π̂i, · · · , π̂N by running the normalized EG
algorithm on the sequence of losses `1,s,t, · · · , `N,s,t for each s ∈ S and t ∈ [H] to return a sequence
of distributions π̂1

t (·|s), · · · , π̂Nt (·|s) ∈ ∆1
A. Finally, for i = 1, · · · , N , the learner returns the policy

π̂i as {{π̂it(·|s) : s ∈ S} : t ∈ [H]}.
Invoking the guarantee in Theorem 8 for the sequence of policies π̂1

t (·|s), · · · , π̂Nt (·|s) returned by a
single instance of the normalized-EG algorithm,

T∑
i=1

〈zit(s), π̂it(·|s)〉 ≤ 4 log(|A|) (14)

Averaging across t ∈ [H], summing across s ∈ S and recalling the definition of L in eq. (12) results
in the bound,

1

N

N∑
i=1

L(f̂ π̂
i

, π̂i, π∗) ≤ 4|S| log(|A|)
N

. (15)

Finally invoking Lemma 3 shows that the resulting sequence of policies π̂1, · · · , π̂N and their
mixtures 1

N

∑N
i=1 π̂

i satisfies,

E
[
L(f π̂, π̂.π∗)

]
≤ 4|S| log(|A|)

N
. (16)

Invoking [27, Theorem 2], under µ-recoverability shows that the resulting policy π̂ satisfies,

E[J(π∗)− J(π̂)] ≤ 4|S| log(|A|)
N

. (17)

This completes the proof of Theorem 1.

7.2 Proof of Theorem 2

Theorem 9 (Theorem 6.1 in [22]). For any learner π̂, there exists an MDPM and a deterministic
expert policy π∗ such that the expected suboptimality of the learner is lower bounded in the active
setting by, JM(π∗)− E[JM(π̂)] & min

{
H, |S|H

2

N

}
.

For each active learner π̂ and the worst-case IL instance (π∗,M) from Theorem 9, consider the IL
instance (π∗,Mµ) where the only difference betweenM andMµ is that each reward is scaled by a
factor of µ/H ≤ 1. Note thatMµ satisfies µ-recoverability. Indeed, consider any state s. Since the
rewards inMµ are in the interval [0, µ/H], the total reward of any trajectory inMµ lies in the interval
[0, µ]. Therefore, trivially, for each (s, a, t) ∈ S × A × [H] tuple, Qπ

∗

t (s, π∗t (s)) − Qπ∗t (s, a) ≤
µ− 0 = µ and the IL instance satisfies µ-recoverability. More importantly the suboptimality of π̂ on
the IL instance (π∗,Mµ) is µ

H times the suboptimality under (π∗,M). In other words,

E
[
JMµ

(π∗)− JMµ
(π̂)
]

=
µ

H
E [JM(π∗)− JM(π̂)] (18)

&
µ

H
min

{
H,
|S|H2

N

}
(19)

= min

{
µ,
µ|S|H
N

}
, (20)

where the last inequality uses [22, Theorem 6.1]. This concludes the proof of Theorem 2.

7.3 Proof of Theorem 3

Theorem 10. In the no-interaction setting, for any learner π̂ and |S| ≥ 3, there exists an MDPM
with state space S and a deterministic expert policy π∗ which (i) satisfies the µ-recovery assumption
for any µ > 1, and (ii) such that the expected suboptimality of the learner is lower bounded by,

JM(π∗)− E[JM(π̂)] & min
{
H, |S|H2/N

}
. (21)
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In this section we discuss the proof of the lower bound in Theorem 10.

Define St(D) as the set of states oberved in at least one trajectory at time t in the expert dataset D.
In particular, the learner exactly knows the expert’s policy π∗t (·|s) at all states s ∈ St(D) for each
t = 1, · · · , H .

The expert policy is deterministic in the lower bound instances we construct. Define Πmimic(D) as
the family of policies which mimics the expert on the states visited in D. Namely,

Πmimic(D) ,
{
π : ∀t ∈ [H], s ∈ St(D), πt(·|s) = π∗t (·|s)

}
, (22)

Informally, Πmimic(D) is the family of policies which are “compatible” with the expert dataset D.

In order to prove the lower bound on the worst-case expected suboptimality of any learner π̂(D), it
suffices to lower bound the Bayes expected suboptimality and find a joint distribution P over MDPs
and expert policies satisfying µ-recoverability, such that, E(π∗,M)∼P

[
JM(π∗)−E [JM(π̂(D))]

]
&

min
{
H, |S|H

2

N

}
.

