
A Other related work.472

Besides Parhi and Nowak [27] which we discussed earlier, Parhi and Nowak [28, 29] also leveraged473

the connections between NNs and splines. Parhi and Nowak [28] focused on characterizing the474

variational form of multi-layer NN. Parhi and Nowak [29] showed that two-layer ReLU activated475

NN achieves minimax rate for a BV class of order 1 but did not cover multilayer NNs nor BV class476

with order > 1, which is our focus.477

The connection between weight-decay regularization with sparsity-inducing penalties in two-layer478

NNs is folklore and used by Neyshabur et al. [25], Savarese et al. [32], Ongie et al. [26], Ergen479

and Pilanci [12, 14], Parhi and Nowak [27, 29]. The key underlying technique — an application480

of the AM-GM inequality (which we used in this paper as well) — can be traced back to Srebro481

et al. [35] (see a recent exposition by Tibshirani [39]). Tibshirani [39] also generalized the result to482

multi-layered NNs, but with a simple (element-wise) connections.483

The approximation-theoretic and estimation-theoretic research for neural network has a long history484

too [6, 4, 46, 33, 36]. Most existing work considered the Holder, Sobolev spaces and their exten-485

sions, which contain only homogeneously smooth functions and cannot demonstrate the advantage486

of NNs over kernels. The only exception is Suzuki [36] which, as we discussed earlier, requires487

modifications to NN architecture for each class. In contrast, we require tuning only the standard488

weight decay parameter.489

B Two-layer Neural Network with Truncated Power Activation Functions490

We start by recapping the result of Parhi and Nowak [27] and formalizing its implication in esti-491

mating BV functions. Parhi and Nowak [27] considered a two layer neural network with truncated492

power activation function. Let the neural network be493

f(x) =
M
∑

j=1

vjσ
m(wjx+ bj) + c(x), (7)

where wj , vj denote the weight in the first and second layer respectively, bj denote the bias in the494

first layer, c(x) is a polynomial of order up to m, σm(x) := max(x, 0)m. Parhi and Nowak [27,495

Theorem 8] showed that when M is large enough, The optimization problem496

min
w,v

L̂(f) +
λ

2

M
∑

j=1

(|vj |2 + |wj |2m) (8)

is equivalent to the locally adaptive regression spline:497

min
f

L̂(f) + λTV (f (m)(x)), (9)

which optimizes over arbitrary functions that is m-times weakly differentiable. The latter was498

studied in Mammen and van de Geer [22], which leads to the following MSE:499

Theorem 9. Let M ≥ n−m, and f̂ be the function (7) parameterized by the minimizer of (8), then500

MSE(f̂) = O(n−(2m+2)(2m+3)).

We show a simpler proof in the univariate case due to Tibshirani [40]:501

Proof. As is shown in Parhi and Nowak [27, Theorem 8], the minimizer of (8) satisfy502

|vj | = |wj |m, ∀k
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so the TV of the neural network fNN is503

TV (m)(fNN ) = TV (m)c(x) +
M
∑

j=1

|vj ||wj |mTV (m)(σ(m)(x))

=
M
∑

j=1

|vj ||wj |m

=
1

2

M
∑

j=1

(|vj |2 + |wj |2m)

which shown that (8) is equivalent to the locally adaptive regression spline (9) as long as the number504

of knots in (9) is no more than M . Furthermore, it is easy to check that any spline with knots no505

more than M can be expressed as a two layer neural network (8). It suffices to prove that the solution506

in (9) has no more than n−m number of knots.507

Mammen and van de Geer [22, Proposition 1] showed that there is a solution to (9) f̂(x) such that508

f̂(x) is a mth order spline with a finite number of knots but did not give a bound. Let the number of509

knots be M , we can represent f̂ using the truncated power basis510

f̂(x) =

M
∑

j=1

aj(x− tj)
m
+ + c(x) :=

M
∑

j=1

ajσ
(m)
j (x) + c(x)

where tj are the knots, c(x) is a polynomial of order up to m, and define σ
(m)
j (x) = (x− tj)

m
+ .511

Mammen and van de Geer [22] however did not give a bound on M . Parhi and Nowak [27]’s512

Theorem 1 implies that M ≤ n − m. Its proof is quite technical and applies more generally to a513

higher dimensional generalization of the BV class.514

Tibshirani [40] communicated to us the following elegant argument to prove the same using elemen-515

tary convex analysis and linear algebra, which we present below.516

Define Πm(f) as the L2(Pn) projection of f onto polynomials of degree up to m, Π⊥
m(f) :=517

f −Πm(f). It is easy to see that518

Π⊥
mf(x) =

M
∑

j=1

ajΠ
⊥
mσ

(m)
j (x)

Denote f(x1:n) := {f(x1), . . . , f(xn)} ∈ R
n as a vector of all the predictions at the sample points.519

Π⊥
mf̂(x1:n) =

M
∑

j=1

ajΠ
⊥
mσ

(m)
j (x1:n) ∈ Π⊥

mconv{±σ
(m)
j (x1:n)} ·

M
∑

j=1

|aj | =∈ conv{±Π⊥
mσ

(m)
j (x1:n)} ·

M
∑

j=1

|aj |

where conv denotes the convex hull of a set. The convex hull conv{±σ
(m)
j (x1:n)} ·

