
Journal of Data-centric Machine Learning Research (2025) Submitted 02/25; Revised 04/25; Published 06/25

MONSTER
Monash Scalable Time Series Evaluation Repository

Angus Dempster∗ angus.dempster@monash.edu

Navid Mohammadi Foumani∗

Chang Wei Tan
Lynn Miller∗

Amish Mishra∗

Mahsa Salehi∗

Charlotte Pelletier†

Daniel F. Schmidt∗

Geoffrey I. Webb∗

∗Monash University, Melbourne, Australia
†Université Bretagne Sud, IRISA, Vannes, France

Reviewed on OpenReview: https: // openreview. net/ forum? id= XauSqSfZfc

Editor: Hugo Jair Escalante

Abstract

We introduce Monster—the MONash Scalable Time Series Evaluation Repository—a
collection of large datasets for time series classification and associated set of classification
tasks that jointly define a new time series classification benchmark. The field of time series
classification has benefitted from common benchmarks set by the UCR and UEA time
series classification repositories. However, the datasets in these benchmarks are small,
with median training set sizes of 217 and 255 examples, respectively. In consequence they
favour a narrow subspace of models that are optimised to achieve low classification error
on a wide variety of smaller datasets, that is, models that minimise variance, and give little
weight to computational issues such as scalability. Our hope is to diversify the field by
introducing benchmarks using larger datasets. We believe that there is enormous potential
for new progress in the field by engaging with the theoretical and practical challenges of
learning effectively from larger quantities of data.

Keywords: time series classification, dataset, benchmark, bitter lesson

1 Introduction

‘State of the art’ in time series classification has become synonymous with state of the art on
the datasets in the UCR and UEA archives (Bagnall et al., 2018; Dau et al., 2019; Bagnall
et al., 2017; Middlehurst et al., 2024; Ruiz et al., 2021). However, most of these datasets—at
least, most of those that are commonly used for evaluation—are small: median training set
size for the set of 142 canonical univariate time series datasets is just 217 examples. The
preeminence of the datasets in the UCR and UEA archives as a basis for benchmarking

©2025 Dempster et al..

https://openreview.net/forum?id=XauSqSfZfc


Dempster et al.

means that the field has become constrained by a narrow focus on smaller datasets and
models which achieve low 0–1 loss (classification error) on a diversity of smaller datasets.

Empirical machine learning research relies heavily on benchmarking in one form or
another (Liao et al., 2021). Benchmark datasets provide the data necessary for training
and evaluating machine learning models. Certain datasets and benchmarks have become
foundational to machine learning generally (Paullada et al., 2021). There is little doubt
that the datasets in the UCR and UEA archives are as integral to the field of time series
classification as are, for example, the MNIST, CIFAR, and ImageNet datasets to the field
of image classification.

‘[T]he ways in which we collect, construct, and share these datasets inform the kinds of
problems the field pursues and the methods explored in algorithm development’ (Paullada
et al., 2021). We might call this the ‘dataset lottery’ or ‘benchmark lottery’—after the
‘hardware lottery’—i.e., to paraphrase Hooker (2021), when a method or set of methods
‘win’ (predominate) because of their compatibility with existing benchmarks.

A benchmark should serve as a proxy for a broader task (e.g., image classification,
or time series classification). A given benchmark is only meaningful to the extent that
performance on that benchmark reflects performance on a broader task, and performance
on that benchmark generalises to real-world problems (Liao et al., 2021).

In the context of time series classification, current benchmarks favour models optimised
to achieve low classification error (0–1 loss) on a diversity of smaller datasets, i.e., low-
variance methods: see Section 2. Datasets currently used for benchmarking do not reflect
either the theoretical or practical challenges of learning from large-scale real-world data.

This poses the risk that current benchmarks are unrepresentative of the broader task of
time series classification, and that models considered state of the art on these benchmarks
may not generalise to—and therefore may have diminishing relevance for—real-world time
series classification problems, especially those involving larger quantities of data. This also
suggests that research in time series classification has only so far explored a relatively narrow
subset of ideas (see Hooker, 2021).

We present Monster—the Monash Scalable Time Series Evaluation Repository—a
collection of large univariate and multivariate datasets for time series classification. Our aim
is to complement the existing datasets in the UCR and UEA archives, while encouraging the
field to diversify to include significantly larger datasets. We hope that, with the introduction
of Monster, benchmarking in the field better represents the broader task of time series
classification, and has increased relevance for real-world time series classification problems.
We hope to inspire the field to engage with the challenges of learning from large quantities
of data. We believe that there is enormous potential for new progress in the field.

The rest of this paper is structured as follows. Section 2 expands on relevant background
material. Section 3 provides further details of the Monster datasets. Section 4 provides
preliminary baseline results for selected methods.

2 Motivation

2.1 Bias–Variance Tradeoff

A benchmark is useful in informing choices of learning algorithm for a new analytic task
to the extent that the benchmark tasks are reflective of the task of interest. Whereas

2



MONSTER

27 28 29 210 211 212 213 214 215 216 217

training set size

0.4

0.5

0.6

0.7

0.8

0
1 

lo
ss

Pedestrian

low variance
low bias

27 28 29 210 211 212 213 214 215 216

training set size

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0
1 

lo
ss

WhaleSounds

low variance
low bias

Figure 1: Learning curves (0–1 loss) for a low variance model (blue) versus a low bias model
(orange) on the Pedestrian (left) and WhaleSounds (right) datasets. The shaded
regions represent standard deviation over the cross validation folds.

historically, in the field of computer vision, different methods have generally been evaluated
on benchmarks comprising a relatively small number of large datasets (e.g., ImageNet),
in the field of time series classification, different methods are almost always evaluated on
benchmarks comprising a relatively large number of small datasets, i.e., the datasets in the
UCR and UEA archives.

With respect to a bias-variance decomposition of error (Sammut and Webb, 2017), the
variance component of error (hereafter variance) can be expected to be large when training
sets are small and to decrease as training set size increases. As a result, methods that
effectively minimise variance will often achieve lower classification error on smaller datasets,
while methods that minimise the bias component of error (hereafter simply bias where the
context makes clear that we are referring to the bias component of error) will often achieve
lower classification error on larger datasets (Brain and Webb, 1999). This is illustrated
in Figure 1, which shows learning curves for two models: a low variance configuration of
Quant (a maximum tree depth of 4, with 128 trees) vs a low bias configuration of Quant
(unlimited tree depth, with 4 trees) on the Pedestrian and WhaleSounds datasets. Figure 1
shows that the low-variance model achieves lower 0–1 loss on smaller quantities of data,
whereas the low-bias model achieves lower 0–1 loss on larger quantities of data. Additional
results for these two models are provided in Section 4.6.

Note that minimizing bias on a learning task is more complex than simply choosing a
learner that is inherently ‘low bias.’ The bias component of error when applying a learning
algorithm is determined by the interaction between the form of the true classification func-
tion and assumptions about the classification function that are baked into the algorithm
(the inductive bias of the algorithm). An algorithm with very strong inductive bias will

3



Dempster et al.

have a low bias component of error if those assumptions are fully satisfied, but a high bias
component of error if they are not. For example, logistic regression will have a very low
bias component of error if there is a linear relationship between the input variables and the
log-odds of the class variable, and its bias component of error will increase proportionately
to the extent to which this assumption is violated.

We should not expect the same methods to achieve the lowest 0–1 loss on both smaller
datasets and larger datasets, as these demand different learning characteristics. (The issue
of dataset size is not just limited to the quantity of training data: small quantities of test
data can mask large differences in real-world classification error: Liao et al., 2021.)

As such, the methods currently considered state of the art in terms of accuracy on the
datasets in the UCR and UEA archives are, by definition, likely dominated by methods
optimised for smaller datasets or, in other words, methods that minimise variance. We see
strategies for minimising variance in all or almost all state of the art methods for time
series classification. Variance can be minimised via ensembling (e.g., InceptionTime (Ismail
Fawaz et al., 2020), the HIVE-COTE models (Middlehurst et al., 2021), Proximity Forest
(Lucas et al., 2019), and models such as DrCIF (Middlehurst et al., 2021) using ensembles
of decision trees), explicit regularisation (e.g., methods using a ridge classifier such as RDST
(Guillaume et al., 2022), Weasel 2.0 (Schäfer and Leser, 2023)), and/or overparameterisation
(taking advantage of double descent, e.g., the Rocket ‘family’ of methods (Dempster et al.,
2020, 2021, 2023), and other methods making use of a large feature space in combination
with a ridge regression classifier or other linear model, as well as large neural network
models), or some combination of these approaches.

It is conceivable that this pressure to focus on controlling variance has directed the at-
tention of researchers away from considerations of matching the inductive biases of learning
algorithms to specific types of time series learning task. It is also conceivable, as discussed
in Section 4.6, that the need to focus on controlling variance has directed attention away
from the issues raised by concept shift that may be present in some benchmark tasks.

2.2 The ‘Bitter Lesson’

It is not a coincidence that, with some exceptions, deep learning methods have had a
relatively muted impact on the field. Models such as large deep neural networks are high
variance models, and require significant quantities of training data in order to achieve
competitive accuracy compared to less complex models. There has been a significant amount
of work applying deep learning methods in the field of time series classification (Foumani
et al., 2024a). However, despite this, and despite the fact that some neural network models
such as InceptionTime (Ismail Fawaz et al., 2020) are among the most accurate models,
on average, on the datasets in the UCR and UEA archives, in large part deep learning
methods have not had the kind of impact that they have had in other domains such as
image classification or natural language processing.

Arguably, time series classification has not yet had its ‘ImageNet moment’, simply be-
cause in almost all existing work the quantity of training data has been insufficient to allow
for training low bias models such as large convolutional neural networks or transformer ar-
chitectures effectively. (A not insubstantial amount of work involving deep learning in the

4



MONSTER

context of time series is also problematic, e.g., involving directly or indirectly optimising
test loss: Middlehurst et al. (2024).)

It is not clear yet whether the ‘bitter lesson’—‘the only thing that matters in the long
run is the leveraging of computation’ (Sutton, 2019)—has yet been learned in the field of
time series classification. The apparent diversity of methods considered state of the art
may reflect a diversity of inductive biases that are effective for extracting information from
low quantities of data, but that actually limit the ability to learn effectively from large
quantities of data.

There is also the potential issue of overfitting a benchmark itself, although this is of
less immediate concern due to the recent additional of new datasets to the UCR archive
(Middlehurst et al., 2024). Accordingly, as well as being larger, the Monster datasets also
represent new datasets or, in other words, a new ‘out of sample’ collection of datasets on
which to evaluate existing methods.

2.3 ‘No Free Lunch’

Evaluation on a large set of heterogeneous datasets has led to another difference (in contrast
to, e.g., computer vision), namely, that in the field of time series classification, performance
is typically measured in terms of accuracy over all of the datasets in the UCR and/or UEA
archives. This kind of average performance represents an average over a large set of highly
heterogeneous input time series datasets.

This favours, without necessarily any good reason, methods that perform well (achieve
low classification error) on average, while not necessarily performing well on any particular
subset of datasets or tasks.

The ‘no free lunch’ theorem suggests that, as the number of datasets included in the
evaluation grows, the performance of all methods should converge on average, i.e., no one
method will perform better than any other on all datasets (Wolpert and MacReady, 1997).
In the real world, this kind of average performance is potentially of limited practical value.
For example, given a problem involving the classification of EEG data, we would rather use
a method demonstrated to have good classification performance on benchmark EEG data,
rather than a method that has low average classification error across both EEG data and
data from one or more other domains.

In other words, current research likely unjustifiably favours methods that not only min-
imise variance, but that achieve low 0–1 loss on average, with potentially limited relevance
to any specific real-world application.

In many cases it makes sense for a model or architecture to be specialised to a particular
domain. For example, TempCNN uses short convolutional kernels, ideal for the short time
series typical of Earth observation data, but which are not effective for capturing temporal
relationships in long time series, e.g., those common in audio tasks. The lack of pool-
ing layers allows TempCNN to locate temporal features important for tasks such as crop
detection, but lacks the ability to detect scale-invariant features important in some other
tasks (Pelletier et al., 2019). In contrast, ConvTran uses channel-wise convolutional ker-
nels and attention to capture both relationships between channels and long-range temporal
relationships, especially effective for EEG data (Foumani et al., 2024b), but which have
potentially limited relevance to univariate and/or shorter time series.

5



Dempster et al.

2.4 Other Selection Pressures and the ‘Hardware Lottery’

For the most part, the field has not been forced to contend with the practical challenges in-
volved with learning from larger quantities of data. Just as smaller datasets favour methods
that effectively minimise variance, different kinds of selection pressures exist in the context
of larger datasets.

In particular, larger datasets select for methods that are computationally suited to large
datasets, and can make effective use of existing computational resources, i.e., the ‘hardware
lottery’ (Hooker, 2021). Methods with high computational and/or memory requirements
quickly become impractical. Even for more efficient methods, training on large quantities
of data presents significant engineering challenges.

2.5 Opportunities

The need for expanding benchmarking in the field to include larger datasets has been
recognised for some time. Dau et al (2019) stated: ‘[p]erhaps a specialist archive of massive
time series can be made available for the community in a different repository’ (p 1295).

Monster represents an opportunity for the field to diversify to include large datasets, to
engage with the challenges of learning from larger datasets, to better reflect the broader task
of time series classification, and to improve relevance for real-world time series classification
problems. We believe that there is enormous opportunity for new progress in the field.

Further, we make the following predictions in relation to the ways in which larger
datasets might change the field of time series classification, which may or may not be
borne out in practice in the long run:

• Only a subset of existing methods will be practical, i.e., those which can take advan-
tage of current hardware to train efficiently.

• The methods which achieve the lowest 0–1 loss on larger datasets will differ from the
methods which achieve the lowest 0–1 loss on smaller datasets.

• Average performance (e.g., average 0–1 loss) will become less relevant than perfor-
mance within meaningful subsets of tasks (e.g., classification of EEG data, vs classi-
fication of satellite image time series data).