Construction of P: First the expert’s policy is sampled uniformly from Πdet: for each t ∈ [H]
and s ∈ S, π∗t (s) ∼ Unif(A). Conditioned on π∗, the distribution over MDPs induced by P is
deterministic and given by the MDPM[π∗] in fig. 2.M[π∗] has a fixed initial distribution over states
ρ = {ζ, · · · , ζ, 1−(|S|−2)ζ, 0} where ζ = 1

N+1 . There is a special state b ∈ S in the MDP which
has behavior different from the remaining states. At each state s ∈ S, choosing the expert’s action
renews the state in the initial distribution ρ providing a reward of 1 (except at state b it provides a
reward of 0), while every other action deterministically transitions the learner to the bad state and
provides no reward. That is,

Pt(·|s, a) =

{
ρ, s ∈ S, a = π∗t (s)

δb, otherwise,
(23)

and the reward function of the MDP is given by,

rt(s, a) =

{
1, s ∈ S \ {b}, a = π∗t (s)

0, otherwise.
(24)

We first state a simple consequence of the construction of the MDP instances and P . Note that the
expert never visits the bad state b by virtue of the distribution ρ placing no mass on b. Therefore, the
value of π∗ on the MDPM[π∗] is H .
Lemma 4. The value of π∗ on the MDPM[π∗] is H . Namely JM[π∗](π

∗) = H .

Proof. Playing the expert’s action at any state in S is the only way to accrue non-zero reward, and in
fact accrues a reward of 1. Thus the expert collects a reward of 1 at each time in any trajectory.

At the states unvisited in the dataset D, the learner cannot infer the expert’s policy or even the
transitions induced under different actions. Intuitively, the learner cannot guess the expert’s action
with probability ≥ 1/|A| at such states, a statement which we prove by leveraging the Bayesian
construction. In turn, the learner is forced to visit the bad state b at the next point in the episode.
Since the bad state is never observed in the dataset, the learner is forced to guess the expert’s action
to be able to recover in the distribution ρ over the remaining states (lest it collects a reward of 0 for
the rest of the episode). However by making |A| large (& H), any learner, with constant probability
fails to guess the expert’s action at b at at least a constant fraction of the episode.

Using [22, Lemma A.14], the conditional distribution of the expert’s policy given the expert dataset
D can be characterized.
Lemma 5. ([22, Lemma A.14]) Conditioned on the dataset D collected by the learner, the expert’s
deterministic policy π∗ is distributed ∼ Unif(Πmimic(D)). In other words, at each state visited in
the expert dataset, the expert’s choice of action is fixed as the one returned when the expert was
queried at this state. At the remaining states, the expert’s choice of action is sampled uniformly from
A.
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∼ρ

· · · |S|−1
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∼ρ

Figure 2: Upon playing the expert’s (green) action at any state, the learner is renewed in the
initial distribution ρ = {ζ, · · ·, ζ, 1−(|S|−2)ζ, 0} where ζ= 1

N+1 . Any other choice of action (red)
deterministically transitions the learner to b.

Definition 9. Define P(D) as the joint distribution of (π∗,M) conditioned on the expert dataset D.
Conditionally, π∗ ∼ Unif(Πmimic(D)) andM =M[π∗].

From Lemma 5 and the definition of P(D) in Definition 9, applying Fubini’s theorem gives,

E(π∗,M)∼P

[
JM(π∗)− E [JM(π̂)]

]
= E

[
E(π∗,M)∼P(D) [H − JM(π̂(D))]

]
. (25)

Next we relate this to the first time the learner visits a state unobserved in D.

Lemma 6. Define the stopping time τ as the first time t that the learner encounters a state st 6= b
that has not been visited in D at time t. That is,

τ =

{
inf{t : st 6∈ St(D) ∪ {b}} ∃t : st 6∈ St(D) ∪ {b}
H + 1 otherwise.

(26)

Then, conditioned on the expert dataset D,

E(π∗,M)∼P(D)

[
J(π∗)− E [J(π̂)]

]
≥
(

1− 1

|A|

)H+1

E(π∗,M)∼P(D)

[
Eπ̂(D) [H − τ ]

]
. (27)

We defer the proof of this result to the end of this section.

Plugging the result of Lemma 6 into eq. (25), and recalling the assumption that |A| ≥ H + 1,

E(π∗,M)∼P

[
J(π∗)− E [J(π̂)]

]
≥ 1

4
E
[
E(π∗,M)∼P(D) [Eπ̂ [H − τ ]]

]
, (28)

(i)

≥ H

8
E
[
E(π∗,M)∼P(D)

[
Prπ̂

[
τ ≤ bH/2c

]]]
, (29)

=
H

8
E(π∗,M)∼P

[
E
[
Prπ̂

[
τ ≤ bH/2c

]]]
, (30)

where (i) uses Markov’s inequality, and the last equation uses Fubini’s theorem.

The last remaining element of he proof is to indeed bound the probability that the learner vis-
its a state unobserved in the dataset before time bH/2c which immediately follows from [22,
Lemma A.16] shows that for any learner π̂, E(π∗,M)∼P [E [Prπ̂ [τ ≤ bH/2c]]] is lower bounded
by & min{1, |S|H/N}. Therefore,

E(π∗,M)∼P

[
J(π∗)− E [J(π̂)]

]
& H min

{
1,
|S|H
N

}
. (31)

as long as |A| ≥ H + 1.

