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A Architecture & Implementation Details

We present a novel approach for a volume rendering-based surface reconstruction, which takes as few
as 3 images as input. Below are the details of each step.

A.1 Template Prediction network architecture.

Inspired by the generalization approaches of neural radiance field [1} [19, [14], we take a similar
approach for our template learning step. Our network 7y, is composed of an encoder (£) and 2
decoders i.e. geometry decoder (Dy.,), and voxel feature-grid decoder (Doq).

Encoder (£). The encoder (£) is adapted from [15]. There are a total of 5 convolutional
layers in the encoder, which downsamples the image by a factor of 32. Hence, with /N images as
input at a resolution of 512 x 512 x 3, we obtain a feature of size NV x C' x 16 x 16, post the
forward pass. Here, C' is the number of feature channels obtained at the output (C' = 64). Using
these features obtained from the encoder, we sample per template feature using bilinear interpolation.
We concatenate all the interpolated template features { fi}fil into a tensor of size Ay x N x C.

We aggregate the multi-view features of each template, obtained from images using the feature-
pooling strategy proposed in [12]. This allows us to input any number of images as input. Specifically,
we first compute the element-wise mean, p, and variance, v for each feature obtained from the
encoder £. We then concatenate each feature with the computed, 1 and v and feed it through the
shared MLP followed by a softmax to predict the weight {w;}¥ ; for each multi-view feature. We
then blend all the features from all views using the predicted blend weights {w; }Y ;. Post this step,

the template features { f; }fi’fl gets transformed into a tensor of size N} x C.

Decoders (D, and D). Dy, is used to predict the template parameters, whereas D, predicts
voxel-grid features for each template. We decode these features channel-wise into a feature of
dimension C' - M x /N - M x /Ny - M. We then reshape these features to a volumetric feature
grid of dimension C' x M x \/N; - M x \/N; - M. Here, C = 8, M = 16. The architectures are
illustrated in Table [T]2]

A.2 Training Details.

To learn generalizable templates, we train our template prediction network end-to-end across different
objects from DTU [5] and BlendedMVS datasets [[L6]. For the DTU dataset, we use 15 scenes for
testing, which are the same scenes used by [18]. The remaining non-overlapping 75 scenes are used
for training our template prediction network. This split is the same split that is used by [8].

The BlendedMVS [16] dataset, contains > 100 scenes, captured in both indoor and outdoor settings.
This includes many scenes with complex architecture and backgrounds. We exclude these complex
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Table 1: The architecture of the two decoders, Dye, and D,,.,. Each template feature is, f;. A hidden
feature of each template is, h;. [Cy, R, St] is the set of centers, radii, and scales of all the templates.
L=Linear, R=ReL.U, TCN=Transposed Convolution. The volumetric feature grid of each template is
of size 16 x 16 x 16. We use a total of 576(242) templates.

Decoder | Layer | Channels | Input \ Output
LRyp_3 | 64764 fi hi
D Lty | 64/3 hs C,
geo Lyad 64/3 h; R,
Lscale 64/1 h; S
TCNy 64 24-1x24-1x64 24-2x24-2x64
D TCN, 32 24 -2 x24-2x 64 24 -4 x24-4x 32
vox TCNy 64 24 -4 x24-4x 32 24-8x24-8x64
TCN3 16 x 8 24-8x24-8x64 | 24-16x24-16 x 16-8

Table 2: Architecture of the MLP used to regress colors, ¢ at point locations p in 3D space. fyoz (P)
is the per-point feature obtained from tri-linear interpolation.

Layer | Channels | Input \ Output
Reshape - 24-16 x24-16 x16-8 | 24-16 x 24-16 x 16 x 8

LRy 3+8/256 P, fooz(P) hidden feature

LRy 256 /3 hidden feature c

large-scale scenes in our template training. Out of all the objects, we select 35 objects for training the
template prediction network and, following [17, [11} 8] we select 7 other non-overlapping objects for
the test split which we use to train our surface reconstruction model.

A.3 Sparse Reconstruction using COLMAP.