3 The MONSTER Datasets

The initial release of the Monster benchmark includes 28 univariate and multivariate
datasets with between 10,299 and 59,268,823 time series. Table 1 provides an overview of the
datasets. (We consider this as an initial release, and we aim to continue to add datasets to
the benchmark.) The datasets are available via HuggingFace: https://huggingface.co/
monster-monash. Additional information in relation to hosting is provided in Appendix B.
Relevant code is available at: https://github.com/Navidfoumani/monster. We provide
the datasets in .npy format to allow for ease of use with Python and straightforward
memory mapping. (We also provide the datasets in legacy .csv format.) All datasets
are under creative commons licenses or in the public domain, or we otherwise have been
given permission to include the dataset in this collection. All datasets are already publicly
available in some form.

6

https://huggingface.co/monster-monash
https://huggingface.co/monster-monash
https://github.com/Navidfoumani/monster


MONSTER

AudioMNIST (10)

AudioMNIST-DS (10)

CornellWhaleChallenge (2)

FruitFlies (3)

InsectSound (10)

MosquitoSound (6)

WhaleSounds (8)

Figure 2: Class distributions for the audio datasets.

We have processed the original time series into a common format (.npy and .csv). The
steps required to process each dataset were different and included, for example, extracting
and labelling individual time series from broader time series data, interpolating irregularly
sampled data, and resampling data where the original data was recorded at different sam-
pling rates. We have endeavoured to lower the ‘barrier of entry’ as much as possible while
keeping the original data intact to the greatest extent possible. Further details for each of
the datasets are set out below.

Each dataset is provided with a set of indices for 5-fold cross-validation, allowing for
direct comparison between benchmark results. For some datasets, these simply represent
stratified random cross-validation folds. For other datasets, the cross-validation folds have
been generated taking into account important metadata, e.g., different experimental sub-
jects (for EEG data), or different geographic locations (for satellite image time series data).
We have assigned the datasets to one of six categories (audio, satellite, EEG, HAR, count,
and other). The distribution of classes for the datasets in each category is shown in Figures
2, 3, 6, 7, 10, and 11, below (in each figure, the number in brackets corresponds to the
number of classes).

3.1 Audio

The learning tasks relating to audio data can range from classifying human speech to de-
tecting insect species to identifying the presence of whales in hydrophone recordings. Audio
data typically has a very high sampling rate (typically in kHz, or thousands of samples per
second), but this can vary substantially depending on the exact application. The challenges
involved in classifying audio data include both handling very long time series efficiently
while extracting features at the appropriate resolution, as well as dealing with often large
variability between different recordings.

3.1.1 AudioMNIST and AudioMNIST-DS

AudioMNIST consists of audio recordings of 60 different speakers saying the digits 0 to 9,
with 50 recordings per digit per speaker (Becker et al., 2024b,a). The speakers are a mixture

7



Dempster et al.

Dataset Instances Length SR Channels Classes

Audio

AudioMNIST 30,000 47,998 48 kHz 1 10
AudioMNIST-DS 30,000 4,000 4 kHz 1 10
CornellWhaleChallenge 30,000 4,000 2 kHz 1 2
FruitFlies 34,518 5,000 8 kHz 1 3
InsectSound 50,000 600 6 kHz 1 10
MosquitoSound 279,566 3,750 6 kHz 1 6
WhaleSounds 105,163 2,500 250 Hz 1 8

Satellite Image Time Series

LakeIce 129,280 161 daily 1 3
S2Agri 59,268,823 24 10 days 10 17 / 34
S2Agri-10pc 5,850,881 24 10 days 10 17 / 29
Tiselac 99,687 23 16 days 10 9

EEG

CrowdSourced 12,289 256 128 Hz 14 2
DreamerA 170,246 256 128 Hz 14 2
DreamerV 170,246 256 128 Hz 14 2
STEW 28,512 256 128 Hz 14 2

Human Activity Recognition

Opportunity 17,386 100 30 Hz 113 5
PAMAP2 38,856 100 100 Hz 52 12
Skoda 14,117 100 98 Hz 60 11
UCIActivity 10,299 128 50 Hz 9 6
USCActivity 56,228 100 100 Hz 6 12
WISDM 17,166 100 20 Hz 3 6
WISDM2 149,034 100 20 Hz 3 6

Counts

Pedestrian 189,621 24 hourly 1 82
Traffic 1,460,968 24 hourly 1 7

Other

FordChallenge 36,257 40 10 Hz 30 2
LenDB 1,244,942 540 20 Hz 3 2

Table 1: Summary of Monster datasets.

8



MONSTER

of ages and genders. The recordings are single channel have a sampling rate of 48 kHz. The
learning task is to classify the spoken digit based on the audio recording. The processed
dataset contains 30,000 (univariate) time series, each of length 47,998 (approximately 1
second of data sampled at 48 kHz), with ten classes representing the digits 0 to 9. This
version of the dataset has been split into cross-validation folds based on speaker (i.e., such
that recordings for a given speaker do not appear in both the training and validation
sets). AudioMNIST-DS is a variant of the same dataset where the time series have been
downsampled to a length of 4,000 (i.e., effectively 4 kHz).

3.1.2 CornellWhaleChallenge

CornellWhaleChallenge consists of hydrophone recordings (Karpǐstšenko et al., 2013).
The recordings are single channel with a sampling rate of 2 kHz. The recordings come
from an array of buoys near Boston. The processed dataset consists of 30,000 (univariate)
time series, each of length 4,000 (i.e., representing recordings of 2 seconds of audio with a
sampling rate of 2 kHz). The task is to distinguish right whale calls from other noises. (An
abridged version of this dataset is included in the broader UCR archive.) This version of
the dataset has been divided into stratified random cross-validation folds.

3.1.3 FruitFlies

FruitFlies, taken from the broader UCR archive, consistst of 34,518 (univariate) time
series, each of length 5,000, representing acoustic recordings of wingbeats for three species
of fruit fly (Potamitis, 2016; Flynn, 2022). The recordings are single channel with a sampling
rate of 8 kHz (i.e., each recording represents just over half a second of data). The recordings
are made using a specialised infrared sensor which detects the vibrations of the wings of
the insects. The learning task is to identify the species of fly based on the recordings. This
version of the dataset has been split into stratified random cross-validation folds.

3.1.4 InsectSound

InsectSound , taken from the broader UCR archive, consists of 50,000 (univariate) time
series, each of length 600, representing recordings of wingbeats for six species of insects, with
2 different genders for 4 of the 6 species (Chen et al., 2014; Chen, 2014). The recordings
are single channel with a sampling rate of 6 kHz (i.e., each time series represents 10 ms of
data). Similar to FruitFlies, but using different hardware, the recordings were made using
an infrared sensor detecting the vibrations of the wings of the insects. The learning task
is to identify the species of insect based on the recordings. This version of the dataset has
been split into stratified random cross-validation folds.

3.1.5 MosquitoSound

MosquitoSound , taken from the broader UCR archive, consists of 279,566 (univariate)
time series, each of length 3,750, representing recordings of wingbeats for six different species
of mosquito (Fanioudakis et al., 2018; Potamitis, 2018). The recordings are single channel
with a sampling rate of 6 kHz (i.e., the time series represent just over half a second of data).
As for the FruitFlies dataset, and using similar hardware, the recordings were made using

9



Dempster et al.

an infrared sensor detecting the vibration of the wings of the mosquitoes. The task is to
identify the species of mosquito based on the recordings. This version of the dataset has
been split into stratified random cross-validation folds.

3.1.6 WhaleSounds

WhaleSounds consists of underwater acoustic recordings around Antarctica, manually
annotated for seven different types of whale calls (Miller et al., 2020, 2021). The recordings
are single channel. The original data consists of extended recordings with a mixture of
different sampling rates between 250 and 2,500 Hz. The dataset has been processed to
extract the annotated whale calls from the original recordings. The extracted whale calls
have been resampled to a consistent sampling frequency of 250 Hz. (The whale sounds
are typically well below 100 Hz.) The processed dataset contains 105,163 (univariate) time
series, each of length 2,500 (i.e., each time series represents 10 seconds of data at 250 Hz,
approximately centred on the labelled whale sound), with eight classes representing the
seven types of whale call plus a class for unidentified sounds. This version of the dataset
has been split into stratified random cross-validation folds.

3.2 Satellite Image Time Series

Satellite image time series consist of data recorded over time at a particular location derived
from images captured by sensors on board Earth observation satellites. Satellite images
taken over time (e.g., every five days) at the same location produce time series at a pixel
level. Each time series represents changing values for a given pixel over time. The different
channels represent the different spectral bands captured by the given satellite (for sensors
covering the visible and infrared frequencies) or the polarisation of the microwave signal (for
microwave sensors). The satellites used to collect the data used in the Monster datasets
follow near-polar, low-Earth orbits. These satellites orbit the Earth approximately every
90 minutes and their orbital path means they can image nearly all the Earth’s surface
over a few days (10 to 16 days, depending on the satellite). However, this leads to a
relatively low sampling frequency at any given location. Given this low sampling frequency,
satellite image time series are often relatively short, and these datasets often have strong
temporal alignment (the time series cover the same time period, or the same time period in
different years, and typically with the same or similar sampling dates). The key challenges
for satellite image time series are handling potentially very large volumes of data (even
relatively low resolution satellite imagery over the whole surface of the earth corresponds
to trillions of time series), and differing patterns corresponding to different geographic
locations, geographies, and climatic conditions.

3.2.1 LakeIce

LakeIce consists of pixel-level backscatter (reflection) values from satellite images of an area
of approximately 6,000 km2 in Yukon, Canada (Shaposhnikova et al., 2022, 2023). The time
series are extracted over three decades from ERS-1/2, Radarsat, and Sentinel-1 synthetic
aperture radar satellites, which all use the C-band range of microwave frequencies (4-8GHz).
This is a pixel-level dataset, such that each time series represents values over time for single
pixel. The satellites used in this case have different spatial resolutions, resulting in a mixture

10



MONSTER

LakeIce (3)

S2Agri-10pc-17 (17)

S2Agri-10pc-34 (29)

S2Agri-17 (17)

S2Agri-34 (34)

Tiselac (9)

Figure 3: Class distributions for the satellite datasets.

of effective pixel sizes of between 12.5m, 30m, and 50m. The processed dataset contains
129,280 (univariate) time series each of length 161, representing daily data over near 6
months (October to March), with three classes, labelled manually, representing bedfast ice,
floating ice, and land. (The original data has been calibrated and speckle-filtered, and then
interpolated to provide daily values for the relevant period (Shaposhnikova et al., 2023).)
This version of the dataset has been split into stratified random cross-validation folds.

3.2.2 S2Agri

S2Agri is a land cover classification dataset and contains a single tile of Sentinel-2 data
(T31TFM), which covers a 12,100 km2 area in France: see Figure 4 (Garnot et al., 2020;
Sainte Fare Garnot and Landrieu, 2022). Ten spectral bands covering the visible and
infrared frequencies are used, and these are provided at 10m resolution. The dataset contains
time series of length 24, observed between January and October 2017, with data sampled
approximately every 10 days. The area has a wide range of crop types and terrain conditions.

The original S2Agri dataset is designed for parcel-based processing and contains data
for 191,703 land parcels, with data for each parcel provided in a separate file. We have
reorganised the data for pixel-based processing, leading to a dataset containing 59,268,823
pixels. Two sets of land cover classification labels are provided, one with 19 classes and the
other with 44 classes. However, some of the 44-classes are only represented by one land
parcel. We have removed the pixels in these land parcels from the dataset. This means
there are only 17 and 34 classes respectively that are represented in the final dataset. The
class label of each parcel comes from the French Land Parcel Identification System. The
dataset is unbalanced: the largest four of the 19-class labels account for 90% of the parcels.

We thus provide two versions of the S2Agri dataset, S2Agri-17 , which uses the 17 class
labels and S2Agri-34 , which uses the 34 class labels. Additionally, we have created smaller
versions of the datasets consisting of data for a randomly selected 10% of the land parcels,
each containing 5,850,881 pixels. These are S2Agri-10pc-17 and S2Agri-10pc-34 for
the 17-class and 34-class labels, respectively.

To create the folds used for cross-validation, we split the data based on the original land
parcels, thus ensuring that all pixels in a land parcel are allocated to the same fold. Splits
are stratified by class labels to ensure an even representation of the classes across the folds.

11



Dempster et al.

Figure 4: Map of France showing the location of the Sentinel-2 tile used in S2Agri.

3.2.3 TiSeLaC

TiSeLaC (Time Series Land Cover Classification) was created for the time series land cover
classification challenge held in conjunction with the 2017 European Conference on Machine
Learning & Principles and Practice of Knowledge Discovery in Databases (Ienco, 2017). It
was generated from a time series of 23 Landsat 8 images of Reunion Island (Figure 5a),
sampled approximately every 16 days, acquired in 2014. This is a pixel level dataset, where
each time series represents changing values for a single pixel. Ten time series features are
provided for each pixel, seven surface reflectances covering visible and infrared frequencies
and three indices derived from these bands: the Normalised Difference Vegetation Index,
the Normalised Difference Water Index, and the Brightness Index. At the 30m spatial
resolution of Landsat 8 images, Reunion Island is covered by 2866 × 2633 pixels, however
only 99,687 of these pixels are included in the dataset. Class labels were obtained from the
2012 Corine Land Cover (CLC) map and the 2014 farmers’ graphical land parcel registration
(Régistre Parcellaire Graphique or RPG) and the nine most significant classes have been
included in the dataset. The number of pixels in each class is capped at 20,000. The data
was obtained from the winning entry’s GitHub repository (Di Mauro et al., 2017), which
includes the spatial coordinates for each pixel. The processed dataset consists of 99, 687
multivariate time series each of length 23 (i.e., representing approximately one year of data
per time series at a sampling period of approximately 16 days).