Lemma 7. ([22, Lemma A.16]) For any learner policy π̂,

E(π∗,M)∼P

[
E
[
Prπ̂

[
τ ≤ bH/2c

]]]
≥ 1−

(
1− |S| − 2

e(N + 1)

)bH/2c
& min

{
1,
|S|H
N

}
. (32)

Finally, we prove Lemma 6.
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Proof of Lemma 6. Define the random time τb to be the first time the learner encounters the state b
while rolling out a trajectory. Formally,

τb =

{
inf{t : st = b} ∃t : st = b

H + 1 otherwise.

Furthermore, define Γb as the random variable which counts the number of time steps the trajectory
stays in the state b after visiting it for the first time. Namely,

Γb =

{
inf{∆ ≥ 0 : sτb+∆+1 6= b} τb ≤ H
0 otherwise.

(33)

Since the state b always dispenses 0 reward and since r is bounded in [0, 1], conditioned on the expert
dataset D,

H − E(π∗,M)∼P(D) [J(π̂)] = H − E(π∗,M)∼P(D)

[
Eπ̂
[∑H

t=1
rt(st, at)

]]
(34)

≥ E(π∗,M)∼P(D) [Eπ̂ [Γb]] (35)

Fixing the expert dataset D and the expert’s policy π∗ (which determines the MDPM[π∗]), we under
the distribution of Γb.

To this end, first observe that for any t ≤ H − 1 and state s ∈ S,

Prπ̂ [Γb ≥ ∆ + 1,Γb ≥ ∆, τb = t] (36)
= Prπ̂ [Γb ≥ ∆ + 1|Γb ≥ ∆, τb = t] Prπ̂ [Γb ≥ ∆, τb = t] (37)

=
(

1− π̂t+∆(π∗t+∆(b)|b)
)

Prπ̂ [Γb ≥ ∆, τb = t] . (38)

where in the last equation, we use the fact that the learner must play an action other than π∗t+∆(b)
to stay in state b at time t + ∆. Next, we take expectation with respect to the randomness of π∗.
Conditioned on D, π∗ is sampled uniformly from the set of policies Πmimic(D) (Lemma 5). In partic-
ular, conditioned on D, the expert policy is sampled independently at states. Conditioned on π∗, the
underlying MDP isM[π∗]. Observe that the dependence of the second term Prπ̂ [τ = t, st = s] on
π∗ comes from the probability computed with the underlying MDP chosen asM[π∗]. Observe that it
only depends on the characteristics ofM[π∗] till time t−1 which are determined by π∗1 , · · · , π∗t+∆−1.
On the other hand, the first term

(
1− π̂t(π∗t+∆(b)|b)

)
depends only on the random variable π∗t+∆.

As a consequence, the two terms depend on a disjoint set of random variables which are independent.

Taking expectation with respect to the randomness of π∗ ∼ Unif(Πmimic(D)) andM = M[π∗]
(which defines the joint distribution P(D) in eq. (22)), for 0 ≤ ∆ ≤ H − t and t ∈ [H],

E(π∗,M)∼P(D)

[
Prπ̂ [Γb ≥ ∆ + 1,Γb ≥ ∆, τb = t]

]
= 1(t+ ∆ ≤ H) · E(π∗,M)∼P(D)

[
1− π̂t+∆(π∗t+∆(b)|b)

]
E(π∗,M)∼P(D)

[
Prπ̂ [Γb ≥ ∆, τb = t]

]
(39)

= 1(t+ ∆ ≤ H) ·
(

1− 1

|A|

)
E(π∗,M)∼P(D)

[
Prπ̂ [Γb ≥ ∆, τb = t]

]
, (40)

where in the last equation we use the fact that the state b is never observed in the expert
dataset. So conditioned on D, π∗t+∆(b) is sampled uniformly from A. By upper bounding
Prπ̂ [Γb ≥ ∆ + 1,Γb ≥ ∆, τb = t] ≤ Prπ̂ [Γb ≥ ∆ + 1, τb = t] results in the inequality,

E(π∗,M)∼P(D)

[
Prπ̂ [Γb ≥ ∆ + 1, τb = t]

]
≥ 1(t+ ∆ ≤ H) ·

(
1− 1

|A|

)
E(π∗,M)∼P(D)

[
Prπ̂ [Γb ≥ ∆, τb = t]

]
(41)

Unrolling the equation, for each ∆ = 0, 1, · · · , H − t+ 1 we have,

E(π∗,M)∼P(D)

[
Prπ̂ [Γb ≥ ∆, τb = t]

]
≥
(

1− 1

|A|

)∆

E(π∗,M)∼P(D)

[
Prπ̂ [τb = t]

]
(42)
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Summing up over ∆ = 0, 1, · · · , H − t+ 1,

E(π∗,M)∼P(D)

[
Eπ̂ [Γb1(τb = t)]

]
≥
H−t+1∑

∆=0

(
1− 1

|A|

)∆

E(π∗,M)∼P(D)

[
Prπ̂ [τb = t]

]
(43)

≥ (H − t+ 1)

(
1− 1

|A|

)H
E(π∗,M)∼P(D)

[
Prπ̂ [τb = t]

]
. (44)

Finally summing across t = 1, · · · , H + 1,

E(π∗,M)∼P(D)

[
Eπ̂ [Γb]

]
≥
(

1− 1

|A|

)H
E(π∗,M)∼P(D) [Eπ̂ [H − τb + 1]] . (45)

Finally, we invoke [22, Lemma A.15] and in particular, eq. (134) to arrive at the desired bound.