∑M
j=1 |aj | is an520

n-dimensional space, and polynomials of order up to m is an m + 1 dimensional space, so the set521

defined above has dimension n−m− 1. By Carathéodory’s theorem, there is a subset of points in522

this space523

{Π⊥
mσ

(m)
jk

(x1:n)} ⊆ {Π⊥
mσ

(m)
j (x1:n)}, 1 ≤ k ≤ n−m

such that524

Π⊥
mf(x) =

n−m
∑

k=1

ãkΠ
⊥
mσ

(m)
jk

(x),

n−m
∑

k=1

|ak| ≤ 1

In other word, there exist a subset of knots {t̃j , j ∈ [n−m]} that perfectly recovers Π⊥
mf̂(x) at all525

the sample points, and the TV of this function is no larger than f̂ .526

This shows that

f̃(x) =

n−m
∑

j=1

ãj(x− tj)
m
+ , s.t.f̃(xi) = f(xi)
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for all xi in n onbservation points.527

The MSE of locally adaptivity regressive spline (9) was studied in Mammen and van de Geer [22,528

Section 3], which equals the error rate given in Theorem 9.529

This indicates that the neural network (7) is minimax optimal for BV (m).530

Let us explain a few the key observations behind this equivalence. (a) The truncated power functions
(together with an mth order polynomial) spans the space of an mth order spline. (b) The neural
network in (7) is equivalent to a free-knot spline with M knots (up to reparameterization). (c) A
solution to (9) is a spline with at most n − m knots [27, Theorem 8]. (d) Finally, by the AM-GM
inequality

|vj |2 + |wj |2m ≥ 2|vj ||wj |m = 2|cj |
where cj = vj |wj |m is the coefficient of the corresponding jth truncated power basis. The mth531

order total variation of a spline is equal to
∑

j |cj |. It is not hard to check that the loss function532

depends only on cj , thus the optimal solution will always take “=” in the AM-GM inequality.533

C Introduction To Common Function Classes534

In the following definition define Ω be the domain of the function classes, which will be omitted in535

the definition.536

C.1 Besov Class537

Definition 1. Modulus of smoothness: For a function f ∈ Lp(Ω) for some 1 ≤ p ≤ ∞, the r-th538

modulus of smoothness is defined by539

wr,p(f, t) = sup
h∈Rd:∥h∥2≤t

∥∆r
h(f)∥p,

540

∆r
h(f) :=















r
∑

j=0

(rj)(−1)r−jf(x+ jh), if x ∈ Ω, x+ rh ∈ Ω,

0, otherwise.

Definition 2. Besov space: For 1 ≤ p, q ≤ ∞, α > 0, r := ⌈α⌉+ 1, define541

|f |Bα
p,q

=















(

∫ ∞

t=0

(t−αwr,p(f, t))
q dt

t

)
1
q

, q < ∞

sup
t>0

t−αwr,p(f, t), q = ∞,

and define the norm of Besov space as:542

∥f∥Bα
p,q

= ∥f∥p + |f |Bα
p,q

.

A function f is in the Besov space Bα
p,q if ∥f∥Bα

p,q
is finite.543

Note that the Besov space for 0 < p, q < 1 is also defined, but in this case it is a quasi-Banach space544

instead of a Banach space and will not be covered in this paper.545

Functions in Besov space can be decomposed using B-spline basis functions. Any function f in546

Besov space Bα
p,q, α > d/p can be decomposed using B-spline of order m,m > α: let x ∈ R

d,547

f(x) =

∞
∑

k=0

∑

s∈J(k)

ck,s(f)Mm,k,s(x) (10)

where J(k) := {2−ks : s ∈ [−m, 2k+m]d ⊂ Z
d}, Mm,k,s(x) := Mm(2k(x−s)), and Mk(x) =548

∏d
i=1 Mk(xi) is the cardinal B-spline basis function which can be expressed as a polynomial:549

Mm(x) =
1

m!

m+1
∑

j=1

(−1)j
(

m+ 1

j

)

(x−j)m+ = ((m+1)/2)m
1

m!

m+1
∑

j=1

(−1)j
(

m+ 1

j

)

( x− j

(m+ 1)/2

)m

+
,
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Furthermore, the norm of Besov space is equivalent to the sequence norm:550

∥{ck,s}∥bαp,q :=
(

∞
∑

k=0

(2(α−d/p)k∥{ck,s(f)}s∥p)q
)1/q

≂ ∥f∥Bα
p,q

.

See e.g. Dũng [11, Theorem 2.2] for the proof.551

C.2 Other Function Spaces552

Definition 3. Hölder space: let m ∈ N, the m-th order Holder class is defined as553

Cm =

{

f : max
|a|=k

|Daf(x)−Daf(z)|
∥x− z∥2

< ∞, ∀x, z ∈ Ω

}

where Da denotes the weak derivative.554

Note that fraction order of Hölder space can also be defined. For simplicity, we will not cover that555

case in this paper.556

Definition 4. Sobolev space: let m ∈ N , 1 ≤ p ≤ ∞, the Sobolev norm is defined as557

∥f∥Wm
p

:=





∑

|a|≤m

∥Daf∥pp





1/p

,

the Sobolev space is the set of functions with finite Sobolev norm:558

Wm
p := {f : ∥f∥Wm

p
< ∞}.

Definition 5. Total Variation (TV): The total variation (TV) of a function f on an interval [a, b] is559

defined as560

TV (f) = sup
P

nP−1
∑

i=1

|f(xi+1)− f(xi)|

where the P is taken among all the partitions of the interval [a, b].561

In many applications, functions with stronger smoothness conditions are needed, which can be mea-562

sured by high order total variation.563

Definition 6. High order total variation: the m-th order total variation is the total variation of the564

(m− 1)-th order derivative565

TV (m)(f) = TV (f (m−1))

Definition 7. Bounded variation (BV): The m-th order bounded variation class is the set of functions566

whose total variation (TV) is bounded.567

BV (m) := {f : TV (f (m)) < ∞}.