We provide training and testing splits designed to give spatial separation between the
splits, which should lead to realistic estimations of the generalisation capability of trained
models. We first divided the original pixel grid into a coarse grid, with each grid cell sized
at 300× 300 pixels, then computed the number of dataset pixels in each cell (the cell size).
These cells are processed in descending order of size, and allocated to the fold with the
fewest pixels. The resulting spatial distribution of the folds is shown in Figure 5a and the
distribution of classes across the folds is shown in Figure 5b.

12



MONSTER

(a) Map of Reunion Island and fold data distribution (b) Label counts by fold

Figure 5: Map of Reunion Island and label counts by fold for the Tiselac dataset. (Map
from Open Street Map, sample data pixels are not to scale.)

CrowdSourced (2)

DREAMERA (2)

DREAMERV (2)

STEW (2)

Figure 6: Class distributions for the EEG datasets.

3.3 EEG

An electroencephalogram (EEG) is a non-invasive method that captures brain activity by
placing electrodes on the surface of the scalp, allowing for the recording of electrical signals
generated within the brain. EEG data is typically recorded at high sampling rates (hundreds
of samples per second) and is widely used in tasks such as classifying cognitive states or
detecting neurological conditions. Despite these benefits, EEG analysis presents several
challenges. A key issue is that EEG recordings often capture a mixture of signals, not
just from the brain but also from other sources (i.e., noise). Each electrode records cortical
activity along with non-cortical signals, such as muscle movements, and even environmental
noise, like electrical interference. Furthermore, EEG data can vary significantly both across
individuals (inter-subject variability) and within the same individual across different sessions
(intra-subject variability).

13



Dempster et al.

3.3.1 CrowdSourced

CrowdSourced consists of EEG data collected as part of a study investigating brain activ-
ity during a resting state task, which included two conditions: eyes open and eyes closed,
each lasting 2 minutes. The dataset contains EEG recordings from 60 participants, but only
13 successfully completed both conditions. The recordings were captured using 14-channel
EEG headsets—specifically the Emotiv EPOC+, EPOC X, and EPOC devices. These de-
vices provide high-quality, wireless brainwave data that is ideal for analyzing resting-state
brain activity (Williams et al., 2023).

The data was initially recorded at a high frequency of 2048 Hz and later downsampled
to 128 Hz for processing. To segment the data for analysis, we used a 2-second window
(equivalent to 256 time steps) with a 32 time-step stride to capture the dynamics of brain
activity while maintaining a manageable data size. The raw EEG data for the 13 partici-
pants, along with preprocessing steps, analysis scripts, and visualization tools, are openly
available on the Open Science Framework (Williams et al., 2022). The processed dataset
consists of 12,289 multivariate time series, each of length 256 (i.e., representing 2 seconds
of data per time series at a sampling rate of 128 Hz). This version of the dataset has been
split into cross-validation folds based on participant.

3.3.2 DreamerA and DreamerV

Dreamer is a multimodal dataset that includes electroencephalogram (EEG) and electro-
cardiogram (ECG) signals recorded during affect elicitation using audio-visual stimuli (Kat-
sigiannis and Ramzan, 2017b), captured with a 14-channel Emotiv EPOC headset at a
sampling rate of 128 Hz. It consists of data recorded from 23 participants, along with
their self-assessments of affective states (valence, arousal, and dominance) after each stimu-
lus (Katsigiannis and Ramzan, 2017b). For our classification task, we focus on the arousal
and valence labels, referred to as DreamerA and DreamerV respectively. The processed
datasets both consist of 170,246 multivariate time series each of length 256 (i.e., representing
2 seconds of data per time series at a sampling rate of 128 Hz).

The dataset is publicly available (Katsigiannis and Ramzan, 2017a), and we utilize the
Torcheeg toolkit for preprocessing, including signal cropping and low-pass and high-pass
filtering (Zhang et al., 2024). Note that only EEG data is analyzed in this study, with ECG
signals excluded. Labels for arousal and valence are binarized, assigning values below 3 to
class 1 and values of 3 or higher to class 2, and has been split into cross-validation folds
based on participant.

3.3.3 STEW: Simultaneous Task EEG Workload

STEW comprises raw EEG recordings from 48 participants involved in a multitasking
workload experiment (Lim et al., 2018). Additionally, the subjects’ baseline brain activity at
rest was recorded before the test. The data was captured using the Emotiv Epoc device with
a sampling frequency of 128Hz and 14 channels, resulting in 2.5 minutes of EEG recording
for each case. Participants were instructed to assess their perceived mental workload after
each stage using a rating scale ranging from 1 to 9, and these ratings are available in a
separate file. The dataset has been divided into cross-validation folds based on individual
participants. Additionally, binary class labels have been assigned to the data, categorizing

14



MONSTER

Opportunity (5)

PAMAP2 (12)

Skoda (11)

UCIActivity (6)

USCActivity (12)

WISDM (6)

WISDM2 (6)

Figure 7: Class distributions for the HAR datasets.

workload ratings above 4 as “high” and those below or equal to 4 as “low”. We utilize these
labels for our specific problem. STEW can be accessed upon request through the IEEE
DataPort (Lim et al., 2020). The processed dataset consists of 28,512 multivariate time
series each of length 256 (i.e., representing 2 seconds of data at 128 Hz).

3.4 Human Activity Recognition

Human activity recognition (HAR) time series consist of data recorded over time from
various sensors placed on the body. The rise of wearable technologies and the Internet of
Things (IoT) has led to a significant increase in activity data collection, enabling widespread
applications aimed at enhancing safety and quality of life in fields such as healthcare, fitness
monitoring, smart homes, and assisted living. HAR data is typically captured at high
sampling rates (multiple samples per second) using a variety of sensors, with wearable
sensors being the most common. These sensors include smartphones, motion sensors, and
other embedded devices. The primary task in HAR is classifying subjects’ activities based on
sensor readings. Similar to EEG time series data, the key challenges involved in classifying
HAR time series data include various sources of noise, as well as potentially large differences
between experimental subjects.

3.4.1 Opportunity

Opportunity is a comprehensive, multi-sensor dataset designed for human activity recog-
nition in a naturalistic environment (Chavarriaga et al., 2013). Collected from four par-
ticipants performing typical daily activities, the dataset spans six recording sessions per
person: five unscripted “Activities of Daily Living” (ADL) runs, and one structured “drill”
run with specific scripted activities. This dataset includes rich, multi-level annotations;
however, for our analysis, we focus specifically on the locomotion classes, which consist of
five primary categories: Stand, Walk, Sit, Lie, and Null (no specific activity detected).

Data collection includes 113 sensor channels from body-worn, object-attached, and am-
bient sensors with a sampling rate of 30 Hz. These channels capture detailed information

15



Dempster et al.

on body movements, object interactions, and environmental context through a combination
of 7 inertial measurement units (IMUs), 12 3D accelerometers, 4 3D localization sensors,
12 object-attached 3D accelerometers with 2D rate-of-turn sensors, 13 switches, and 8 am-
bient 3D accelerometers. The variety and placement of these sensors allow for detailed
examination of physical activities and transitions in a natural setting. To prepare the data
for analysis, we segment it using a sliding window approach with a 100 time-step window
and an overlap of 50 time steps. This segmentation enables the model to capture both the
continuity of activities and subtle transitions, enhancing recognition accuracy across the
locomotion classes. The processed dataset consists of 17,386 multivariate time series each
of length 100 (i.e., representing just over 3 seconds of data per time series at 30 Hz). The
dataset has been divided into cross-validation folds based on individual participants.

3.4.2 PAMAP2: Physical Activity Monitoring Dataset

PAMAP2 is a collection of data obtained from three Inertial Measurement Units (IMUs)
placed on the wrist of the dominant arm, chest, and ankle, as well as 1 ECG heart rate
(Reiss and Stricker, 2012). The data was recorded at a frequency of 100Hz. The dataset
includes annotated information about human activities performed by 9 subjects, each with
their own unique physical characteristics. The majority of the subjects are male and have
a dominant right hand. Notably, the dataset includes only one female subject (ID 102) and
one left-handed subject (ID 108). In total, there are 12 different human activity classes
represented in the dataset. The processed dataset contains 38,856 time series each of length
100 (i.e., representing one second of data per time series at 100 Hz). To ensure an unbiased
evaluation, we divide the dataset into cross-validation folds based on the subjects.

3.4.3 Skoda: Mini Checkpoint-Activity recognition dataset

Skoda captures 10 specific manipulative gestures performed in a car maintenance scenario
(Zappi et al., 2012). Its purpose is to investigate different aspects related to the gestures,
such as fault resilience, performance scalability with the number of sensors, and power
performance management. The dataset comprises 10 classes of manipulative gestures, which
were recorded using 2 × 10 USB 3D acceleration sensors positioned on the left and right
upper and lower arm. The sensors have a high sample rate of approximately 98 Hz, ensuring
precise capturing of the movements.

In terms of activities, the dataset includes 10 distinct manipulative gestures commonly
performed during car maintenance (Figure 8). The data was collected from a single sub-
ject, with each gesture being recorded 70 times. In total, the dataset offers around 3
hours of recording time, enabling thorough analysis of the gestures in various scenarios.
The processed dataset consists of 14,117 time series each of length 100 (i.e., representing
approximately one second of data per time series at 98 Hz).

3.4.4 UCIActivity

UCIActivity is a widely recognized benchmark for activity recognition research. It con-
tains sensor readings from 30 participants performing six daily activities: walking, walking
upstairs, walking downstairs, sitting, standing, and lying down. The data was collected us-
ing a Samsung Galaxy S2 smartphone mounted on the waist of each participant, recording

16



MONSTER

23.5%: null class

10.4%: open hood

10.0%: close hood

9.8%: open/close trunk

8.9%: write on notepad

8.4%: check trunk gaps

7.7%: close both left door
7.2%: check gaps front door

5.5%: check steering wheel

4.4%: open left front door

4.2%: close left front door

Label Distribution

Figure 8: Distribution of activity categories for Skoda.

9 channels of data, with a sampling rate of 50 Hz (Anguita et al., 2013). The processed
dataset contains 10,299 multivariate time series each with length 50 (i.e., one second of
data at a sampling rate of 50 Hz). To keep the evaluation fair, we perform subject-wise
cross-validation.

3.4.5 USCActivity: USC human activity dataset

USCActivity (Zhang and Sawchuk, 2012) consists of data collected from a Motion-Node
device, which includes six readings from a body-worn 3-axis accelerometer and gyroscope
sensor. The dataset contains samples from 14 male and female subjects with equal distri-
bution (7 each) and specific physical characteristics and ages. The sensor data is sampled
at a rate of 100 Hz, and each time-step in the dataset is labelled with one of 12 activity
classes (Figure 9). The processed dataset consists of 56,228 multivariate time series each of
length 100 (representing one second of data at 100 Hz).

The USCActivity dataset presents a challenge in learning feature representation and
segmentation due to the placement of the sensors and the variability in activity classes.
The data is collected from a single accelerometer and gyroscope reading obtained from a
motion node attached to the subject’s right hip. Therefore, this reading does not contribute
significantly to the feature space transformation. Additionally, the activity classes involve
various orientations, such as walking forward, left, or right, and even using the elevator up
or down, which cannot be captured solely through accelerometer and gyroscope readings.
Similar to other activity recognition datasets, we use subject-based cross-validation.

17



Dempster et al.

13.6%: walking forward

13.3%: sleeping9.6%: walking right

9.4%: walking left

9.3%: sitting

8.4%: standing

7.5%: walking upstairs
7.0%: walking downstairs

6.3%: running forward 

5.9%: elevator up 

5.9%: elevator down

3.8%: jumping

Label Distribution

Figure 9: Distribution of activity categories for USCActivity.

3.4.6 WISDM and WISDM2: Wireless Sensor Data Mining

WISDM describes six daily activities—Walking, Jogging, Stairs, Sitting, Standing, and
Lying Down—collected in a controlled laboratory environment. Data were recorded from
36 participants using a smartphone’s built-in tri-axial accelerometer, with the device placed
in the user’s front pants pocket. The accelerometer captures acceleration along the x, y,
and z axes, providing a comprehensive view of the user’s movements. The data is sampled
at a rate of 20 Hz, resulting in a total of 1,098,207 samples across 3 dimensions (Lockhart
et al., 2012). The processed dataset contains 17,166 multivariate time series with a length
of 100 (representing 5 seconds of data at 20 Hz).

WISDM2 extends the original WISDM dataset by collecting data in real-world en-
vironments using the Actitracker system. This system was designed for public use and
provides a more extensive collection of sensor readings from users performing the same six
activities. The dataset contains 2,980,765 samples with three dimensions, and the data
was recorded from a larger and more diverse set of participants in naturalistic settings,
offering a valuable resource for real-world activity recognition (Weiss and Lockhart, 2012).
The processed dataset has 149,034 time series, each with length 100 (again, representing 5
seconds of data at a sampling rate of 20 Hz). Both WISDM and WISDM2 are split based
on subjects.

18



MONSTER

Pedestrian (82)

Traffic (7)

Figure 10: Class distributions for the count datasets.

3.5 Count

These datasets consists automatic sensor count data recorded over time. Depending on
sampling frequency, count data can be aggregated at different resolutions (e.g., per minute,
per hour, or per day), and for various different durations (e.g., hourly counts over a day,
versus daily counts over a year). Given the nature of the data, time series of counts tend to
have strong temporal alignment (e.g., different time series of counts over a 24-hour period
all begin and end at the same time of day, with the same sampling frequency). There are
various challenges involved in classifying count data, for example, variability in the patterns
of counts over different periods (e.g., on different days of the week, and as patterns change
over longer periods of time), and differences in the patterns at different locations.

3.5.1 Pedestrian

Pedestrian represents hourly pedestrian counts at 82 locations in Melbourne, Australia
between 2009 and 2022 (City of Melbourne, 2022). The processed dataset consists of 189,621
(univariate) time series, each of length 24 (i.e., representing 24 hours of data per time series).
The data comes from automatic pedestrian counting sensors at different locations. The task
is to identify location based on the time series of counts. The dataset has been split into
stratified random cross-validation folds.