E(π∗,M)∼P(D)

[
Eπ̂ [Γb]

]
≥
(

1− 1

|A|

)H+1

E(π∗,M)∼P(D) [Eπ̂ [H − τ ]] (46)

Note that although the MDP family considered in [22, Lemma A.15] is different, until the state b
is visited the two MDPs are identical and therefore τ and τb are distributed identically under either
MDP family for the same policy.

7.4 Proof of Theorems 4 and 5

Proof of Lemma 1. Conditioned on the expert and the learner playing the same actions in the state,
the error of the learner is exactly 0 since in such trajectories both policies collect the same reward.
On the other hand, when the learner plays an action different from the expert at a visited state (and
thus the 0-1 loss for this trajectory is 1), the maximum error the learner can incur is H .

Proof of Theorem 5. Consider the compression based multi-class linear classification algorithm of
[8]. This algorithm admits the following guarantee for multi-class sequence classification.

Theorem 11 (Theorem 5 in [8]). Consider any linear multi-class classification problem with features
φ : X × Y → R. The learner is provided samples D = {(x1, y1), · · · , (xn, yn)}, where each
xi is sampled from an unknown distribution ρ and with label yi = arg maxy∈Y 〈φ(x, y), θ∗〉 for
an unknown θ∗ ∈ Rd. Then, if n ≥ d log(1/ε)+log(1/δ)

ε , with probability ≥ 1 − δ the compression
algorithm of [8] returns a linear function θ̂ ∈ Rd such that, the expected 0-1 loss is bounded by ε.
Namely,

Ex∼ρ
[
1

(
arg max
y∈Y

〈
φ(x, y), θ̂

〉
6= arg max

y∈Y
〈φ(x, y), θ∗〉

)]
≤ ε (47)

Consider the dataset as a mapping from sequences of states to sequences of actions SH → AH .
In addition, the expert policy can be thought of as a classifier from SH → AH . In the sense: for
SH 3 (s1, · · · , sH) 7→ (π∗1(s1), · · · , π∗H(sH)) ∈ AH . A sequence classifier is a mapping from
SH → AH .

A sequence linear classifier is defined as: For θ ∈ Rd, the corresponding linear sequence classifier is
(s1, · · · , sH) 7→ arg maxa1,··· ,aH∈A θ 7→

〈
θ,
∑H
t=1 φt(st, at)

〉
. Define the set of linear sequence

classifiers corresponding to θ ∈ Rd. Then, the following two propositions are true:

i. The expert policy π∗ is a linear sequence classifier under the linear-expert assumption.
At any time t and state st, the expert chooses the action at = arg maxa∈A〈θ∗t , φt(s, a)〉.
Summing across any sequence of states (s1, · · · , sH) shows that the sequence of actions
played by the expert satisfies: (a1, · · · , aH) = arg maxa′1,··· ,a′H∈A〈θ, φt(st, at)〉 which
proves the claim.
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ii. Every sequence linear classifier corresponds to a meaningful Markovian policy. Indeed, for
some θ ∈ Rd, consider the sequence linear classifier corresponding to θ. If at a state st at
time t, the classifier does not choose the action at = arg maxa∈A〈θ, φt(st, a)〉, then on any
sequence that visits the state st at time t, (a1, · · · , aH) 6= arg maxa′1,··· ,a′H∈A〈θ, φt(st, a

′
t)〉

which leads to a contradiction. Therefore, the sequence linear classifier plays the action
at = arg maxa∈A〈θ, φt(st, a)〉 at each state st at each time t. It is therefore a Markovian
policy.

The implication of these two points is that it suffices to find a sequence linear classification algorithm
from SH → AH with small expected 0-1 error, given a dataset of trajectories from the expert policy.
Invoking the algorithm of [8] for linear multi-class classification and Theorem 11 completes the
proof shows that indeed there is a linear sequence classifier with expected 0-1 loss upper bounded by
(d+log(1/δ) log(N)

N which completes the proof, invoking Lemma 1.

The proof of Theorem 4 follows immediately as a corollary of Theorem 5, by invoking Remark 2.