D Proof of Estimation Error568

D.1 Equivalence Between Parallel Neural Networks and p-norm Penalized Problems569

Proposition 3. Fix the input dataset Dn and a constant c1 > 0. For every λ, there exists P ′ > 0570

such that (2) is equivalent to the following problem:571

argmin
{W̄(ℓ)

j ,b̄
(ℓ)
j ,aj}

L̂
(

M
∑

j=1

aj f̄j

)

=
1

n

∑

i

(yi − f̄1:M (xi)
Ta)2

s.t. ∥W̄(1)
j ∥F ≤ c1

√
d, ∀j ∈ [M ],

∥W̄(ℓ)
j ∥F ≤ c1

√
w, ∀j ∈ [M ], 2 ≤ ℓ ≤ L, ∥{aj}∥2/L2/L ≤ P ′

where f̄j(·) is a subnetwork with parameters W̄
(ℓ)
j , b̄

(ℓ)
j .572
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Proof. Using Langrange’s method, one can easily find (2) is equivalent to a constrained optimization573

problem:574

argmin
{W(ℓ)

j ,b
(ℓ)
j }

L̂
(

M
∑

j=1

fj

)

, s.t.
M
∑

j=1

L
∑

ℓ=1

∥

∥W
(ℓ)
j

∥

∥

2

F
≤ P (11)

for some constant P that depends on λ and the dataset D.575

We make use of the property from (4) to minimize the constraint term in (11) while keeping this576

neural network equivalent to the original one. Specifically, let W(1), b(1), . . .W(L), b(L) be the577

parameters of an L-layer neural network.578

f(x) = W
(L)σ(W(L−1)σ(. . . σ(W(1)x+ b(1)) . . . ) + b(L−1)) + b(L),

which is equivalent to579

f(x) = αLW̃
(L)σ(αL−1W̃

(L−1)σ(. . . σ(α1W̃
(1)x+ b̃

(1)
) . . . ) + b̃

(L−1)
) + b̃

(L)
,

as long as αℓ > 0,
∏L

ℓ=1 α
L =

∏L
ℓ=1 ∥W(ℓ)∥F , where W̃(ℓ) := W

(ℓ)

∥W(ℓ)∥F
. By the AM-GM inequal-580

ity, the ℓ2 regularizer of the latter neural network is581

L
∑

ℓ=1

∥αℓW̃
(ℓ)∥2F =

L
∑

ℓ=1

α2
ℓ ≥ L

(

L
∏

ℓ=1

aℓ

)2/L

= L

(

L
∏

ℓ=1

∥W(ℓ)∥F
)2/L

and equality is reached when α1 = α2 = · · · = αL. In other word, in the problem (2), it suffices to582

consider the network that satisfies583

∥W(1)
j ∥F = ∥W(2)

j ∥F = · · · = ∥W(L)
j ∥F , ∀j ∈ [M ], ℓ ∈ [L]. (12)

Using (4) again, one can find that the neural network is also equivalent to584

f(x) =

M
∑

j=1

ajW̄
(L)σ(W̄

(L−1)
j σ(. . . σ(W̄

(1)
j x+ b̄

(1)
j ) . . . ) + b̄

(L−1)
j ) + b̄

(L)
j ,

where585

∥W̄(ℓ)
j ∥F ≤ β(ℓ), aj =

∏L
ℓ=1 ∥W

(ℓ)
j ∥F

∏L
ℓ=1 β

(ℓ)
=

∥W(1)
j ∥LF

∏L
ℓ=1 β

(ℓ)
=

(
∑L

ℓ=1 ∥W
(ℓ)
j ∥2F /L)L/2

∏L
ℓ=1 β

(ℓ)
, (13)

where the last two equality comes from the assumption (12). Choosing β(ℓ) = c1
√
w expect ℓ = 1586

where β(1) = c1
√
d, and scaling b̄

(ℓ)
accordingly and taking the constraint in (11) into (13) finishes587

the proof.588

D.2 Covering Number of Parallel Neural Networks589

Theorem 4. The covering number of the model defined in (5) apart from the bias in the last layer590

satisfies591

logN (F , δ) ≲ w2+2/(1−2/L)L2
√
dP ′ 1

1−2/L δ−
2/L

1−2/L log(wP ′/δ).
592

The proof relies on the covering number of each subnetwork in a parallel neural network

(Lemma 10), observing that |f(x)| ≤ 2L−1wL−1
√
d under the condition in Lemma 10, and

then apply Lemma 5. We argue that our choice of condition on ∥b(ℓ)∥2 in Lemma 10 is suf-
ficient to analyzing the model apart from the bias in the last layer, because it guarantees that√
w∥W(ℓ)Aℓ−1(x)∥2 ≤ ∥b(ℓ)∥2. This leads to

∥W(ℓ)Aℓ−1(x)∥∞ ≤ ∥W(ℓ)Aℓ−1(x)∥2 ≤ √
w∥b(ℓ)∥2 ≤ ∥b(ℓ)∥∞

If this condition is not met, W
(ℓ)Aℓ−1(x) + b(ℓ) is either always positive or always negative593

for all feasible x along at least one dimension. If (W(ℓ)Aℓ−1(x) + b(ℓ))i is always negative,594
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one can replace b(ℓ))i with −maxx ∥W(ℓ)Aℓ−1(x)∥∞ without changing the output of this model595

for any feasible x. If (W(ℓ)Aℓ−1(x) + b(ℓ))i is always positive, one can replace b(ℓ))i with596

maxx ∥W(ℓ)Aℓ−1(x)∥∞, and adjust the bias in the next layer such that the output of this model597

is not changed for any feasible x. In either cases, one can replace the bias b(ℓ) with another one with598

smaller norm while keeping the model equivalent except the bias in the last layer.599