3.5.2 Traffic

Traffic consists of hourly traffic counts at various locations in the state of NSW, Australia
(Transport for NSW, 2023). The processed dataset contains 1,460,968 (univariate) time
series, each of length 24 (i.e., representing 24 hours of data per time series). The data
comes from automatic traffic counting sensors at different locations. The task is to predict
the day of the week based on the time series of counts. The dataset has been split into
stratified random cross-validation folds.

3.6 Other

Two datasets, FordChallenge and LenDB, do not neatly fall into one of the other categories,
and represent distinct learning tasks compared to other datasets. (We anticipate adding
additional categories as the benchmark is expanded over time.) FordChallenge represents
data recorded over time from a variety of different sensors while an experimental subject is
driving a car. LenDB contains seismological data recorded from seismic monitoring stations.

19



Dempster et al.

FordChallenge (2)

LenDB (2)

Figure 11: Class distributions for the uncategorised datasets.

3.6.1 FordChallenge

FordChallenge is obtained from Kaggle and consists of data from 600 real-time driving
sessions, each lasting approximately 2 minutes and sampled at 100ms intervals (Abou-Nasr,
2011) (i.e., a sampling rate of 10 Hz). The processed dataset consists of 36,257 multivariate
time series each of length 40 (i.e., representing 4 seconds of data per time series at 10 Hz).
These sessions include trials from 100 drivers of varying ages and genders. The dataset
contains 8 physiological, 11 environmental, and 11 vehicular measurements, with specific
details such as names and units undisclosed by the challenge organizers. Each data point
is labeled with a binary outcome: 0 for “distracted” and 1 for “alert.” The objective of the
challenge is to design a classifier capable of accurately predicting driver alertness using the
provided physiological, environmental, and vehicular data.

3.6.2 LenDB

LenDB consists of seismograms recorded from multiple different seismic detection networks
from across the globe (Magrini et al., 2020a,b). The sampling rate is 20 Hz. The processed
dataset consists of 1,244,942 multivariate time series, with 3 channels, each of length 540
(i.e., just under 30 seconds of data per time series at a sampling rate of 20 Hz), with two
classes: earthquake and noise. This version of the dataset has been split into cross-validation
folds based on seismic detection network (i.e., such that seismograms for a given network
do not appear in both a training and validation fold).

4 Baseline Results

4.1 Models

We provide baseline results on the Monster datasets for a number of key models. In
particular, we provide results for four deep learning models: ConvTran (Foumani et al.,
2024b), FCN (Wang et al., 2017), HInceptionTime (Ismail-fawaz et al., 2022), and Tem-
pCNN (Pelletier et al., 2019). We include results for two more ‘traditional’, specialised
methods for time series classification: Hydra (Dempster et al., 2023), and Quant (Demp-
ster et al., 2024a). We also include results for a standard, ‘off the shelf’ classifier—extremely
randomised trees (Geurts et al., 2006)—to act as a näıve baseline.

FCN is a fully convolutional neural network. It consists of three temporal convolutional
layers (one-dimensional convolutional layers that convolve along the time series), followed by
a global average pooling layer and finally the softmax classification layer (Wang et al., 2017).
The convolutional layers have 128, 256, and 128 filters of length 8, 5, and 3, respectively.

TempCNN is a light-weight temporal convolutional neural network originally designed
for land cover classification from time series of satellite imagery (Pelletier et al., 2019). It

20



MONSTER

consists of three temporal convolutional layers followed by a fully connected layer. Each
convolutional layer has 64 filters of length 5 and the fully-connected layer has 256 units.

H-InceptionTime (Hybrid-InceptionTime) is an ensemble of five Hybrid-Inception (H-
Inception) models, each with a different random weight initialisation (Ismail-fawaz et al.,
2022). An H-Inception model consists of a set of 17 hand-crafted filters combined with
six Inception modules. The hand-crafted filters are sets of convolutional filters designed
to detect peaks, and both increasing and decreasing trends. The hand-crafted filters range
in length from 2 to 96 and are applied in parallel with the first inception module to the
input time series. Inception modules combine convolutions with filter lengths of 10, 20 and
40, max pooling and bottleneck layers. Each set of convolutions and the max pooling layer
have 32 filters thus each inception module has 128 filters. The resulting network has a small
number of parameters and a large receptive field (Ismail Fawaz et al., 2020).

ConvTran is a deep learning model for multivariate time series classification (TSC) that
combines convolutional layers with transformers to effectively capture both local patterns
and long-range dependencies (Foumani et al., 2024b). It addresses the limitations of existing
position encoding methods by introducing two novel techniques: tAPE (temporal Absolute
Position Encoding) for absolute positions and eRPE (efficient Relative Position Encoding)
for relative positions. These encodings, integrated with disjoint temporal and channel-wise
convolutions (Foumani et al., 2021), allow ConvTran to capture both temporal dependencies
and correlations between the channels.

Hydra involves transforming input time series using a set of random convolutional
kernels arranged into groups, and ‘counting’ the kernel representing the closest match with
the input time series in each group. The counts are then used to train a ridge regression
classifier (Dempster et al., 2023). Here, we use the variant of Hydra presented in Dempster
et al. (2024b), which integrates the Hydra transform into the process of fitting the ridge
regression model, and all computation is performed on GPU.

Quant involves recursively dividing the input time series in half, and computing the
quantiles for each of the resulting intervals (subseries) (Dempster et al., 2024a). The com-
puted quantiles are used to train an extremely randomised trees classifier. Quant acts on
the original input time series, the first and second derivatives, and the Fourier transform.
Here, we use the variant of Quant presented in Dempster et al. (2024b), which uses pasting
to ‘spread’ the extremely randomised trees over the dataset.

Extremely Randomised Trees (‘ET’) is a well-established classifier, using an ensem-
ble of decision trees where a random subset of features and split points is considered at each
node, with the feature/split chosen which minimises log loss (Geurts et al., 2006). Here, we
use the same setup as for Quant, but remove the Quant transform, so that ET is training
directly on the ‘raw’ time series data (rather than the Quant features). ET serves as a
‘näıve’ baseline reference point for the other models.

The four deep learning models are trained using the Adam optimiser (Kingma and
Ba, 2015) and a batch size of 256 for a maximum of 100 epochs. The one exception is
HInceptionTime with the AudioMNIST dataset, which used a batch size of 64 to enable it
to fit in the GPU memory. For all datasets, we implement early stopping and select the best
epoch found as the final model, using a validation set obtained by randomly selecting 10%
of the training dataset. Training time on each fold is limited to approximately 24 hours or
one epoch, whichever is longer.

21



Dempster et al.

mean 0–1 loss

Quant

0.1874
ConvTran
0.2009

HInception

0.2020

Hydra

0.2198

TempCNN

0.2605
ET

0.2766
FCN
0.2940

Quant

0.1874

difference

win / draw / loss

p value

0.0134

13 / 0 / 15

0.9375

0.0145

12 / 0 / 16

0.6295

0.0324

20 / 0 / 8

0.0774

0.0731

19 / 0 / 9

0.0014

0.0892

25 / 0 / 3

≤ 1e-04

0.1065

23 / 0 / 5

≤ 1e-04

ConvTran
0.2009

-0.0134

15 / 0 / 13

0.9375 -

0.0011

15 / 0 / 13

0.6947

0.0189

20 / 0 / 8

0.0118

0.0596

21 / 0 / 7

0.0013

0.0758

19 / 0 / 9

0.0281

0.0931

25 / 0 / 3

≤ 1e-04

HInception

0.2020

-0.0145

16 / 0 / 12

0.6295

-0.0011

13 / 0 / 15

0.6947 -

0.0178

22 / 0 / 6

0.0027

0.0585

23 / 2 / 3

0.0006

0.0747

21 / 0 / 7

0.0337

0.0920

26 / 1 / 1

≤ 1e-04

Hydra

0.2198

-0.0324

8 / 0 / 20

0.0774

-0.0189

8 / 0 / 20

0.0118

-0.0178

6 / 0 / 22

0.0027 -

0.0407

12 / 0 / 16

1.0000

0.0568

13 / 0 / 15

0.3386

0.0742

15 / 0 / 13

0.2842

TempCNN

0.2605

-0.0731

9 / 0 / 19

0.0014

-0.0596

7 / 0 / 21

0.0013

-0.0585

3 / 2 / 23

0.0006

-0.0407

16 / 0 / 12

1.0000 -

0.0161

18 / 0 / 10

0.4117

0.0335

17 / 1 / 10

0.0515

ET
0.2766

-0.0892

3 / 0 / 25

≤ 1e-04

-0.0758

9 / 0 / 19

0.0281

-0.0747

7 / 0 / 21

0.0337

-0.0568

15 / 0 / 13

0.3386

-0.0161

10 / 0 / 18

0.4117 -

0.0173

15 / 0 / 13

0.5369

FCN
0.2940

-0.1065

5 / 0 / 23

≤ 1e-04

-0.0931

3 / 0 / 25

≤ 1e-04

-0.0920

1 / 1 / 26

≤ 1e-04

-0.0742

13 / 0 / 15

0.2842

-0.0335

10 / 1 / 17

0.0515

-0.0173

13 / 0 / 15

0.5369

−0.1 0 0.1

difference

Figure 12: Multi-comparison matrix showing mean 0–1 loss and pairwise differences.

We provide results for 0–1 loss, log loss, weighted F1 score, balanced accuracy, and
training time. Each method is evaluated on each dataset using 5-fold cross-validation,
using predefined cross-validation folds. (Note that both Quant and ET are unable to train
on one of the folds of the WISDM dataset, due a limitation of the ET implementation where
there is a single example of a given class.) These results serve as an initial survey on the
relative performance of different methods on the Monster datasets, to serve as a reference
point for future work on large time series classification tasks.

4.2 Summary

The multi-comparison matrix (MCM) in Figure 12 shows mean 0–1 loss as well as pairwise
differences and win/draw/loss for the baseline methods over all 28 Monster datasets (see
Ismail-Fawaz et al., 2023a).

Figure 12 shows that Quant achieves the lowest overall mean 0–1 loss, slightly lower
than that of ConvTran, although both ConvTran and HInceptionTime have lower 0–1 loss
on more datasets (15 vs 13 and 16 vs 12 respectively). Hydra has higher overall mean
0–1 loss than HInceptionTime, but lower than TempCNN, ET, or FCN. TempCNN, ET,
and FCN all have higher average 0–1 loss, due in large part to poor performance on the
audio datasets: see Section 4.3.

4.3 By Category

Figure 13 shows the 0–1 loss for each method on each dataset, organised by category (Audio,
Count, EEG, HAR, Satellite, and Other). Each point represents a single dataset. The

22



MONSTER

horizontal bars represent mean 0–1 loss for each classifier within each category. Figure 13
shows that while for some categories the 0–1 loss for different methods is broadly similar,
for other categories there are considerable differences.

In particular, ConvTran, HInceptionTime, Hydra and Quant all achieve relatively low
0–1 loss on the audio datasets, while ET, TempCNN, and especially FCN have much higher
0–1 loss. ET, Quant, and (to a lesser extent) ConvTran and HInception achieve relatively
low 0–1 loss on the count datasets. Quant and (to a lesser extent) ET and Hydra achieve
relatively low 0–1 loss on the ‘other’ datasets.

In contrast, mean 0–1 loss for EEG, HAR, and Satellite is broadly similar, with significant
spread within the results for each method.

Interestingly, it is only on the audio datasets, and to some extent the HAR datasets,
that our näıve baseline, ET, appears to be meaningfully ‘worse’ than the deep learning or
specialised time series classification methods. ET achieves similar results to Quant on a
number of datasets, which is not surprising, as the ‘raw’ time series are similar to a subset
of the features used in Quant.

We speculate that the poor 0–1 loss for FCN and TempCNN on the audio datasets
in particular may be related to the small receptive field of these models (relative to the
relatively long time series in the audio datasets). With a small receptive field, these models
are in effect limited to high-frequency features in the data.

The satellite datasets show some interesting extremes. All methods except for Quant
and ET performed poorly on the S2Agri 10% datasets. In contrast, all methods achieved
very low 0–1 loss on LakeIce as this dataset has strong temporal and spatial correlations
between samples that could not be accounted for when splitting the data into folds.

These differences in the relative performance of different algorithms on different types
of learning task lends support to the prospect that benchmarks using larger training sets
will promote research into matching the prior assumptions of different learning algorithms
to different types of learning task.

Figures 18 and 19 (Appendix A) show weighted F1 score and balanced accuracy for each
method organised by category. As for Figure 13, each point represents a dataset, and the
horizontal bars represent the mean score for each classifier within each category. Overall,
weighted F1 score broadly follows 0–1 loss, although with a greater spread of values. Bal-
anced accuracy shows a greater spread of values again, particularly for satellite image time
series, where significant class imbalance appears to result in very low balanced accuracy for
a number of datasets, particularly for FCN, HInception, TempCNN, and Hydra. (Interest-
ingly, FCN, HInception, and TempCNN all achieve high weighted F1 scores and balanced
accuracy on one of the EEG datasets.)

4.4 Computational Efficiency

4.4.1 Training Time

Table 2 shows total training time for each of the baseline methods, separated into methods
using GPU and methods using CPU. This represents the total training time over all 28
Monster datasets (where the time for each dataset is the average training time across the
five cross-validation folds). These training times are intended to provide an approximate,
real-world estimate of the training time required for the different methods presented here.

23



Dempster et al.