7.5 Reduction of IL to Confidence set linear classification

Proof of Theorem 6. By decomposing as the sum of two parts, J(π∗) =∑H
t=1 Eπ∗ [rt(st, at)1 (ED0

)] +
∑H
t=1 Eπ∗

[
rt(st, at)1

(
EcD0

)]
and recalling from definition

that J̃r(π∗, D) = Eπ∗
[∑H

t=1 rt(st, at)1 (ED0
)
]

+ Etr∼Unif(D1)

[∑H
t=1 rt(st, at)1

(
EcD0

)]
, we

have that,

J(π∗)− J̃(π∗, D) =

H∑
t=1

Eπ∗
[
rt(st, at)1

(
EcD0

)]
− Etr∼Unif(D1)

[
rt(st, at)1

(
EcD0

)]
. (48)

By the linear reward assumption,

J(π∗)− J̃(π∗, D) =

H∑
t=1

〈
Eπ∗

[
φt(st, at)1

(
EcD0

)]
− Etr∼Unif(D1)

[
φt(st, at)1

(
EcD0

)]
, θt
〉
(49)

Therefore, by Holder’s inequality,

sup
(θ1,··· ,θt):∀t,‖θt‖∞≤1

∣∣∣J(π∗)− J̃(π∗, D)
∣∣∣ (50)

≤
H∑
t=1

∥∥Eπ∗ [φt(st, at)1 (EcD0

)]
− Etr∼Unif(D1)

[
φt(st, at)1

(
EcD0

)]∥∥
1
. (51)

Taking expectation over D0 and D1,

ED

[
sup

(θ1,··· ,θt):∀t,‖θt‖∞≤1

∣∣∣J(π∗)− J̃(π∗, D)
∣∣∣] (52)

≤
H∑
t=1

ED0

[
ED1

[∥∥Eπ∗ [φt(st, at)1 (EcD0

)]
− Etr∼Unif(D1)

[
φt(st, at)1

(
EcD0

)]∥∥
1

∣∣D0

]]
(53)

(i)

≤
H∑
t=1

d∑
i=1

ED0

[
ED1

[∣∣∣Eπ∗ [〈φt(st, at), ei〉1 (EcD0

)]
− Etr∼Unif(D1)

[
〈φt(st, at), ei〉1

(
EcD0

)] ∣∣∣∣∣∣D0

]]
(54)

(ii)

≤
H∑
t=1

d∑
i=1

ED0

[(
ED1

[(
Eπ∗

[
〈φt(st, at), ei〉1

(
EcD0

)]
− Etr∼Unif(D1)

[
〈φt(st, at), ei〉1

(
EcD0

)] )2
∣∣∣∣D0

])1/2
]

(55)

where in (i) {ei : i = 1, · · · , d} denotes the set of standard basis vectors in Rd and (ii) follows by
Jensen’s inequality. Finally, we bound the variance of the expected feature under π∗ and under the
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empirical distribution in D1 (which is independent of D0). For each i = 1, · · · , d the variance of the

co-ordinate i is upper bounded by
Eπ∗ [〈φt(st,at),ei〉21(EcD0

)]
N . Therefore,

ED

[
sup

(θ1,··· ,θt):∀t,‖θt‖∞≤1

∣∣∣J(π∗)− J̃(π∗, D)
∣∣∣] (56)

≤
√

1

N

H∑
t=1

d∑
i=1

ED0

[(
Eπ∗

[
〈φt(st, at), ei〉21(EcD0

)
])1/2]

(57)

(i)

≤
H∑
t=1

√
d

N

(
d∑
i=1

ED0

[
Eπ∗

[
|〈φt(st, at), ei〉|1(EcD0

)
]])1/2

(58)

=

H∑
t=1

√
d

N

(
ED0

[
Eπ∗

[
‖φt(st, at)‖11(EcD0

)
]])1/2

(59)

≤ H
√

d

N
ED0

[
Pr
(
EcD0

)]
(60)

where (i) follows by an application of Jensen’s inequality and Cauchy Schwarz inequality and
using the fact that 〈φt(st, at), ei〉2 ≤ |〈φt(st, at), ei〉| since ‖φt(st, at)‖1 ≤ 1. By union bounding,
Pr
(
EcD0

)
≤
∑H
t=1 Prπ∗ (st 6∈ Xt(D0)) which completes the proof of Theorem 6.

7.6 Proof of Lemma 2

Proof of Lemma 2. (i) Observe that for any input x, if x ∈ K, then x = φ(x, 0) − φ(x, 1) can
almost surely be expressed as a positive linear combination

∑N
i=1 ωi(−1)yixi where ωi ≥ 0 for all

i = 1, · · · , N . Since 〈θ∗, (−1)yixi〉 ≥ 0, this implies that 〈θ∗, x〉 ≥ 0 and consequently the expert
must have classified x as 0. Likewise, for inputs ∈ −K, x can be expressed as a linear combination
of (−1)yixi’s with non-positive coefficients. Consequently, the expert must have played the action 1
at these states.

(ii) We first prove that for any x 6∈ C, one can find a θ′ ∈ Θ such that sgn(〈θ′, x〉) 6= sgn(〈θ∗, x〉).
We subsequently prove that this result implies the required statement.

This result can be proved in two cases: (a) assuming that 〈θ∗, x〉 ≥ 0 and (b) 〈θ∗, x〉 < 0. We prove
the case (a) and argue that (b) follows similarly. For any input x such that 〈θ∗, x〉 ≥ 0, we show that
there exists a θ ∈ K such that 〈θ, x〉 < 0.