Lemma 10. Let F ⊆ {f : Rd → R} denote the set of L-layer neural network (or a subnetwork in600

a parallel neural network) with width w in each hidden layer. It has the form601

f(x) = W
(L)σ(W(L−1)σ(. . . σ(W(1)x+ b(1)) . . . ) + b(L−1)) + b(L),

W
(1) ∈ R

w×d, ∥W(1)∥F ≤
√
d, b(1) ∈ R

w, ∥b(1)∥2 ≤
√
dw,

W
(ℓ) ∈ R

w×w∥W(ℓ)∥F ≤ √
w, b(ℓ) ∈ R

w, ∥b(ℓ)∥2 ≤ 2ℓ−1wℓ−1
√
dw, ∀ℓ = 2, . . . L− 1,

W
(L) ∈ R

1×w, ∥W(L)∥F ≤ √
w, b(L) = 0

(14)
and σ(·) is the ReLU activation function, the input satisfy ∥x∥2 ≤ 1, then the supremum norm602

δ-covering number of F obeys603

logN (F , δ) ≤ c7Lw
2 log(1/δ) + c8

where c7 is a constant depending only on d, and c8 is a constant that depend on d, w and L.604

Proof. First study two neural networks which differ by only one layer. Let gℓ, g
′
ℓ be two neural net-605

works satisfying (14) with parameters W1, b1, . . . ,WL, bL and W
′
1, b

′
1, . . . ,W

′
L, b

′
L respectively.606

Furthermore, the parameters in these two models are the same except the ℓ-th layer, which satisfy607

∥Wℓ −W
′
ℓ∥F ≤ ϵ, ∥bℓ − b′ℓ∥2 ≤ ϵ̃.

Denote the model as608

gℓ(x) = Bℓ(WℓAℓ(x) + bℓ), g
′
ℓ(x) = Bℓ(W

′
ℓAℓ(x) + b′ℓ)

where Aℓ(x) = σ(Wℓ−1σ(. . . σ(W1x+b1) . . . )+bℓ−1) denotes the first ℓ−1 layers in the neural609

network, and Aℓ(x) = WLσ(. . . σ(Wℓ+1σ(x)+bℓ+1) . . . )+bL) denotes the last L−ℓ−1 layers,610

with definition A1(x) = x,BL(x) = x.611

Now focus on bounding ∥A(x)∥. Let W ∈ R
m×m′

, ∥W∥F ≤
√
m′,x ∈ R

m′

, b ∈ R
m, ∥b∥2 ≤612 √

m613

∥σ(Wx+ b)∥2 ≤ ∥Wx+ b∥2
≤ ∥W∥2∥x∥2 + ∥b∥2
≤ ∥W∥F ∥x∥2 + ∥b∥2
≤

√
m′∥x∥2 +

√
m

where we make use of ∥ · ∥2 ≤ ∥ · ∥F . Because of that,614

∥A2(x)∥2 ≤
√
d+

√
dw ≤ 2

√
dw,

∥A3(x)∥2 ≤ √
w∥A2(x)∥2 + 2w

√
dw ≤ 4w

√
dw,

. . .

∥Aℓ(x)∥2 ≤ √
w∥Aℓ−1(x)∥2 ≤ 2

√
dw(2w)ℓ−2.

(15)

Then focus on B(x). Let W ∈ R
m×m′

, ∥W∥F ≤
√
m′,x,x′ ∈ R

m′

, b ∈ R
m, ∥b∥2 ≤ √

m.615

Furthermore, ∥x− x′∥2 ≤ ϵ, then616

∥σ(Wx+ b)− σ(Wx′ + b)∥2 ≤ ∥W(x− x′)∥2 ≤ ∥W∥F ∥x− x′∥2
which indicates that ∥B(x)− B(x)′∥2 ≤ (

√
w)L−ℓ∥x− x′∥2617

Finally, for any W,W′ ∈ R
m×m′

,x ∈ R
m′

, b, b′ ∈ R
m, one have618

∥(Wx+ b)− (W′x+ b′)∥2 = ∥(W −W
′)x+ (b− b′)∥2

≤ ∥W −W
′∥2∥x∥2 + ∥b− b′∥2.

≤ ∥W −W
′∥F ∥x∥2 +

√
m∥b− b′∥∞.
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In summary,619

|gℓ(x)− g′ℓ(x)| = |Bℓ(WℓAℓ(x) + bℓ)− Bℓ(W
′
ℓAℓ(x) + b′ℓ)|

≤ (
√
w)L−ℓ∥(WℓAℓ(x) + bℓ)− (W′

ℓAℓ(x) + b′ℓ)∥2
≤ (

√
w)L−ℓ(∥Wℓ −W

′
ℓ∥F ∥Aℓ(x)∥2 + ∥bℓ − b′ℓ∥2)

≤ 2(ℓ−1)w(L+ℓ−3)/2d1/2ϵ+ w(L−ℓ)/2ϵ̄

Let f(x), f ′(x) be two neural networks satisfying (14) with parameters W1, b1, . . . ,WL, bL and620