Con
vTr

an ETFC
N

HInc
ep

tio
n

Hyd
ra

Qua
nt

Tem
pC

NN

0.0

0.2

0.4

0.6

0.8

1.0

0
1 

Lo
ss

Audio

Con
vTr

an ETFC
N

HInc
ep

tio
n

Hyd
ra

Qua
nt

Tem
pC

NN

0.0

0.2

0.4

0.6

0.8

1.0

0
1 

Lo
ss

Count

Con
vTr

an ETFC
N

HInc
ep

tio
n

Hyd
ra

Qua
nt

Tem
pC

NN

0.0

0.2

0.4

0.6

0.8

1.0

0
1 

Lo
ss

EEG

Con
vTr

an ETFC
N

HInc
ep

tio
n

Hyd
ra

Qua
nt

Tem
pC

NN

0.0

0.2

0.4

0.6

0.8

1.0

0
1 

Lo
ss

HAR

Con
vTr

an ETFC
N

HInc
ep

tio
n

Hyd
ra

Qua
nt

Tem
pC

NN

0.0

0.2

0.4

0.6

0.8

1.0

0
1 

Lo
ss

Satellite

Con
vTr

an ETFC
N

HInc
ep

tio
n

Hyd
ra

Qua
nt

Tem
pC

NN

0.0

0.2

0.4

0.6

0.8

1.0

0
1 

Lo
ss

Other

Figure 13: 0–1 loss by category.

24



MONSTER

Table 2: Total Training Time

GPU CPU

Hydra ConvTran TempCNN FCN HInception ET Quant

39m 19s 5d 2h 2d 7h 2d 10h 5d 18h 11h 6m 1d

Table 3: Number of Parameters

ConvTran FCN HInception TempCNN Hydra† Quant‡

min
27,039

Traffic

264,962

CornellWhale

869,570

CornellWhale

424,649

Tiselac

6,144

FordChallenge
275

CrowdSourced

max
486,941

Opportunity

380,037

Opportunity

1,420,145

Opportunity

786,444,426

AudioMNIST

167,936

Pedestrian

379,112

Traffic

† num. parameters in ridge classifier; ‡ median num. leaves per tree

However, we note that as different methods have been trained using a mixture of different
GPUs and CPUs, these timings are not directly comparable, and can only provide a rough
estimate of their comparative computational efficiency.

The five methods trained using GPUs were each trained using a single GPU, either
an Ampere A100 SMX4 with 80GB RAM, or an Ampere A40 with 48GB RAM. Table 2
shows that among these methods, Hydra is by far the fastest, taking less than 40 minutes
to train over all 28 Monster datasets, more than 80× faster than the next-fastest GPU
method (TempCNN). HInceptionTime is the least efficient method, requiring more than
five days of training time, corresponding to almost one month total training time across all
five cross-validation folds. (We note that there is a variant of HInceptionTime, LITETime,
with significantly fewer parameters which requires less than half of the training time of
HInceptionTime: Ismail-Fawaz et al. (2023b).)

Although not directly comparable to methods using GPU, Quant requires approxi-
mately 24 hours of training time (using 4 CPU cores). ET requires less than half of this
(approx. 11 hours), due to the smaller number of features used to train the classifier.

4.4.2 Parameter Counts

Table 3 shows total number of parameters for each of the baseline methods. For each method
the table shows the minimum and maximum number of parameters and the corresponding
dataset. The number of parameters for both FCN and HInceptionTime is reasonably stable,
with the largest model 1.4 and 1.6 times that of the smallest model, respectively. However,
the number of parameters in the TempCNN models vary greatly, with the largest model
being over 1,800 times the size of the smallest one. While the total number of parameters
for all the deep learning methods is dependent on the number of classes and channels, the
FCN and HInceptionTime architectures both include a global average pooling layer, so the
parameter count is independent of the length of the time series. However, TempCNN does
not use global pooling and so its parameter count is highly dependent on the length of the
time series. For Hydra, we have used the number of parameters for the ridge classifier, and
for Quant we have used the median number of leaf nodes, although these are not directly
comparable to the number of trainable parameters in the deep learning models.

25



Dempster et al.

0.00 0.25 0.50 0.75 1.00
ET

0.0

0.2

0.4

0.6

0.8

1.0
Co

nv
Tr

an
ET is better here (9)

ConvTran is better here (19)

0.00 0.25 0.50 0.75 1.00
FCN

0.0

0.2

0.4

0.6

0.8

1.0
FCN is better here (3)

ConvTran is better here (25)

0.00 0.25 0.50 0.75 1.00
HInception

0.0

0.2

0.4

0.6

0.8

1.0
HInception is better here (13)

ConvTran is better here (15)

0.00 0.25 0.50 0.75 1.00
Hydra

0.0

0.2

0.4

0.6

0.8

1.0

Co
nv

Tr
an

Hydra is better here (8)

ConvTran is better here (20)

0.00 0.25 0.50 0.75 1.00
Quant

0.0

0.2

0.4

0.6

0.8

1.0
Quant is better here (13)

ConvTran is better here (15)

0.00 0.25 0.50 0.75 1.00
TempCNN

0.0

0.2

0.4

0.6

0.8

1.0
TempCNN is better here (7)

ConvTran is better here (21)

Figure 14: Pairwise 0–1 loss for ConvTran.

4.5 Pairwise Comparisons

Figures 14, 15, and 16 show the pairwise 0–1 loss, log loss, and training time for ConvTran
versus each of the other baseline methods. (Full pairwise results for all methods and metrics
are provided in the Appendix.) Figure 14 shows that ConvTran achieves broadly similar
0–1 loss on most datasets compared to Quant, HInceptionTime, and Hydra (both Hydra
and Quant achieve significantly lower 0–1 loss than ConvTran on one dataset).

While ConvTran achieves similar 0–1 loss to FCN and TempCNN on most datasets,
ConvTran achieves considerably lower 0–1 loss on a small number of datasets. As noted
above, these include the audio datasets, where FCN and TempCNN appear to struggle
relative to the other methods.

Figure 15 shows a slightly different picture in terms of log loss. ConvTran is fairly evenly
matched to Quant (and ET) in terms of the number of datasets on which each method
achieves lower log loss, although there is a considerable spread in values (i.e., they are not
closely correlated). ConvTran achieves lower log loss on more datasets compared to Hydra,
although Hydra does achieve lower log loss on 10 datasets, which is somewhat surprising,
as Hydra takes no account of log loss in training. ConvTran achieves lower log loss than
FCN, HInceptionTime, and TempCNN on most datasets.

Figure 16 shows that ConvTran is significantly faster than HInceptionTime, but slower
than FCN or TempCNN, on most datasets. ConvTran is marginally faster than Quant and
ET on a number of datasets, although the timings are not directly comparable (given that

26



MONSTER

10 2 10 1 100 101

ET

10 2

10 1

100

101
Co

nv
Tr

an
ET is better here (15)

ConvTran is better here (13)

10 2 10 1 100 101

FCN

10 2

10 1

100

101

FCN is better here (3)

ConvTran is better here (25)

10 2 10 1 100 101

HInception

10 2

10 1

100

101

HInception is better here (9)

ConvTran is better here (19)

10 2 10 1 100 101

Hydra

10 2

10 1

100

101

Co
nv

Tr
an

Hydra is better here (10)

ConvTran is better here (18)

10 2 10 1 100 101

Quant

10 2

10 1

100

101 Quant is better here (16)

ConvTran is better here (12)

10 2 10 1 100 101

TempCNN

10 2

10 1

100

101
TempCNN is better here (0)

ConvTran is better here (28)

Figure 15: Pairwise log-loss for ConvTran.

15s 1m 15m 1h 6h 1d
ET

15s

1m

15m

1h

6h

1d

Co
nv

Tr
an

ET is better here (24)

ConvTran is better here (4)

15s 1m 15m 1h 6h 1d
FCN

15s

1m

15m

1h

6h

1d

FCN is better here (24)

ConvTran is better here (4)

1m 15m 1h 6h 1d
HInception

1m

15m

1h

6h

1d

HInception is better here (9)

ConvTran is better here (19)

15s 1m 15m 1h 6h 1d
Hydra

15s

1m

15m

1h

6h

1d

Co
nv

Tr
an

Hydra is better here (28)

ConvTran is better here (0)

15s 1m 15m 1h 6h 1d
Quant

15s

1m

15m

1h

6h

1d

Quant is better here (17)

ConvTran is better here (11)

15s 1m 15m 1h 6h 1d
TempCNN

15s

1m

15m

1h

6h

1d

TempCNN is better here (24)

ConvTran is better here (4)

Figure 16: Pairwise training time for ConvTran.

27



Dempster et al.

0.0 0.2 0.4 0.6 0.8 1.0
low variance

0.0

0.2

0.4

0.6

0.8

1.0
lo

w
 b

ia
s

low variance is better here (28)

low bias is better here (0)

Miniaturised Datasets

0.0 0.2 0.4 0.6 0.8 1.0
low variance

0.0

0.2

0.4

0.6

0.8

1.0
low variance is better here (6)

low bias is better here (22)

Full-Sized Datasets

Figure 17: Pairwise 0–1 loss for a low variance configuration of Quant versus a lower bias
configuration of Quant on: miniaturised versions of the Monster datasets
(left) and the full-sized Monster datasets (right).

ConvTran uses GPU whereas Quant is limited to CPU). Hydra is faster than ConvTran
on all datasets (reflecting the overall differences in training time shown in Table 2).

4.6 Training Set Size and the Bias–Variance Trade-Off

We have sought to use the bias–variance trade-off to motivate the value of time series
classification benchmarks using much larger training sets than those in the UCR and UEA
archives. While learning curves, such as Figure 1, above, can give credence to this argument,
it would be desirable to provide more substantive evidence. Unfortunately, any attempt to
do so is complicated by the issue that while algorithms can be inherently low variance, their
bias component of error is a function of the degree of fit of their prior assumptions to the
requirements of the learning task (i.e., inductive bias). It is further complicated by a little
recognised issue, that learning tasks often involve an element of concept shift, where the
the data distribution in the training data does not exactly match the distribution in the
test data. As a result, a low bias algorithm that perfectly learns the classification function
that gave rise to the training data may have higher error on the test data than a higher
bias algorithm that has a less perfect fit.

To address the first of these issues we created a learning algorithm pair that share
the same overarching prior assumptions about the learning task, but one relaxes those
assumptions relative to the other resulting in a higher-variance, lower-bias variant. To this
end we developed two different configurations of Quant. As for Figure 1, above, the low
variance configuration of Quant uses a maximum tree depth of 4 and 128 trees, while
the low bias configuration of Quant uses unlimited tree depth and 4 trees. Figure 17
shows pairwise 0–1 loss for the low variance configuration of Quant versus the low bias
configuration of Quant on both miniaturised versions of the Monster datasets (left), and

28



MONSTER

the full Monster datasets (right). The miniaturised benchmark was created by taking a
stratified sample of 200 training examples for each cross-validation fold, to approximately
match the median training set sizes of 217 examples and 255 examples in the UCR and
UEA archives respectively.

Figure 17 shows that the low variance model achieves lower 0–1 loss on all 28 small
datasets. In contrast, the low bias model achieves lower 0–1 loss (considerably lower in
many cases) on 22 of the 28 full-sized datasets. All 6 of the datasets where the low variance
model achieves lower 0–1 loss are HAR or EEG datasets with very challenging subject-
wise cross-validation folds which conceivably introduce substantial concept shift between
the training and test sets. Figure 17 very clearly demonstrates the imperative of reducing
variance for smaller quantities of training data, and reducing bias for larger quantities of
training data. It further suggests that large training set benchmarks may motivate greater
attention for the issue of concept shift in time series classification.

5 Conclusion

We present Monster, a new benchmark collection of large datasets for time series clas-
sification. The field of time series classification has become focused on smaller datasets.
This has resulted in state-of-the-art methods being optimised for low average 0–1 loss over a
large number of small datasets, has insulated the field from engaging with the challenges of
learning from large quantities of data, and has artificially disadvantaged low-bias methods
such as deep neural network models in benchmarking comparisons.

We hope that Monster encourages the field to engage with the challenges related
to learning from large quantities of time series data. We hope that Monster will help
better reflect the broader task of time series classification and improve relevance for real-
world time series classification problems. We believe there is enormous potential for new
research based on much larger time series datasets; research that addresses the engineering
challenges of learning from massive data; research that matches the prior assumptions of
different learning algorithms to the requirements of different learning tasks; and research
that addresses the issue of concept shift between training and test data.

Broader Impact Statement

We present a new benchmark of 28 large datasets for time series classification. This could
potentially have a large impact on the field, as these datasets are significantly larger than
those currently used for benchmarking and evaluation. This should allow for training lower-
bias, more complex models, with greater relevance and more direct applicability to large-
scale, real-world time series classification problems. On the other hand, learning from larger
quantities of data requires proportionally more computational time and resources. As such,
it is important to always keep in mind the balance between computational expense and
real-world relevance. There are also potential risks associated with the misuse of improved
methods for time series classification in monitoring and surveillance, although we do not
feel that there is any significant direct risk associated with this work.

29



Dempster et al.

Acknowledgments and Disclosure of Funding

This work was supported by an Australian Government Research Training Program Schol-
arship, and the Australian Research Council under award DP240100048. The authors would
like to thank, in particular, Professor Eamonn Keogh, Professor Tony Bagnall, and all the
people who have contributed to the UCR and UEA time series classification archives. The
authors also thank Raphael Fischer for trialling our methods and datasets and providing
invaluable feedback.

References

Mahmoud Abou-Nasr. Stay Alert! The Ford Challenge. https://kaggle.com/

competitions/stayalert, 2011. Kaggle.

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge Luis Reyes-Ortiz, et al.
A public domain dataset for human activity recognition using smartphones. In 21th Euro-
pean Symposium on Artificial Neural Networks, Computational Intelligence and Machine
Learning (ESANN), volume 3, page 3, 2013.

Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn Keogh. The
great time series classification bake off: A review and experimental evaluation of recent
algorithmic advances. Data Mining and Knowledge Discovery, 31(3):606–660, 2017.

Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron
Bostrom, Paul Southam, and Eamonn Keogh. The UEA multivariate time series classi-
fication archive, 2018. arXiv preprint arXiv:1811.00075, 2018.