Indeed, in the first case, for any point v ∈ K, the inner product 〈v, θ〉 ≥ 0 for all θ ∈ K. This is
because for every θ ∈ K, 〈θ, (−1)yixi〉 ≥ 0 and every point v in K is a positive linear combination
of the (−1)yix vectors. Therefore if v 6∈ C, there exists a θ ∈ K such that 〈v, θ〉 < 0 and choosing
v = x completes the proof.

Finally, observe that from (i), and since θ∗ ∈ K (we can repeat the same argument for −K), the cone
K corresponds to ∩θ∈ΘHθ, where Hθ is the halfspace {x ∈ Rd : 〈x, θ〉 ≥ 0}. For any θ̂, by using
Demorgan’s laws it is easy to verify that this is a superset of (∪θ∈Θ (V ∩ Hθ)c)

c for any V ⊆ X . In
particular, choosing V as the set of inputs classified as 0 by ĥ (output classifier of the confidence set
linear classification algorithm), we see that for every input x 6∈ K, there exists a θ ∈ Θ such that
x ∈ V but x 6∈ Hθ or vice versa. Namely the output predicted by ĥ on the point x differs from the
output predicted by some linear classifier θ ∈ Θ.

7.7 Proof of Theorem 7

Theorem 12. Fix d > 1. Draw points S0, S1, S2, . . . , Sn+1 uniform random points on a half sphere
in Rd. Let K be the convex cone spanned by S1, . . . , Sn. Then there exists universal constants
c, C > 0 such that

cd3/2

n
√

log d
≤ P[S0 /∈ K] ≤ Cd3/2 log d

n
(61)

holds for sufficiently large n.
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Figure 3: The red points represent S1, · · · , Sn. The green point w ∈ K satsifies 〈z cosα −
y sinα,w〉 = 0

Proof. First, observe that it is sufficient to prove the bound (61) (with possibly different constants
c, C) when S1, . . . , Sn are replaced by points in a Poisson process the half sphere with intensity

2n
vol(Sd−1)

. Indeed, this can be show using the facts that P[S0 /∈ K] is monotonically decreasing in n
and that there are more than 2n or fewer than n/2 Poisson points with exponentially small probability.

Henceforth, we shall consider the Poisson version of the problem. Note that the boundary of the half
sphere is Sd−2. Denote by z the north pole of the hemisphere. For each y ∈ Sd−2, define

αy := sup{α ∈ [0, π/2) : y cosα+ z sinα /∈ K}. (62)

Moreover, define

α̃y := sup{α ∈ [0, π/2) : 〈z cosα− y sinα,w〉 ≥ 0, ∀w ∈ K}. (63)

Then the Hahn-Banach theorem, we see that αy is the smallest value such that

〈y cosαy + z sinαy, −ỹ sin α̃ỹ + z cos α̃ỹ〉 ≥ 0, ∀ỹ. (64)

Equivalently,

tanαy = sup
ỹ
〈y, ỹ〉 tan α̃ỹ. (65)

The significance of αy is the following: suppose κ := supy α̃y. Then κ = supy αy in view of (65),
and we have

2(1− cosd−1 κ)

vol(Sd−1)

∫
y∈Sd−2

αydy ≤ P[S0 /∈ K|K] ≤ 2

vol(Sd−1)

∫
y∈Sd−2

αydy. (66)

Thus, as long as κ is small, the problem is reduced to estimating
∫
y∈Sd−2 αydy. Note that there exists

a constant c1 > 0 (which is allowed to depend on d) and a vanishing sequence κ1, κ2, · · · → 0 such
that with probability at least 1−e−c1n, we have κ < κn. Indeed, this can be shown using by choosing
an ε-net on Sd−2 with ε = 0.1 (say), and arguing that with high probability each of ε-neighborhood
in the hemisphere of a point in the net includes a Poisson point; the details are omitted.

Conditioned on κ < κn, (65) implies

αy = (1 + oκn(1)) sup
ỹ
〈y, ỹ〉 α̃ỹ (67)
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where explicitly, 1 + oκn(1) here is a number between sup0<α<κn
tanα
α and its inverse. Then

P[S0 /∈ K] = P[S0 /∈ K|κ < κn] +O(e−c1n) (68)

=
2(1 + oκn(1))

vol(Sd−1)

∫
y∈Sd−2

E[αy|κ < κn]dy +O(e−c1n) (69)

=
2(1 + oκn(1))

vol(Sd−1)

∫
y∈Sd−2

E[sup
ỹ
〈y, ỹ〉 α̃ỹ|κ < κn]dy +O(e−c1n). (70)

Therefore, the theorem is proved if we show that

cd1.5

n
√

log d
≤ 1

vol(Sd−1)

∫
y∈Sd−2

E[sup
ỹ
〈y, ỹ〉 α̃ỹ|κ < κn]dy ≤ Cd1.5 log d

n
(71)

for possibly different constants c, C.

Now let φ be the map from the hemisphere to Sd−2 × [0, vol(Sd−1)
2vol(Sd−2)

) which is measure preserving and
satisfies φ1(y cosα+ z sinα) = y for any y ∈ Sd−2 and α ∈ [0, π/2), where φ1, φ2 denote the first
and the second coordinates of the value of φ. We have

(cosd−1 α) · α ≤ φ2(y cosα+ z sinα) ≤ α. (72)

Under φ, the images of the Poisson points on the hemisphere still behave as a Poisson point process
with intensity 2n

vol(Sd−1)
.