W ′
1, b

′
1, . . . ,W

′
L, b

′
L respectively, and ∥Wℓ −W ′

ℓ∥F ≤ ϵℓ, ∥bℓ − b′ℓ∥F ≤ ϵ̃ℓ. Further define fℓ be the621

neural network with parameters W1, b1, . . . ,Wℓ, bℓ,W
′
ℓ+1, b

′
ℓ+1, . . . ,W

′
L, b

′
L, then622

|f(x)− f ′(x)| ≤ |f(x)− f1(x)|+ |f1(x)− f2(x)|+ · · ·+ |fL−1(x)− f ′(x)|

≤
L
∑

ℓ=1

2(ℓ−2)d1/2w(L+ℓ−3)/2ϵ+ w(L−ℓ)/2ϵ̄

For any δ > 0, one can choose

ϵℓ =
δ

2ℓw(L+ℓ−3)/2d1/2
, ϵ̃ℓ =

δ

2w(L−ℓ)/2

such that |f(x)− f ′(x)| ≤ δ.623

On the other hand, the ϵ-covering number of {W ∈ R
m×m′

: ∥W∥F ≤
√
m′} on Frobenius norm624

is no larger than (2
√
m′/ϵ + 1)m×m′

, and the ϵ̄-covering number of {b ∈ R
m : ∥b∥2 ≤ 1} on625

infinity norm is no larger than (2/ϵ̄+ 1)m. The entropy of this neural network can be bounded by626

logN (f ; δ) ≤ w2L log(2L+1wL−1/δ + 1) + wL log(2L−1w(L−1)/2d1/2/δ + 1)
627

D.3 Covering Number of p-Norm Constrained Linear Combination628

Lemma 5. logN (G, δ) ≲ k log(1/δ) for some finite c3, and for any g ∈ G, |a| ≤ 1, we have629

ag ∈ G. The covering number of F =
{

∑M
i=1 aigi

∣

∣

∣gi ∈ G, ∥a∥pp ≤ P, 0 < p < 1
}

for any P > 0630

satisfies631

logN (F , ϵ) ≲ kP
1

1−p (δ/c3)
− p

1−p log(c3P/δ)
up to a double logarithmic factor.632

Proof. Let ϵ be a positive constant. Without the loss of generality, we can sort the coefficients in633

descending order in terms of their absolute values. There exists a positive integer M (as a function634

of ϵ), such that |ai| ≥ ϵ for i ≤ M, and |ai| < ϵ for i > M.635

By definition, Mϵp ≤ ∑M
i=1 |ai|p ≤ P so M ≤ P/ϵp, and |ai|p ≤ P, |ai| ≤ P 1/p for all i.636

Furthermore,637
∑

i>m

|ai| =
∑

i>M
|ai|p|ai|1−p <

∑

i>M
|ai|pϵ1−p ≤ Pϵ1−p

Let g̃i = argming∈G̃ ∥g − ai

P 1/p gi∥∞ where G̃ is the δ′-convering set of G. By definition of the638

covering set,639

∥

∥

∥

∥

∥

M
∑

i=1

aigi(x)−
M
∑

i=1

P 1/pg̃i(x)

∥

∥

∥

∥

∥

∞
≤
∥

∥

∥

∥

∥

M
∑

i=1

(aigi(x)− P 1/pg̃i(x))

∥

∥

∥

∥

∥

∞
+

∥

∥

∥

∥

∥

M
∑

i=M+1

aigi(x)

∥

∥

∥

∥

∥

∞

≤ MP 1/pδ′ + c3Pϵ1−p.
(16)

Choosing640

ϵ = (δ/2c3P )
1

1−p , δ′ ≂ P− 1
p(1−p) (δ/2c3)

1
1−p /2, (17)

we have M ≤ P
1

1−p (δ/2c3)
− p

1−p ,MP 1/pδ′ ≤ δ/2, c3Pϵ1−p ≤ δ/2, so (16) ≤ δ. One can641

compute the covering number of F by642

logN (F , δ) ≤ M logN (G, δ′) ≲ kM log(1/δ′) (18)

Taking (17) into (18) finishes the proof.643
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E Proof of Approximation Error644

E.1 Approximation of Neural Networks to B-spline Basis Functions645

Proposition 6. There exists a parallel neural network that has the structure and satisfy the constraint646

in Proposition 3 for d-dimensional input and one output, containing M = O(md) subnetworks,647

each of which has width w = O(d) and depth L = O(log(c(m, d)/ϵ)) for some constant w, c that648

depends only on m and d, denoted as M̃m(x),x ∈ R
d, such that649

• |M̃m,k,s(x)−Mm,k,s(x)| ≤ ϵ, if 0 ≤ 2k(xi − si) ≤ m+ 1, ∀i ∈ [d],650

• M̃m,k,s(x) = 0, otherwise.651

• The weights in the last layer satisfy ∥a∥2/L2/L ≲ 2kmde2md/L.652

We follow the method developed in Yarotsky [46], Suzuki [36], while putting our attention on bound-653

ing the Frobenius norm of the weights.654

Lemma 11 (Yarotsky [46, Proposition 3]). : There exists a neural network with two-dimensional655

input and one output f×(x, y), with constant width and depth O(log(1/δ)), and the weight in each656

layer is bounded by a global constant c1, such that657

• |f×(x, y)− xy| ≤ δ, ∀ 0 ≤ x, y ≤ 1,658

• f×(x, y) = 0, ∀ x = 0 or y = 0.659

We first prove a special case of Proposition 6 on the unscaled, unshifted B-spline basis function by660

fixing k = 0, s = 0:661

Proposition 12. There exists a parallel neural network that has the structure and satisfy the con-662

straint in Proposition 3 for d-dimensional input and one output, containing M = ⌈(m+ 1)/2⌉d =663

O(md) subnetworks, each of which has width w = O(d) and depth L = O(log(c(m, d)/ϵ)) for664

some constant w, c that depends only on m and d, denoted as M̃m(x),x ∈ R
d, such that665

• |M̃m(x) − Mm(x)| ≤ ϵ, if 0 ≤ xi ≤ m + 1, ∀i ∈ [d], while Mm(·) denote m-th order666

B-spline basis function, and c only depends on m and d.667

• M̃m(x) = 0, if xi ≤ 0 or xi ≥ m+ 1 for any i ∈ [d].668

• The weights in the last layer satisfy ∥a∥2/L2/L ≲ mde2md/L.669

Proof. We first show that one can use a neural network with constant width w0, depth L ≂670

log(m/ϵ1) and bounded norm ∥W (1)∥F ≤ O(
√
d), ∥W (ℓ)∥F ≤ O(

√
w), ∀ℓ = 2, . . . , L to671

approximate truncated power basis function up to accuracy ϵ1 in the range [0, 1]. Let m =672

∑⌈log2 m⌉
i=0 mi2

i,mi ∈ {0, 1} be the binary digits of m, and define m̄j =
∑i

j=0 mi, γ = ⌈log2 m⌉,673

then for any x674

xm
+ = x

m̄γ

+ ×
(

x2γ

+

)mγ

[x
m̄γ

+ , x2γ

+ ] = [x
m̄γ−1

+ ×
(

x2γ−1

+

)mγ−1
, x2γ−1

+ × x2γ−1

+ ]

. . .