Sören Becker, Johanna Vielhaben, Marcel Ackermann, Klaus-Robert Müller, Sebastian La-
puschkin, and Wojciech Samek. AudioMNIST: Exploring explainable artificial intelli-
gence for audio analysis on a simple benchmark. Journal of the Franklin Institute, 361
(1):418–428, 2024a.

Sören Becker, Johanna Vielhaben, Marcel Ackermann, Klaus-Robert
Müller, Sebastian Lapuschkin, and Wojciech Samek. AudioMNIST.
https://github.com/soerenab/AudioMNIST, 2024b. MIT License.

Damien Brain and Geoffrey I Webb. On the effect of data set size on bias and variance
in classification learning. In Proceedings of the Fourth Australian Knowledge Acquisition
Workshop, University of New South Wales, pages 117–128, 1999.

Ricardo Chavarriaga, Hesam Sagha, Alberto Calatroni, Sundara Tejaswi Digumarti, Ger-
hard Tröster, José del R Millán, and Daniel Roggen. The opportunity challenge: A
benchmark database for on-body sensor-based activity recognition. Pattern Recognition
Letters, 34(15):2033–2042, 2013.

Yanping Chen. Flying insect classification with inexpensive sensors. https://sites.

google.com/site/insectclassification/ (via Internet Archive), 2014. Public Do-
main.

30

https://kaggle.com/competitions/stayalert
https://kaggle.com/competitions/stayalert
https://sites.google.com/site/insectclassification/
https://sites.google.com/site/insectclassification/


MONSTER

Yanping Chen, Adena Why, Gustavo Batista, Agenor Mafra-Neto, and Eamonn Keogh.
Flying insect classification with inexpensive sensors. Journal of Insect Behavior, 27(5):
657–677, 2014.

City of Melbourne. Pedestrian counting system. https://data.melbourne.vic.

gov.au/explore/dataset/pedestrian-counting-system-monthly-counts-per-

hour/information/, 2022. CC BY 4.0.

Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu,
Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. The ucr
time series archive. IEEE/CAA Journal of Automatica Sinica, 6(6):1293–1305, 2019.

Angus Dempster, François Petitjean, and Geoffrey I Webb. Rocket: Exceptionally fast and
accurate time series classification using random convolutional kernels. Data Mining and
Knowledge Discovery, 34:1454–1495, 2020.

Angus Dempster, Daniel F Schmidt, and Geoffrey I Webb. Minirocket: A very fast (almost)
deterministic transform for time series classification. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pages 248–257, New York,
2021. Association for Computing Machinery.

Angus Dempster, Daniel F Schmidt, and Geoffrey I Webb. Hydra: Competing convolu-
tional kernels for fast and accurate time series classifcation. Data Mining and Knowledge
Discovery, 37(5):1779–1805, 2023.

Angus Dempster, Daniel F Schmidt, and Geoffrey I Webb. Quant: A minimalist interval
method for time series classification. Data Mining and Knowledge Discovery, 38:2377–
2402, 2024a.

Angus Dempster, Chang Wei Tan, Lynn Miller, Navid Mohammadi Foumani, Daniel F
Schmidt, and Geoffrey I Webb. Highly scalable time series classification for very large
datasets. In 9th Workshop on Advanced Analytics and Learning on Temporal Data, 2024b.

Nicola Di Mauro, Antonio Vergari, Teresa M.A. Basile, Fabrizio G. Ventola, and Floriana
Esposito. End-to-end learning of deep spatio-temporal representations for satellite image
time series classification. In Proceedings of the European Conference on Machine Learning
& Principles and Practice of Knowledge Discovery in Databases (PKDD/ECML), 2017.
URL http://ceur-ws.org/Vol-1972/paper4.pdf.

Eleftherios Fanioudakis, Matthias Geismar, and Ilyas Potamitis. Mosquito wingbeat analy-
sis and classification using deep learning. In 26th European Signal Processing Conference,
pages 2410–2414, 2018.

Michael Flynn. Classifying Dangerous Species Of Mosquito Using Machine Learning. PhD
thesis, University of East Anglia, 2022.

Navid Mohammadi Foumani, Lynn Miller, Chang Wei Tan, Geoffrey I Webb, Germain
Forestier, and Mahsa Salehi. Deep learning for time series classification and extrinsic
regression: A current survey. ACM Computing Surveys, 56(9):1–45, 2024a.

31

https://data.melbourne.vic.gov.au/explore/dataset/pedestrian-counting-system-monthly-counts-per-hour/information/
https://data.melbourne.vic.gov.au/explore/dataset/pedestrian-counting-system-monthly-counts-per-hour/information/
https://data.melbourne.vic.gov.au/explore/dataset/pedestrian-counting-system-monthly-counts-per-hour/information/
http://ceur-ws.org/Vol-1972/paper4.pdf


Dempster et al.

Navid Mohammadi Foumani, Chang Wei Tan, Geoffrey I Webb, and Mahsa Salehi. Im-
proving position encoding of transformers for multivariate time series classification. Data
Mining and Knowledge Discovery, 38(1):22–48, 2024b.

Seyed Navid Mohammadi Foumani, Chang Wei Tan, and Mahsa Salehi. Disjoint-CNN for
multivariate time series classification. In 2021 International Conference on Data Mining
Workshops (ICDMW), pages 760–769. IEEE, 2021.

Vivien Sainte Fare Garnot, Loic Landrieu, Sebastien Giordano, and Nesrine Chehata. Satel-
lite image time series classification with pixel-set encoders and temporal self-attention.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.

Pierre Geurts, Damien Ernst, and Louis Wehenke. Extremely randomized trees. Machine
Learning, 63(1):3–42, 2006.

Antoine Guillaume, Christel Vrain, and Wael Elloumi. Random dilated shapelet trans-
form: A new approach for time series shapelets. In Pattern Recognition and Artificial
Intelligence, pages 653–664, Berlin, 2022. Springer.

Sara Hooker. The hardware lottery. Communications of the ACM, 64(12):58–65, 2021.

Dino Ienco. TiSeLaC : Time Series Land Cover Classification Challenge.
https://sites.google.com/site/dinoienco/tiselac-time-series-land-cover-

classification-challenge (via Internet Archive), 2017.

Ali Ismail-fawaz, Maxime Devanne, JonathanWeber, and Germain Forestier. Deep Learning
For Time Series Classification Using New Hand-Crafted Convolution Filters. In IEEE
Internation Conference on Big Data., 2022.

Ali Ismail-Fawaz, Angus Dempster, Chang Wei Tan, Matthieu Herrmann, Lynn Miller,
Daniel F Schmidt, Stefano Berretti, Jonathan Weber, Maxime Devanne, Germain
Forestier, and Geoffrey I Webb. An approach to multiple comparison benchmark evalu-
ations that is stable under manipulation of the comparate set, 2023a. arXiv:2305.11921.

Ali Ismail-Fawaz, Maxime Devanne, Stefano Berretti, Jonathan Weber, and Germain
Forestier. LITE: Light Inception with boosTing tEchniques for Time Series Classification.
In 2023 IEEE 10th International Conference on Data Science and Advanced Analytics,
pages 1–10, 2023b.

Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte Pelletier,
Daniel F. Schmidt, Jonathan Weber, Geoffrey I. Webb, Lhassane Idoumghar,
Pierre-Alain Muller, and François Petitjean. InceptionTime: Finding AlexNet
for time series classification. Data Mining and Knowledge Discovery, 34(6):
1936–1962, nov 2020. ISSN 1384-5810. doi: 10.1007/s10618-020-00710-y.
URL http://arxiv.org/abs/1909.04939http://dx.doi.org/10.1007/s10618-020-

00710-yhttp://link.springer.com/10.1007/s10618-020-00710-y.

André Karpǐstšenko, Eric Spalding, and Will Cukierski. The Marinexplore and Cor-
nell University whale detection challenge. https://kaggle.com/competitions/whale-

32

https://sites.google.com/site/dinoienco/tiselac-time-series-land-cover-classification-challenge
https://sites.google.com/site/dinoienco/tiselac-time-series-land-cover-classification-challenge
http://arxiv.org/abs/1909.04939 http://dx.doi.org/10.1007/s10618-020-00710-y http://link.springer.com/10.1007/s10618-020-00710-y
http://arxiv.org/abs/1909.04939 http://dx.doi.org/10.1007/s10618-020-00710-y http://link.springer.com/10.1007/s10618-020-00710-y
https://kaggle.com/competitions/whale-detection-challenge
https://kaggle.com/competitions/whale-detection-challenge


MONSTER

detection-challenge, 2013. Copyright 2011 Cornell University and the Cornell Re-
search Foundation.

Stamos Katsigiannis and Naeem Ramzan. Dreamer: A database for emotion recognition
through eeg and ecg signals from wireless low-cost off-the-shelf devices. https://zenodo.
org/records/546113, 2017a.

Stamos Katsigiannis and Naeem Ramzan. Dreamer: A database for emotion recognition
through EEG and ECG signals from wireless low-cost off-the-shelf devices. IEEE Journal
of Biomedical and Health Informatics, 22(1):98–107, 2017b.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 3rd
International Conference on Learning Representations (ICLR), pages 1–15, 2015. URL
http://arxiv.org/abs/1412.6980.

Thomas Liao, Rohan Taori, Deborah Raji, and Ludwig Schmidt. Are we learning yet? A
meta review of evaluation failures across machine learning. In J. Vanschoren and S. Yeung,
editors, Proceedings of the Neural Information Processing Systems Track on Datasets and
Benchmarks, volume 1, 2021.

Wei Lun Lim, Olga Sourina, and Lipo Wang. Stew: Simultaneous task eeg workload
data set. https://ieee-dataport.org/open-access/stew-simultaneous-task-eeg-
workload-dataset, 2020. CC BY 4.0.

WL Lim, O Sourina, and Lipo P Wang. STEW: Simultaneous task EEG workload data set.
IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(11):2106–2114,
2018.

Jeffrey W Lockhart, Tony Pulickal, and Gary M Weiss. Applications of mobile activity
recognition. In Conference on Ubiquitous Computing, pages 1054–1058, 2012.

Benjamin Lucas, Ahmed Shifaz, Charlotte Pelletier, Lachlan O’neill, Nayyar Zaidi, Bart
Goethals, François Petitjean, and Geoffrey I. Webb. Proximity forest: an effective and
scalable distance-based classifier for time series. Data Mining and Knowledge Discovery,
33(3):607–635, 2019.

Fabrizio Magrini, Dario Jozinović, Fabio Cammarano, Alberto Michelini, and Lapo Boschi.
LEN-DB – local earthquakes detection: A benchmark dataset of 3-component seismo-
grams built on a global scale. https://zenodo.org/doi/10.5281/zenodo.3648231, 2020a.
CC BY 4.0.

Fabrizio Magrini, Dario Jozinović, Fabio Cammarano, Alberto Michelini, and Lapo Boschi.
Local earthquakes detection: A benchmark dataset of 3-component seismograms built on
a global scale. Artificial Intelligence in Geosciences, 1:1–10, 2020b.

Matthew Middlehurst, James Large, Michael Flynn, Jason Lines, Aaron Bostrom, and
Anthony Bagnall. HIVE-COTE 2.0: A new meta ensemble for time series classification.
Machine Learning, 110:3211–3243, 2021.

33

https://kaggle.com/competitions/whale-detection-challenge
https://kaggle.com/competitions/whale-detection-challenge
https://zenodo.org/records/546113
https://zenodo.org/records/546113
http://arxiv.org/abs/1412.6980
https://ieee-dataport.org/open-access/stew-simultaneous-task-eeg-workload-dataset
https://ieee-dataport.org/open-access/stew-simultaneous-task-eeg-workload-dataset


Dempster et al.

Matthew Middlehurst, Patrick Schäfer, and Anthony Bagnall. Bake off redux: A review
and experimental evaluation of recent time series classification algorithms. Data Mining
and Knowledge Discovery, 2024.

Brian S Miller, Kathleen M Stafford, Ilse Van Opzeeland, et al. Whale sounds. https:

//data.aad.gov.au/metadata/AcousticTrends_BlueFinLibrary, 2020. CC BY 4.0.

Brian S Miller, Kathleen M Stafford, Ilse Van Opzeeland, Danielle Harris, Flore Samaran,
Ana Širović, Susannah Buchan, Ken Findlay, Naysa Balcazar, Sharon Nieukirk, Em-
manuelle C Leroy, Meghan Aulich, Fannie W Shabangu, Robert P Dziak, Won Sang
Lee, and Jong Kuk Hong. An open access dataset for developing automated detectors
of Antarctic baleen whale sounds and performance evaluation of two commonly used
detectors. Scientific Reports, 11, 2021.

Amandalynne Paullada, Inioluwa Deborah Raji, Emily M Bender, Emily Denton, and Alex
Hanna. Data and its (dis)contents: A survey of dataset development and use in machine
learning research. Patterns, 2(11), 2021.

Charlotte Pelletier, Geoffrey Webb, and François Petitjean. Temporal Convolutional Neural
Network for the Classification of Satellite Image Time Series. Remote Sensing, 11(5):523,
mar 2019. doi: 10.3390/rs11050523. URL https://www.mdpi.com/2072-4292/11/5/

523.

Ilyas Potamitis. FruitFlies dataset. https://timeseriesclassification.com/

description.php?Dataset=FruitFlies, 2016. With Permission of Prof Tony Bagnall.

Ilyas Potamitis. Wingbeats. https://www.kaggle.com/datasets/potamitis/wingbeats;
https://timeseriesclassification.com/description.php?Dataset=MosquitoSound, 2018.
Public Domain.

Attila Reiss and Didier Stricker. Introducing a new benchmarked dataset for activity moni-
toring. In 16th International Symposium on Wearable Computers, pages 108–109. IEEE,
2012.