Before the template training stage, we reconstruct a sparse point cloud for all the objects in our train
split using COLMAP [10]. This point cloud acts as a "free" supervision [2,14] for the optimization
of our template prediction network. To reconstruct the point cloud, we run COLMAP in triangulation
mode, with all the provided images and ground truth camera poses of objects in the train split. We
use these sparse reconstructed point clouds to optimize our template prediction network.

B Additional Results

B.1 BlendedMVS Dataset

We show additional results on the BlendedMVS dataset for 3 new objects. As can be in Figure 2| our
reconstruction quality significantly outperforms NeuS [[11] and MonoSDF [20]. This shows that our
method is capable to do surface reconstruction from disparate views even in complex settings. In
contrast to this, MonoSDF with MLP fails to reconstruct the geometry faithfully. Whereas, NeuS
[L1] without any regularization has holes in the reconstruction. We show the images used to train the
surface reconstruction model alongside the reconstruction results.

B.2 DTU Sparse Views

Figure[I]| shows additional qualitative comparison results on DTU scans with 3 views as input. We
compare our method with NeuS [[L1]] and MonoSDF [20]. As can be seen, our method achieves
superior reconstruction quality compared to both NeuS and MonoSDF. We are able to achieve this,
without using any explicit ground truth information. In contrast to this, MonoSDF uses pixel-accurate
depth and normal map predictions in order to regularize the surface reconstruction process in sparse
view settings.
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Figure 1: Results on DTU dataset with 3 views.
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Figure 2: Results on BMVS dataset with 3 views. "Miss" represents the absence of reconstruction
because of the "Out of Memory" issue.
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Figure 3: Results on DTU dataset with dense views.

Table 3: Quantitative Comparison on Mobilebrick dataset with GeoNeusS.
F1 Score (1)
Object — Bridge Camera Colosseum Castle
GeoNeuS [3] 0.74 0.73 0.36 0.457
Ours 0915  0.846 0.415 0.572

B.3 DTU Dense Views

Figure 3] shows additional qualitative comparison results on DTU scans with dense views as input.
We compare our method against 11}, 20, [13] for dense views. As it can be seen our method can
achieve equally good reconstruction quality when dense views are provided as input.

B.4 Additional Comparisons on MobileBrick Dataset

In addition, we also compare our method against GeoNeus [3]] which uses a sparse reconstructed point
cloud from COLMAP [9] and photometric consistency to regularize the surface reconstruction from
dense views. In the case of scenes that are captured in the wild, COLMAP reconstruction is often
noisy. Using this point cloud for regularization can negatively affect the reconstruction as observed in
[7]. In contrast to this, DiViNet uses template priors which are trained across data. Such data-driven
priors have been shown to be immune to outliers and noise [4]. We validate this by comparing our
results with GeoNeus on dense views on the MobileBrick dataset [6]. The qualitative results are
shown in Figure [ and quantitative results are shown in Table 3]
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Figure 4: Qualitative Comparison with GeoNeus.
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Figure 5: Novel View Synthesis Results on DTU dataset trained using 3 views.

B.5 Novel View Synthesis

Figure [3] [6] [7] shows the novel view synthesis results of different objects from the DTU dataset.
As can be seen from the figures, our method achieves better view synthesis quality compared to
MonoSDF on unseen views. Table[d] shows the quantitative results.

Table 4: Quantitative results of Novel View Synthesis.
PSNR (1) SSIM (1) LPIPS ()

MonoSDF [20] 23.64 — —
Ours 24.34 0.7208 0.264
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Figure 6: Novel View Synthesis Results on DTU dataset trained using 3 views.
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Figure 7: Novel View Synthesis Results on DTU dataset trained using 3 views.



B.6

o

N

=

Reference Templates Reference Templates Reference Templates

Figure 8: Template predictions on DTU dataset.

DTU Template Predictions

Figure [§]shows our template predictions on the DTU objects on the test split. During the inference
of our templates on the test split, it is possible that the templates contain outliers i.e. those whose
centers are not near the surface and have skewed radii. Hence, we do an outlier removal step, where
we remove the templates whose centers and radii are 2 standard deviation away from the mean center
and radii of templates respectively. In Figure 8] we show results after the outlier removal step.
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