[xm̄2
+ , x4

+] = [xm̄1
+ ×

(

x2
+

)m1
, x2

+ × x2
+]

[xm̄1
+ , x2

+] = [xm̄0
+ × xm0

+ , x+ × x+]

(19)

Notice that each line of equation only depends on the line immediately below. Replacing the675

multiply operator × with the neural network approximation shown in Lemma 11 demonstrates the676

architecture of such neural network approximation. For any x, y ∈ [0, 1], let |f×(x, y) − xy| ≤677

δ, |x− x̃| ≤ δ1, |y− δy| ≤ δ2, then |f×(x̃, ỹ)− xy| ≤ δ1 + δ2 + δ. Taking this into (19) shows that678

ϵ1 ≂ 2γδ ≂ mδ, where ϵ1 is the upper bound on the approximate error to truncated power basis of679

order m and δ is the approximation error to a single multiply operator as in Lemma 11.680
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A univariate B-spline basis can be expressed using truncated power basis, and observing that it is681

symmetric around (m+ 1)/2:682

Mm(x) =
1

m!

m+1
∑

j=1

(−1)j
(

m+ 1

j

)

(x− j)m+

=
1

m!

⌈(m+1)/2⌉
∑

j=1

(−1)j
(

m+ 1

j

)

(min(x,m+ 1− x)− j)m+

=
((m+ 1)/2)m

m!

⌈(m+1)/2⌉
∑

j=1

(−1)j
(

m+ 1

j

)

(min(x,m+ 1− x)− j

(m+ 1)/2

)m

+
,

A multivariate (d-dimensional) B-spline basis function can be expressed as the product of truncated683

power basis functions and thus can be decomposed as684

Mm(x) =

d
∏

i=1

Mm(xi)

=
((m+ 1)/2)md

(m!)d

d
∏

i=1

(⌈(m+1)/2⌉
∑

j=1

(−1)j
(

m+ 1

j

)

(min(xi,m+ 1− x)− j

(m+ 1)/2

)m

+

)

=
((m+ 1)/2)md

(m!)d

⌈(m+1)/2⌉
∑

j1,...,jd=1

d
∏

i=1

(−1)ji
(

m+ 1

ji

)

(min(x,m+ 1− x)− ji
(m+ 1)/2

)m

+

(20)

Using Lemma 11, one can construct a parallel neural network containing M = ⌈(m + 1)/2⌉d =685

O(md) subnetworks, and each subnetwork corresponds to one polynomial term in (20). Using the686

results above, the approximation of this constructed neural network can be bounded by687

(

m+1
∑

i=1

(

m+ 1

j

)

d(ϵ1 + δ)

)d

≲
e2m√
m
dϵ1 + dδ

where we applied Stirling’s approximation and δ and ϵ1 has the same definition as above. Choosing688

δ = ϵ
d(e2m

√
m+1)

, and recall ϵ1 ≂ mδ proves the approximation error.689

To bound the norm of the factors ∥a∥2/L2/L, first observe that690

|aj1,...,jd | =
((m+ 1)/2)md

(m!)d
1

(m+ 1)/2

d
∏

i=1

(

m+ 1

ji

)

≤ ((m+ 1)/2)md

(m!)d
2md

(m+ 1)/2
= O(emd)

where the first inequality is from
(

m+1
ji

)

≤ 2m+1, the last equality is from Stirling’s appropximation.691

Finally,692

∥a∥2/L2/L ≤ md max
j

|aj |2/L ≲ mde2md/L

which finishes the proof.693

The proof of the Proposition 6 for general k, s follows by appending one more layer in the front, as694

we show below.695

Proof of Proposition 6. Using the neural network proposed in Proposition 12, one can construct a696

neural network for appropximating Mm,k,s by adding one layer before the first layer:697

σ(2kIdx− 2ks)
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The unused neurons in the first hidden layer is zero padded. The Frobenius norm of the weight is698

2k∥Id∥F = 2k
√
d. Following the proof of Proposition 3, rescaling the weight in this layer by 2−k,699

and the weight matrix in the last layer by 2k, and scaling the bias properly, one can verify that this700

neural network satisfy the statement.701

E.2 Sparse approximation of Besov functions using B-spline wavelets702

Proposition 7. Let α − d/p > 1, r > 0. Let Mm,k,s be the B-spline of order m with scale 2−k

in each dimension and position s ∈ R
d. For any function in Besov space f0 ∈ Bα

p,q and any

positive integer M̄ , there is an M̄ -sparse approximation using B-spline basis of order m satisfying

0 < α < min(m,m− 1 + 1/p): f̌M̄ =
∑M̄

i=1 aki,si
Mm,ki,si

for any positive integer M̄ such that

the approximation error is bounded as ∥f̌M̄ − f0∥r ≲ M̄−α/d∥f0∥Bα
p,q

, and the coefficients satisfy

∥{2kiaki,si}ki,si∥p ≲ ∥f0∥Bα
p,q

.