Alejandro Pasos Ruiz, Michael Flynn, James Large, Matthew Middlehurst, and Anthony
Bagnall. The great multivariate time series classification bake off: A review and experi-
mental evaluation of recent algorithmic advances. Data Mining and Knowledge Discovery,
35(2):401–449, 2021.

Vivien Sainte Fare Garnot and Loic Landrieu. S2Agri pixel set. https://zenodo.org/

records/5815488, 2022. CC BY 4.0.

Claude Sammut and Geoffrey I. Webb, editors. Bias Variance Decomposition, pages 128–
129. Springer US, Boston, MA, 2017. ISBN 978-1-4899-7687-1. doi: 10.1007/978-1-4899-
7687-1 74. URL https://doi.org/10.1007/978-1-4899-7687-1_74.

Patrick Schäfer and Ulf Leser. WEASEL 2.0: A random dilated dictionary transform for
fast, accurate and memory constrained time series classification. Machine Learning, 112:
4763–4788, 2023.

34

https://data.aad.gov.au/metadata/AcousticTrends_BlueFinLibrary
https://data.aad.gov.au/metadata/AcousticTrends_BlueFinLibrary
https://www.mdpi.com/2072-4292/11/5/523
https://www.mdpi.com/2072-4292/11/5/523
https://timeseriesclassification.com/description.php?Dataset=FruitFlies
https://timeseriesclassification.com/description.php?Dataset=FruitFlies
https://zenodo.org/records/5815488
https://zenodo.org/records/5815488
https://doi.org/10.1007/978-1-4899-7687-1_74


MONSTER

Maria Shaposhnikova, Claude R Duguay, and Pascale Roy-Léveillée. Annotated time-
series of lake ice C-band synthetic aperture radar backscatter created using Sentinel-
1, ERS-1/2, and RADARSAT-1 imagery of Old Crow Flats, Yukon, Canada.
https://doi.org/10.1594/PANGAEA.947789, 2022. CC BY 4.0.

Maria Shaposhnikova, Claude R Duguay, and Pascale Roy-Léveillée. Bedfast and floating-
ece dynamics of rhermokarst lakes using a temporal deep-learning mapping approach:
Case study of the Old Crow Flats, Yukon, Canada. The Cryosphere, 17(4):1697–1721,
2023.

Rich Sutton. The bitter lesson, 2019. http://www.incompleteideas.net/IncIdeas/

BitterLesson.html.

Transport for NSW. NSW road traffic volume counts hourly. https://opendata.

dev.transport.nsw.gov.au/dataset/nsw-roads-traffic-volume-counts-

api/resource/bca06c7e-30be-4a90-bc8b-c67428c0823a, 2023. CC BY 4.0.

Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification from scratch
with deep neural networks: A strong baseline. In 2017 International Joint Conference
on Neural Networks (IJCNN), volume 2017-May, pages 1578–1585. IEEE, 2017. ISBN
978-1-5090-6182-2. doi: 10.1109/IJCNN.2017.7966039. URL http://ieeexplore.ieee.

org/document/7966039/.

Gary Mitchell Weiss and Jeffrey Lockhart. The impact of personalization on smartphone-
based activity recognition. In Workshops at the 26 AAAI Conference on Artificial Intel-
ligence, 2012.

Nikolas S Williams, William King, Geoffrey Mackellar, Roshini Randeniya, Alicia Mc-
Cormick, and Nicholas A Badcock. Crowdsourced eeg experiments: A proof of concept
for remote eeg acquisition using emotivpro builder and emotivlabs. Heliyon, 9(8), 2023.

Nikolas Scott Williams, William King, Roshini Randeniya, and Nicholas A Badcock. Crowd-
sourced. https://osf.io/9bvgh/, 2022.

David H Wolpert and William G MacReady. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82, 1997.

Piero Zappi, Daniel Roggen, Elisabetta Farella, Gerhard Tröster, and Luca Benini. Network-
level power-performance trade-off in wearable activity recognition: A dynamic sensor
selection approach. ACM Transactions on Embedded Computing Systems (TECS), 11(3):
1–30, 2012.

Mi Zhang and Alexander A Sawchuk. USC-HAD: A daily activity dataset for ubiquitous
activity recognition using wearable sensors. In Conference on Ubiquitous Computing,
pages 1036–1043, 2012.

Zhi Zhang, Sheng-Hua Zhong, and Yan Liu. TorchEEGEMO: A deep learning toolbox
towards EEG-based emotion recognition. Expert Systems with Applications, 2024.

35

http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
https://opendata.dev.transport.nsw.gov.au/dataset/nsw-roads-traffic-volume-counts-api/resource/bca06c7e-30be-4a90-bc8b-c67428c0823a
https://opendata.dev.transport.nsw.gov.au/dataset/nsw-roads-traffic-volume-counts-api/resource/bca06c7e-30be-4a90-bc8b-c67428c0823a
https://opendata.dev.transport.nsw.gov.au/dataset/nsw-roads-traffic-volume-counts-api/resource/bca06c7e-30be-4a90-bc8b-c67428c0823a
http://ieeexplore.ieee.org/document/7966039/
http://ieeexplore.ieee.org/document/7966039/
https://osf.io/9bvgh/


Dempster et al.

Appendix A. Additional Results

A.1 Weighted F1 Score

Con
vTr

an ETFC
N

HInc
ep

tio
n

Hyd
ra

Qua
nt

Tem
pC

NN

0.0

0.2

0.4

0.6

0.8

1.0

F1

Audio

Con
vTr

an ETFC
N

HInc
ep

tio
n

Hyd
ra

Qua
nt

Tem
pC

NN

0.0

0.2

0.4

0.6

0.8

1.0

F1

Count

Con
vTr

an ETFC
N

HInc
ep

tio
n

Hyd
ra

Qua
nt

Tem
pC

NN

0.0

0.2

0.4

0.6

0.8

1.0

F1

EEG

Con
vTr

an ETFC
N

HInc
ep

tio
n

Hyd
ra

Qua
nt

Tem
pC

NN

0.0

0.2

0.4

0.6

0.8

1.0

F1

HAR

Con
vTr

an ETFC
N

HInc
ep

tio
n

Hyd
ra

Qua
nt

Tem
pC

NN

0.0

0.2

0.4

0.6

0.8

1.0

F1

Satellite

Con
vTr

an ETFC
N

HInc
ep

tio
n

Hyd
ra

Qua
nt

Tem
pC

NN

0.0

0.2

0.4

0.6

0.8

1.0

F1

Other

Figure 18: Weighted F1 score by category.

36



MONSTER

A.2 Balanced Accuracy

Con
vTr

an ETFC
N

HInc
ep

tio
n

Hyd
ra

Qua
nt

Tem
pC

NN

0.0

0.2

0.4

0.6

0.8

1.0

Ba
l. 

Ac
cu

ra
cy

Audio

Con
vTr

an ETFC
N

HInc
ep

tio
n

Hyd
ra

Qua
nt

Tem
pC

NN

0.0

0.2

0.4

0.6

0.8

1.0

Ba
l. 

Ac
cu

ra
cy

Count

Con
vTr

an ETFC
N

HInc
ep

tio
n

Hyd
ra

Qua
nt

Tem
pC

NN

0.0

0.2

0.4

0.6

0.8

1.0

Ba
l. 

Ac
cu

ra
cy

EEG

Con
vTr

an ETFC
N

HInc
ep

tio
n

Hyd
ra

Qua
nt

Tem
pC

NN

0.0

0.2

0.4

0.6

0.8

1.0

Ba
l. 

Ac
cu

ra
cy

HAR

Con
vTr

an ETFC
N

HInc
ep

tio
n

Hyd
ra

Qua
nt

Tem
pC

NN

0.0

0.2

0.4

0.6

0.8

1.0

Ba
l. 

Ac
cu

ra
cy

Satellite

Con
vTr

an ETFC
N

HInc
ep

tio
n

Hyd
ra

Qua
nt

Tem
pC

NN

0.0

0.2

0.4

0.6

0.8

1.0

Ba
l. 

Ac
cu

ra
cy

Other

Figure 19: Balanced accuracy by category.

37



Dempster et al.

A.3 0–1 loss

0.00 0.25 0.50 0.75 1.00
ConvTran

0.0

0.2

0.4

0.6

0.8

1.0
ET

ConvTran is better here (19)

ET is better here (9)

0.00 0.25 0.50 0.75 1.00
FCN

0.0

0.2

0.4

0.6

0.8

1.0
FCN is better here (13)

ET is better here (15)

0.00 0.25 0.50 0.75 1.00
HInception

0.0

0.2

0.4

0.6

0.8

1.0
HInception is better here (21)

ET is better here (7)

0.00 0.25 0.50 0.75 1.00
Hydra

0.0

0.2

0.4

0.6

0.8

1.0

ET

Hydra is better here (13)

ET is better here (15)

0.00 0.25 0.50 0.75 1.00
Quant

0.0

0.2

0.4

0.6

0.8

1.0
Quant is better here (25)

ET is better here (3)

0.00 0.25 0.50 0.75 1.00
TempCNN

0.0

0.2

0.4

0.6

0.8

1.0
TempCNN is better here (18)

ET is better here (10)

Figure 20: Pairwise results (0–1 loss) for ET.

0.00 0.25 0.50 0.75 1.00
ConvTran

0.0

0.2

0.4

0.6

0.8

1.0

FC
N

ConvTran is better here (25)

FCN is better here (3)

0.00 0.25 0.50 0.75 1.00
ET

0.0

0.2

0.4

0.6

0.8

1.0
ET is better here (15)

FCN is better here (13)

0.00 0.25 0.50 0.75 1.00
HInception

0.0

0.2

0.4

0.6

0.8

1.0
HInception is better here (26)

FCN is better here (1)

0.00 0.25 0.50 0.75 1.00
Hydra

0.0

0.2

0.4

0.6

0.8

1.0

FC
N

Hydra is better here (15)

FCN is better here (13)

0.00 0.25 0.50 0.75 1.00
Quant

0.0

0.2

0.4

0.6

0.8

1.0
Quant is better here (23)

FCN is better here (5)

0.00 0.25 0.50 0.75 1.00
TempCNN

0.0

0.2

0.4

0.6

0.8

1.0
TempCNN is better here (17)

FCN is better here (10)

Figure 21: Pairwise results (0–1 loss) for FCN.

38



MONSTER

0.00 0.25 0.50 0.75 1.00
ConvTran

0.0

0.2

0.4

0.6

0.8

1.0
H

In
ce

pt
io

n

ConvTran is better here (15)

HInception is better here (13)

0.00 0.25 0.50 0.75 1.00
ET

0.0

0.2

0.4

0.6

0.8

1.0
ET is better here (7)

HInception is better here (21)

0.00 0.25 0.50 0.75 1.00
FCN

0.0

0.2

0.4

0.6

0.8

1.0
FCN is better here (1)

HInception is better here (26)

0.00 0.25 0.50 0.75 1.00
Hydra

0.0

0.2

0.4

0.6

0.8

1.0

H
In

ce
pt

io
n

Hydra is better here (6)

HInception is better here (22)

0.00 0.25 0.50 0.75 1.00
Quant

0.0

0.2

0.4

0.6

0.8

1.0
Quant is better here (12)

HInception is better here (16)

0.00 0.25 0.50 0.75 1.00
TempCNN

0.0

0.2

0.4

0.6

0.8

1.0
TempCNN is better here (3)

HInception is better here (23)

Figure 22: Pairwise results (0–1 loss) for HInceptionTime.

0.00 0.25 0.50 0.75 1.00
ConvTran

0.0

0.2

0.4

0.6

0.8

1.0

H
yd

ra

ConvTran is better here (20)

Hydra is better here (8)

0.00 0.25 0.50 0.75 1.00
ET

0.0

0.2

0.4

0.6

0.8

1.0
ET is better here (15)

Hydra is better here (13)

0.00 0.25 0.50 0.75 1.00
FCN

0.0

0.2

0.4

0.6

0.8

1.0
FCN is better here (13)

Hydra is better here (15)

0.00 0.25 0.50 0.75 1.00
HInception

0.0

0.2

0.4

0.6

0.8

1.0

H
yd

ra

HInception is better here (22)

Hydra is better here (6)

0.00 0.25 0.50 0.75 1.00
Quant

0.0

0.2

0.4

0.6

0.8

1.0
Quant is better here (20)

Hydra is better here (8)

0.00 0.25 0.50 0.75 1.00
TempCNN

0.0

0.2

0.4

0.6

0.8

1.0
TempCNN is better here (16)

Hydra is better here (12)

Figure 23: Pairwise results (0–1 loss) for Hydra.

39



Dempster et al.

0.00 0.25 0.50 0.75 1.00
ConvTran

0.0

0.2

0.4

0.6

0.8

1.0
Q

ua
nt

ConvTran is better here (15)

Quant is better here (13)

0.00 0.25 0.50 0.75 1.00
ET

0.0

0.2

0.4

0.6

0.8

1.0
ET is better here (3)

Quant is better here (25)

0.00 0.25 0.50 0.75 1.00
FCN

0.0

0.2

0.4

0.6

0.8

1.0
FCN is better here (5)

Quant is better here (23)

0.00 0.25 0.50 0.75 1.00
HInception

0.0

0.2

0.4

0.6

0.8

1.0

Q
ua

nt

HInception is better here (16)

Quant is better here (12)

0.00 0.25 0.50 0.75 1.00
Hydra

0.0

0.2

0.4

0.6

0.8

1.0
Hydra is better here (8)

Quant is better here (20)

0.00 0.25 0.50 0.75 1.00
TempCNN

0.0

0.2

0.4

0.6

0.8

1.0
TempCNN is better here (9)

Quant is better here (19)

Figure 24: Pairwise results (0–1 loss) for Quant.