Now define for each y ∈ Sd−2,

θ̃y := sup{t ≥ 0 : no φ-image of Poisson point in V (y, t)} (73)

where V (y, t) is defined as the set of (a, b) ∈ Sd−2 × [0,∞) such that b < t cos∠(y, a). Define for
each x ∈ Sd−2,

θx := sup
y∈Sd−2

θ̃y cos∠(x, y). (74)

Using linear algebra, we can show that given κ < κn, we have

θ̃y = (1 + oκn(1))α̃n (75)

Therefore, by the observation in (71), we prove the theorem if we show the following

cd1.5

n
√

log d
≤ 1

vol(Sd−1)

∫
y∈Sd−2

E[sup
ỹ
〈y, ỹ〉 θ̃ỹ|κ < κn]dy ≤ Cd1.5 log d

n
. (76)

By symmetry and vol(Sd−2)/vol(Sd−1) = Θ(d1/2), the above is equivalent to

cd

n
√

log d
≤ E[sup

ỹ
〈y, ỹ〉 θ̃ỹ|κ < κn] ≤ Cd log d

n
. (77)

Since P[κ < κn] ≥ 1 − e−c1n, it suffices to show the above bound with two modifications of the
problem: 1) in the definition of θ̃y, the Poisson process is extended to one with the same density

2n
vol(Sd−1)

but on Sd−2 × [0,∞); 2) uncondition on κ < κn, namely,

cd

n
√

log d
≤ E[sup

ỹ
〈y, ỹ〉 θ̃ỹ] ≤ Cd log d

n
. (78)

for possibly different universal constants c, C > 0. Now (78) is the content of Lemma 8; the
difference in the factor n is because we consider a Poisson process with intensity 2

vol(Sd−1)
instead in

the lemma. The Theorem is now proved.

We shall establish the following lemma; the result for the original problem about random points on
the half sphere will then easily follow. Note that a nice feature about the lemma is that there is no N
in the problem; the problem is purely depending on the dimension d.
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Lemma 8. Consider a Poisson point process on Sd−2 × [0,∞) with intensity 2
vol(Sd−1)

. For each
y ∈ Sd−2, define

θ̃y := sup{t ≥ 0 : no Poisson point in V (y, t)} (79)

where V (y, t) is defined as the set of (a, b) ∈ Sd−2 × [0,∞) such that b < t cos∠(y, a). Define for
each x ∈ Sd−2,

θx := sup
y∈Sd−2

θ̃y cos∠(x, y). (80)

Then

d√
log d

. E[θx] . d log d. (81)

Proof. We begin by first proving the upper bound.

θ̂y := sup{t ≥ 0 : no Poisson point in V̂ (y, t)} (82)

where V̂ (y, t) is defined as the set of (a, b) ∈ Sd−2×[0,∞) such that b < t(cos∠(y, a))1{∠(y, a) <
π
2 − d

−1/2}.

Next, let N be an optimal ε-covering of Sd−2, where ε = 1
4d
−1/2. For each y and t,

P[θ̂y > t] = exp

(
−vol(V̂ (y, t))× 2

vol(Sd−1)

)
. (83)

However,

vol(V̂ (y, t)) = vol((cos d−1/2)Bd−2) = cosd−2 d−1/2vol(Bd−2). (84)

Define cd := cosd−2 d−1/2. Then

P[θ̂y > t] = exp

(
−2tcd

vol(Bd−2)

vol(Sd−1)

)
(85)

= exp

(
− 2tcd
d− 2

vol(Sd−3)

vol(Sd−1)

)
(86)

= exp(− tcd
π

). (87)

Therefore by the union bound,

P[ sup
y∈N

θ̂y > t] ≤ |N | exp(− tcd
π

) (88)

≤ (3/ε)d−2 exp(− tcd
π

) (89)

Let T : Sd−2 → N be such that ‖T (y)− y‖ ≤ ε. Define t̂ := supy∈N θ̂y . For any y ∈ Sd−2, by the
definition of t̂, we can find a Poisson point (a, b) such that

b ≤ t̂ cos∠(T (y), a)1{∠(T (y), a) <
π

2
− d−1/2}. (90)

Then, since

cos∠(T (y), a)1{cos∠(T (y), a) < π
2 − d

−1/2}
cos∠(y, a)

≤
cos(π2 − d

−1/2)

cos(π2 − d−1/2 + ε′)
(91)

≤
cos(π2 − d

−1/2)

cos(π2 −
1
2d
−1/2)

(92)

≤ 3 (93)
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for large d, where ε′ denotes the angle between two points with distance ε on the sphere, we obtain

b ≤ 3t̂ cos∠(y, a) (94)

which implies that θ̃y ≤ 3t̂. Since this bound does not depend on y, we also obtain θx ≤ 3t̂. This
shows that

E[θx] ≤ 3E[t̂] ≤ 3

∫ ∞
0

min

{
(3/ε)d−2 exp(− t

6π
), 1

}
dt (95)

. ln
(
(3/ε)d−2

)
(96)

. d ln d (97)

where we used cd ≥ e−1/2 ≥ 1/3 for large d.