703

The proof is divided into three steps:704

1. Bound the 0-norm and the 1-norm of the coefficients of B-spline basis in order to approxi-705

mate an arbitrary function in Besov space up to any ϵ > 0.706

2. Bound p-norm of the coefficients of B-spline basis functions where 0 < p < 1 using the707

results above .708

3. Add the approximation to neural network to B-spline basis computed in Section 4.3.1 into709

Step 2.710

Proof. Dũng [11, Theorem 3.1] Suzuki [36, Lemma 2] proposed an adaptive sampling recovery711

method that approximates a function in Besov space. The method is divided into two cases: when712

p ≥ r, and when p < r.713

When p ≥ r, there exists a sequence of scalars λj , j ∈ P d(µ), Pd(µ) := {j ∈ Z
d : |ji| ≤ µ, ∀i ∈714

d} for some positive µ, for arbitrary positive integer k̄, the linear operator715

Qk̄(f,x) =
∑

s∈J(k̄,m,d)

ak̄,s(f)Mk̄,s(x), ak̄,s(f) =
∑

j∈Zd,Pd(µ)

λj f̄(s+ 2−k̄j)

has bounded approximation error716

∥f −Qk̄(f, x)∥r ≤ C2−αk̄∥f∥Bα
p,q

,

where f̄ is the extrapolation of f , J(k̄,m, d) := {s : 2k̄s ∈ Z
d,−m/2 ≤ 2k̄si ≤ 2k̄ +m/2, ∀i ∈717

[d]}. See Dũng [11, 2.6-2.7] for the detail of the extrapolation as well as references for options of718

sequence λj .719

Furthermore, Qk̄(f) ∈ Bα
p,q so it can be decomposed in the form (10) with M =

∑k̄
k=0(2

k +m−720

1)d ≲ 2k̄d components and ∥{c̃k,s}k,s∥ ≲ ∥Qk̄(f)∥Bα
p,q

≲ ∥f∥Bα
p,q

where c̃k,s is the coefficients of721

the decomposition of Qk̄(f). Choosing k̄ ≂ log2 M/d leads to the desired approximation error.722

On the other hand, when p < r, there exists a greedy algorithm that constructs723

G(f) = Qk̄(f) +

k∗
∑

k=k̄+1

nk
∑

j=1

ck,sj (f)Mk,sj

where k̄ ≂ log2(M), k∗ = [ϵ−1 log(λM)] + k̄ + 1, nk = [λM2−ϵ(k−k̄)] for some 0 < ϵ <724

α/δ − 1, δ = d(1/p− 1/r), λ > 0, such that725

∥f −G(f)∥r ≤ M̄−α/d∥f∥Bα
p,q

and726

k̄
∑

k=0

(2k +m− 1)d +

k∗
∑

k=k̄+1

nk ≤ M̄.
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See Dũng [11, Theorem 3.1] for the detail.727

Finally, since α− d/p > 1,728

∥{2kicki,si}ki,si∥p ≤
k̄
∑

k=0

2k∥{cki,si}si∥p

=

k̄
∑

k=0

2(1−(α−d/p))k(2(α−d/p)k∥{cki,si
}si

∥p)

≲

k̄
∑

k=0

2(1−(α−d/p))k∥f∥Bα
p,q

≂ ∥f∥Bα
p,q

(21)

where the first line is because for arbitrary vectors ai, i ∈ [n], ∥∑n
i=1 ai∥p ≤ ∑n

i=1 ∥ai∥p, the729

third line is because the sequence norm of B-spline decomposition is equivalent to the norm in730

Besov space (see Section C.1) .731

Note that when α − d/p = 1, the sequence norm (21) is bounded (up to a factor of constant) by732

k∗∥f∥Bα
p,q

, which can be proven by following (21) except the last line. This adds a logarithmic term733

with respect to M̄ compared with the result in Proposition 7. This will add a logarithmic factor to734

the MSE. We will not focus on this case in this paper of simplicity.735

E.3 Sparse approximation of Besov functions using Parallel Neural Networks736

Theorem 8. Under the same condition as Proposition 7, for any positive integer M̄ , any function737

in Besov space f0 ∈ Bα
p,q can be approximated by a parallel neural network with no less than738

O(mdM̄) number of subnetworks satisfying:739

1. Each subnetwork has width w = O(d) and depth L.740

2. The weights in each layer satisfy ∥W̄(ℓ)
k ∥F ≤ O(

√
w) except the first layer ∥W̄(1)

k ∥F ≤741

O(
√
d),742

3. The scaling factors have bounded 2/L-norm: ∥{aj}∥2/L2/L ≲ mde2md/LM̄1−2/(pL).743

4. The approximation error is bounded by744

∥f̃ − f0∥r ≤ (c4M̄
−α/d + c5e

−c6L)∥f∥Bα
p,q

where c4, c5, c6 are constants that depend only on m, d and p.745

We first prove the following lemma.746

Lemma 13. For any a ∈ R
M̄ , 0 < p′ < p, it holds that:

∥a∥p
′

p′ ≤ M̄1−p′/p∥a∥p′

p .

Proof.