0.00 0.25 0.50 0.75 1.00
ConvTran

0.0

0.2

0.4

0.6

0.8

1.0

Te
m

pC
N

N

ConvTran is better here (21)

TempCNN is better here (7)

0.00 0.25 0.50 0.75 1.00
ET

0.0

0.2

0.4

0.6

0.8

1.0
ET is better here (10)

TempCNN is better here (18)

0.00 0.25 0.50 0.75 1.00
FCN

0.0

0.2

0.4

0.6

0.8

1.0
FCN is better here (10)

TempCNN is better here (17)

0.00 0.25 0.50 0.75 1.00
HInception

0.0

0.2

0.4

0.6

0.8

1.0

Te
m

pC
N

N

HInception is better here (23)

TempCNN is better here (3)

0.00 0.25 0.50 0.75 1.00
Hydra

0.0

0.2

0.4

0.6

0.8

1.0
Hydra is better here (12)

TempCNN is better here (16)

0.00 0.25 0.50 0.75 1.00
Quant

0.0

0.2

0.4

0.6

0.8

1.0
Quant is better here (19)

TempCNN is better here (9)

Figure 25: Pairwise results (0–1 loss) for TempCNN.

40



MONSTER

A.4 Log Loss

10 2 10 1 100 101

ConvTran

10 2

10 1

100

101
ET

ConvTran is better here (13)

ET is better here (15)

10 2 10 1 100 101

FCN

10 2

10 1

100

101

FCN is better here (3)

ET is better here (25)

10 2 10 1 100 101

HInception

10 2

10 1

100

101

HInception is better here (10)

ET is better here (18)

10 2 10 1 100 101

Hydra

10 2

10 1

100

101

ET

Hydra is better here (12)

ET is better here (16)

10 2 10 1 100

Quant

10 2

10 1

100

Quant is better here (24)

ET is better here (4)

10 2 10 1 100 101

TempCNN

10 2

10 1

100

101
TempCNN is better here (3)

ET is better here (25)

Figure 26: Pairwise results (log-loss) for ET.

10 2 10 1 100 101

ConvTran

10 2

10 1

100

101

FC
N

ConvTran is better here (25)

FCN is better here (3)

10 2 10 1 100 101

ET

10 2

10 1

100

101

ET is better here (25)

FCN is better here (3)

10 2 10 1 100 101

HInception

10 2

10 1

100

101

HInception is better here (21)

FCN is better here (6)

10 1 100 101

Hydra

10 1

100

101

FC
N

Hydra is better here (22)

FCN is better here (6)

10 2 10 1 100 101

Quant

10 2

10 1

100

101

Quant is better here (28)

FCN is better here (0)

10 2 10 1 100 101

TempCNN

10 2

10 1

100

101

TempCNN is better here (11)

FCN is better here (17)

Figure 27: Pairwise results (log-loss) for FCN.

41



Dempster et al.

10 2 10 1 100 101

ConvTran

10 2

10 1

100

101
H

In
ce

pt
io

n

ConvTran is better here (19)

HInception is better here (9)

10 2 10 1 100 101

ET

10 2

10 1

100

101

ET is better here (18)

HInception is better here (10)

10 2 10 1 100 101

FCN

10 2

10 1

100

101

FCN is better here (6)

HInception is better here (21)

10 2 10 1 100 101

Hydra

10 2

10 1

100

101

H
In

ce
pt

io
n

Hydra is better here (14)

HInception is better here (14)

10 2 10 1 100 101

Quant

10 2

10 1

100

101

Quant is better here (21)

HInception is better here (7)

10 2 10 1 100 101

TempCNN

10 2

10 1

100

101

TempCNN is better here (7)

HInception is better here (21)

Figure 28: Pairwise results (log-loss) for HInceptionTime.

10 2 10 1 100 101

ConvTran

10 2

10 1

100

101

H
yd

ra

ConvTran is better here (18)

Hydra is better here (10)

10 2 10 1 100 101

ET

10 2

10 1

100

101 ET is better here (16)

Hydra is better here (12)

10 1 100 101

FCN

10 1

100

101

FCN is better here (6)

Hydra is better here (22)

10 2 10 1 100 101

HInception

10 2

10 1

100

101

H
yd

ra

HInception is better here (14)

Hydra is better here (14)

10 2 10 1 100 101

Quant

10 2

10 1

100

101 Quant is better here (28)

Hydra is better here (0)

10 2 10 1 100 101

TempCNN

10 2

10 1

100

101
TempCNN is better here (5)

Hydra is better here (23)

Figure 29: Pairwise results (log-loss) for Hydra.

42



MONSTER

10 2 10 1 100 101

ConvTran

10 2

10 1

100

101

Q
ua

nt

ConvTran is better here (12)

Quant is better here (16)

10 2 10 1 100

ET

10 2

10 1

100

ET is better here (4)

Quant is better here (24)

10 2 10 1 100 101

FCN

10 2

10 1

100

101

FCN is better here (0)

Quant is better here (28)

10 2 10 1 100 101

HInception

10 2

10 1

100

101

Q
ua

nt

HInception is better here (7)

Quant is better here (21)

10 2 10 1 100 101

Hydra

10 2

10 1

100

101 Hydra is better here (0)

Quant is better here (28)

10 2 10 1 100 101

TempCNN

10 2

10 1

100

101
TempCNN is better here (1)

Quant is better here (27)

Figure 30: Pairwise results (log-loss) for Quant.

10 2 10 1 100 101

ConvTran

10 2

10 1

100

101

Te
m

pC
N

N

ConvTran is better here (28)

TempCNN is better here (0)

10 2 10 1 100 101

ET

10 2

10 1

100

101
ET is better here (25)

TempCNN is better here (3)

10 2 10 1 100 101

FCN

10 2

10 1

100

101

FCN is better here (17)

TempCNN is better here (11)

10 2 10 1 100 101

HInception

10 2

10 1

100

101

Te
m

pC
N

N

HInception is better here (21)

TempCNN is better here (7)

10 2 10 1 100 101

Hydra

10 2

10 1

100

101
Hydra is better here (23)

TempCNN is better here (5)

10 2 10 1 100 101

Quant

10 2

10 1

100

101
Quant is better here (27)

TempCNN is better here (1)

Figure 31: Pairwise results (log-loss) for TempCNN.

43



Dempster et al.

A.5 Training Time

15s 1m 15m 1h 6h 1d
ConvTran

15s

1m

15m

1h

6h

1d

ET
ConvTran is better here (4)

ET is better here (24)

15s 1m 15m 1h 6h 1d
FCN

15s

1m

15m

1h

6h

1d
FCN is better here (13)

ET is better here (15)

15s 1m 15m 1h 6h 1d
HInception

15s

1m

15m

1h

6h

1d
HInception is better here (2)

ET is better here (26)

15s 1m 15m 1h 6h
Hydra

15s

1m

15m

1h

6h

ET

Hydra is better here (28)

ET is better here (0)

15s 1m 15m 1h 6h
Quant

15s

1m

15m

1h

6h
Quant is better here (0)

ET is better here (28)

15s 1m 15m 1h 6h 1d
TempCNN

15s

1m

15m

1h

6h

1d
TempCNN is better here (15)

ET is better here (13)

Figure 32: Pairwise results (training time) for ET.

15s 1m 15m 1h 6h 1d
ConvTran

15s

1m

15m

1h

6h

1d

FC
N

ConvTran is better here (4)

FCN is better here (24)

15s 1m 15m 1h 6h 1d
ET

15s

1m

15m

1h

6h

1d
ET is better here (15)

FCN is better here (13)

15s 1m 15m 1h 6h 1d
HInception

15s

1m

15m

1h

6h

1d
HInception is better here (0)

FCN is better here (28)

15s 1m 15m 1h 6h 1d
Hydra

15s

1m

15m

1h

6h

1d

FC
N

Hydra is better here (28)

FCN is better here (0)

15s 1m 15m 1h 6h 1d
Quant

15s

1m

15m

1h

6h

1d
Quant is better here (10)

FCN is better here (18)

15s 1m 15m 1h 6h 1d
TempCNN

15s

1m

15m

1h

6h

1d
TempCNN is better here (23)

FCN is better here (5)

Figure 33: Pairwise results (training time) for FCN.

44



MONSTER

1m 15m 1h 6h 1d
ConvTran

1m

15m

1h

6h

1d
H

In
ce

pt
io

n

ConvTran is better here (19)

HInception is better here (9)

15s 1m 15m 1h 6h 1d
ET

15s

1m

15m

1h

6h

1d
ET is better here (26)

HInception is better here (2)

15s 1m 15m 1h 6h 1d
FCN

15s

1m

15m

1h

6h

1d
FCN is better here (28)

HInception is better here (0)

15s 1m 15m 1h 6h 1d
Hydra

15s

1m

15m

1h

6h

1d

H
In

ce
pt

io
n

Hydra is better here (28)

HInception is better here (0)

15s 1m 15m 1h 6h 1d
Quant

15s

1m

15m

1h

6h

1d
Quant is better here (21)

HInception is better here (7)

15s 1m 15m 1h 6h 1d
TempCNN

15s

1m

15m

1h

6h

1d
TempCNN is better here (28)

HInception is better here (0)

Figure 34: Pairwise results (training time) for HInceptionTime.

15s 1m 15m 1h 6h 1d
ConvTran

15s

1m

15m

1h

6h

1d

H
yd

ra

ConvTran is better here (0)

Hydra is better here (28)

15s 1m 15m 1h 6h
ET

15s

1m

15m

1h

6h ET is better here (0)

Hydra is better here (28)

15s 1m 15m 1h 6h 1d
FCN

15s

1m

15m

1h

6h

1d
FCN is better here (0)

Hydra is better here (28)

15s 1m 15m 1h 6h 1d
HInception

15s

1m

15m

1h

6h

1d

H
yd

ra

HInception is better here (0)

Hydra is better here (28)

15s 1m 15m 1h 6h
Quant

15s

1m

15m

1h

6h
Quant is better here (0)

Hydra is better here (28)

15s 1m 15m 1h 6h 1d
TempCNN

15s

1m

15m

1h

6h

1d
TempCNN is better here (0)

Hydra is better here (28)

Figure 35: Pairwise results (training time) for Hydra.

45



Dempster et al.

15s 1m 15m 1h 6h 1d
ConvTran

15s

1m

15m

1h

6h

1d
Q

ua
nt

ConvTran is better here (11)

Quant is better here (17)

15s 1m 15m 1h 6h
ET

15s

1m

15m

1h

6h
ET is better here (28)

Quant is better here (0)

15s 1m 15m 1h 6h 1d
FCN

15s

1m

15m

1h

6h

1d
FCN is better here (18)

Quant is better here (10)

15s 1m 15m 1h 6h 1d
HInception

15s

1m

15m

1h

6h

1d

Q
ua

nt

HInception is better here (7)

Quant is better here (21)

15s 1m 15m 1h 6h
Hydra

15s

1m

15m

1h

6h
Hydra is better here (28)

Quant is better here (0)

15s 1m 15m 1h 6h 1d
TempCNN

15s

1m

15m

1h

6h

1d
TempCNN is better here (20)

Quant is better here (8)

Figure 36: Pairwise results (training time) for Quant.

15s 1m 15m 1h 6h 1d
ConvTran

15s

1m

15m

1h

6h

1d

Te
m

pC
N

N

ConvTran is better here (4)

TempCNN is better here (24)

15s 1m 15m 1h 6h 1d
ET

15s

1m

15m

1h

6h

1d
ET is better here (13)

TempCNN is better here (15)

15s 1m 15m 1h 6h 1d
FCN

15s

1m

15m

1h

6h

1d
FCN is better here (5)

TempCNN is better here (23)

15s 1m 15m 1h 6h 1d
HInception

15s

1m

15m

1h

6h

1d

Te
m

pC
N

N

HInception is better here (0)

TempCNN is better here (28)

15s 1m 15m 1h 6h 1d
Hydra

15s

1m

15m

1h

6h

1d
Hydra is better here (28)

TempCNN is better here (0)

15s 1m 15m 1h 6h 1d
Quant

15s

1m

15m

1h

6h

1d
Quant is better here (8)

TempCNN is better here (20)

Figure 37: Pairwise results (training time) for TempCNN.

46



MONSTER

Appendix B. Hosting

We consider this as an initial release, and we aim to continue to add datasets to the bench-
mark. We will endeavour to promptly address any issues that arise with the datasets and
provide updated versions of the datasets where relevant.

We intend to host the Monster datasets via HuggingFace indefinitely: https://

huggingface.co/monster-monash. However, we also maintain master copies of each of
the datasets and, in case it becomes necessary to provide an alternative hosting channel,
we will make the datasets available via another platform. We intend to continue to add
additional datasets to the Monster benchmark over time. We will create new versions of
the datasets to reflect any changes or corrections, while keeping older and original versions
of the datasets available.

47

https://huggingface.co/monster-monash
https://huggingface.co/monster-monash

	Introduction
	Motivation
	Bias–Variance Tradeoff
	The `Bitter Lesson'
	`No Free Lunch'
	Other Selection Pressures and the `Hardware Lottery'
	Opportunities

	The MONSTER Datasets
	Audio
	AudioMNIST and AudioMNIST-DS
	CornellWhaleChallenge
	FruitFlies
	InsectSound
	MosquitoSound
	WhaleSounds

	Satellite Image Time Series
	LakeIce
	S2Agri
	TiSeLaC

	EEG
	CrowdSourced
	DreamerA and DreamerV
	STEW: Simultaneous Task EEG Workload

	Human Activity Recognition
	Opportunity
	PAMAP2: Physical Activity Monitoring Dataset
	Skoda: Mini Checkpoint-Activity recognition dataset
	UCIActivity
	USCActivity: USC human activity dataset
	WISDM and WISDM2: Wireless Sensor Data Mining

	Count
	Pedestrian
	Traffic

	Other
	FordChallenge
	LenDB


	Baseline Results
	Models
	Summary
	By Category
	Computational Efficiency
	Training Time
	Parameter Counts

	Pairwise Comparisons
	Training Set Size and the Bias–Variance Trade-Off

	Conclusion
	Additional Results
	Weighted F1 Score
	Balanced Accuracy
	0–1 loss
	Log Loss
	Training Time

	Hosting