Now we move on to proving the lower bound. First, note that for any t > 0, the number of Poisson
points in Sd−2 × [0, t] follows the Poisson distribution with strength bounded by:

λ = 2t
vol(Sd−2)

vol(Sd−1)
(98)

≤ c
√
dt (99)

where c > 0 is a universal constant. In particular, if

t = 0.1d(c
√
d)−1, (100)

then the expected number of Poisson points is λ = 0.1d. By the Markov inequality, the number is
smaller than 0.5d with probability at least 0.8.

Let E1 be the event that there are at most 0.5d Poisson points in Sd−2 × [0, t], and denote by Pt the
set of these Poisson points. Define

H := {h ∈ Sd−2 : 〈h, p〉 ≤ 0,∀p ∈ Pt}. (101)

We claim that there exists a universal constant c1 ∈ (0, π/2) such thatHc1 has normalized conic area
at least 0.5, with probability at least 0.5 conditioned on E1; call this conditional event E2. Here,Hc1
is defined as the set of all points on Sd−2 whose angle with some point inH is at most c1.

In fact, the above claim can be proved if we show that the same claims holds whenH is replaced by

H′ := {h ∈ Sd−2 : 〈h, p〉 ≤ 0,∀p ∈ B}. (102)

where B is the set of 0.5d uniformly randomly drawn points p1, . . . , p0.5d on Sd−2. Let
p0.5d+1, . . . , pd−1 be an arbitrary basis of the orthogonal complement of the linear space spanned
by p1, . . . , p0.5d. With probability at least 0.5, the nonzero singular values of the matrix
[p1, . . . , p0.5d] are bounded in the interval (c2, c3) where c2, c3 > 0 are universal constants;
see e.g. https://djalil.chafai.net/docs/sing.pdf It follows that the singular values of
P := [p1, p2, . . . , pd−1] is bounded in the same interval. Note that if r1 and r2 are two rays with a
small angle, then their linear transforms Pr1 and Pr2 satisfy ∠(Pr1,Pr2)

∠(r1,r2) ∈ (c4, c5), where c4, c5 > 0

are universal constants explicitly defined by c2, c3. It follows that under the linear transform, conic
areas are changed by a factor within (c

−(d−2)
5 , c

−(d−2)
4 ). Then we note that the cone of H′ equals

(P>)−1 applied to {s ∈ Rd−1 : 〈s, ei〉 ≤ 0, i = 1, . . . , 0.5d}; indeed, for each i,

{s : 〈s, pi〉 = 0} = {s : 〈s, Pei〉 = 0} (103)

= {s :
〈
P>s, ei

〉
= 0} (104)

= {(P>)−1s : 〈s, ei〉 = 0}. (105)

Therefore, the normalized conic area ofH′ is at least c−(d−2)
5 2−0.5d. It then follows by the isoperime-

try on the sphere that there exists c1 ∈ (0, π/2) such thatH′c1 has normalized conic area at least 0.5.
This proves the claim following (101).

Next, recall that x is a fixed point on Sd−2. Conditioned on E1, E2, by the rotation invariance, x ∈ Hc1
with probability at least 0.5; call this conditional event E3. Under E3 Let y be a point in H closest
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to x. Then ∠(x, y) ≤ c1. Note that E1, E2, E3 are determined by the Poisson point configurations in
Sd−2 × [0, t], which is independent of the configurations in Sd−2 × (t,∞). Now set

t′ :=

√
d

10
√

log d
t. (106)

We claim that conditioned on E1, E2, E3,

θy ≥ t′ (107)

with probability at least 0.9; call this conditional event E4. Indeed, the above bound on θy is equivalent
to the event that there is no Poisson point (a, b) satisfying

b < t′ cos∠(y, a). (108)

Note that by the definition of y, there is no Poisson point for which b ∈ [0, t). Therefore (conditioned
on E1, E2, E3), (107) is equivalent to the event that there is no Poisson point in

{(a, b) : b ∈ (t, t′ cos∠(y, a))}. (109)

The Lebesgue measure of the above region equals t′vol(sin arccos t
t′B

d−2), where Bd−2 is the unit
ball. Therefore, no Poisson point in (109) with probability

exp

(
−t′vol(sin arccos

t

t′
Bd−2) · 2

vol(Sd−1)

)
= exp

(
− t
′

π
(sin arccos

t

t′
)d−2

)
(110)

≥ exp

(
− t
′

π

(
1− 100 log d

d

) d−2
2

)
(111)

≥ 0.9 (112)

for large enough d. This proves the claim around (107).

Finally, under all the events E1, E2, E3, E4, which happens with probability at least 0.1, we have

θx ≥ cos c1θy ≥ t′ cos c1 (113)

which is Θ( d√
log d

), thus the lower bound is established.
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