∑

i

|ai|p
′

= ⟨1, |a|p′⟩ ≤
(

∑

i

1

)1− p′

p
(

∑

i

(|ai|p
′

)
p
p′

)
p′

p

= M̄1− p′

p ∥a∥p′

p

The first inequality uses a Holder’s inequality with conjugate pair p
p′ and 1/(1− p′

p ).747

Proof of Theorem 8. Using Proposition 7, one can construct M̄ number of PNN each O(md) sub-748

networks according to Proposition 6, and in each PNN, such that each PNN represents one B-spline749

basis function.The weights in the last layer of each PNN is scaled to match the coefficients in Propo-750

sition 7. Taking p′ in Lemma 13 as 2/L and combining with Proposition 6 finishes the proof.751
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F Proof of the Main Theorem752

Theorem 1 extended form. For any fixed α − d/p > 1, r > 0, L ≥ 3, given an L-layer parallel753

neural network satisfying754

• The width of each subnetwork is fixed and large enough: w ≳ d. See Theorem 8 for the755

detail.756

• The number of subnetworks is large enough: M ≳ mdn
1−2/L

2α/d+1−2/(pL) .757

With proper choice of the parameter of weight decay λ, the solution f̂ parameterized by (2) satisfies758

MSE(f̂) = Õ

(

(w4−4/LL2−4/L

n1−2/L

)

2α/d
2α/d+1−2/(pL)

+ e−c6L

)

where Õ shows the scale up to a logarithmic factor, and c6 is the constant defined in Theorem 8.759

Proof. First recall the relationship between covering number (entropy) and estimation error:760

Proposition 14. Let F ⊆ {Rd → [−F, F ]} be a set of functions. Assume that F can be decomposed761

into two orthogonal spaces F = F∥ × F⊥ where F⊥ is an affine space with dimension of N. Let762

f0 ∈ {Rd → [−F, F ]} be the target function and f̂ be the least squares estimator in F:763

f̂ = argmin
f∈F

n
∑

i=1

(yi − f(xi))
2, yi = f0(xi) + ϵi, ϵi ∼ N (0, σ2)i.i.d.,

then it holds that764

MSE(f̂) ≤ Õ
(

argmin
f∈F

MSE(f) +
N + logN (F∥, δ) + 2

n
+ (F + σ)δ

)

.

The proof of Proposition 14 is defered to the section below. We choose F as the set of functions765

that can be represented by a parallel neural network as stated, the (null) space F⊥ = {f : f(x) =766

constant} be the set of functions with constant output, which has dimension 1. This space captures767

the bias in the last layer, while the other parameters contributes to the projection in F∥. See Sec-768

tion D.2 for how we handle the bias in the other layers. One can find that F∥ is the set of functions769

that can be represented by a parallel neural network as stated, and further satisfy
∑n

i=1 f(xi) = 0.770

Because F∥ ⊆ F , N (F∥, δ) ≤ N (F , δ) for all δ > 0, and the latter is studied in Theorem 4.771

In Theorem 1, the width of each subnetwork is no less than what is required in Theorem 8, while the772

depth and norm constraint are the same, so the approximation error is no more that that in Theorem 8.773

Choosing r = 2, p = 2/L, and taking Theorem 4 and Theorem 8 into this Proposition 14, one gets774

MSE(f̂) ≲ M̄−2α/d +
w2+2/(1−2/L)L2

n
M̄

1−2/(pL)
1−2/L δ−

2/L
1−2/L (log(M̄/δ) + 3) + δ,

where ∥f∥Bα
p,q

,m and d taken as constants. The stated MSE is obtained by choosing

δ ≂
w4−4/LL2−4/LM̄1−2/(pL)

n1−2/L
, M̄ ≂

( n1−2/L

w4−4/LL2−4/L

)
1

2α/d+1−2/(pL)

Note that there exists a weight decay parameter λ′ such that the (2/L)-norm of the coefficients775

of the parallel neural network satisfy that ∥{aj}∥2/L2/L = mde2md/L∥{ãj,M̄}∥2/L2/L where {ãj,M̄}776

is the coefficient of the particular M̄ -sparse approximation, although {aj} is not necessarily M̄777

sparse. Empirically, one only need to guarantee that during initialization, the number of subnetworks778

M ≥ M̄ such that the M̄ -sparse approximation is feasible, thus the approximation error bound779

from Theorem 8 can be applied. Theorem 8 also says that ∥{aj}∥2/L2/L = mde2md/L∥{ãj,M̄}∥2/L2/L ≲780

M̄1−2/pL, thus we can apply the covering number bound from Theorem 4 with P ′ = M̄1−2/pL.781

Finally, if λ is optimally chosen, then it achieves a smaller MSE than this particular λ′, which has782

been proven to be no more than O(M̄−α/d) and completes the proof.783

784
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Proof of Proposition 14. For any function f ∈ F , define f⊥ = argminh∈F⊥

∑n
i=1(f(xi) −785

h(xi))
2 be the projection of f to F⊥, and define f∥ = f − f⊥ be the projection to the orthogo-786

nal complement. Note that f∥ is not necessarily in F∥. However, if f ∈ F , then f∥ ∈ F∥. yi⊥ and787

yi∥ are defined by creating a function fy such that fy(xi) = yi, ∀i, e.g. via interpolation. Because788

F∥ and F⊥ are orthononal, the empirical loss and population loss can be decomposed in the same789

way:790

L∥(f) =
1

n

n
∑

i=1

(f∥(x)− f0∥(x))
2 +

n−N

n
σ2, L⊥(f) =

1

n

n
∑

i=1

(f⊥(x)− f0⊥(x))
2 +

N

n
σ2,

L̂∥(f) =
1

n

n
∑

i=1

(f∥(x)− yi∥)
2, L̂⊥(f) =

1

n

n
∑

i=1

(f⊥(x)− yi⊥(x))
2,

MSE∥(f) = ED
[ 1

n

n
∑

i=1

(f∥(x)− f0∥(x))
2
]

, MSE⊥(f) = ED
[ 1

n

n
∑

i=1

(f⊥(x)− f0⊥(x))
2
]

,

such that L(f) = L∥(f) + L⊥(f), L̂(f) = L̂∥(f) + L̂⊥(f). This can be verified by de-791

composing f̂ , f0 and y into two orthogonal components as shown above, and observing that792
∑n

i=1 f1⊥(xi)f2∥(xi) = 0, ∀f1, f2.793

First prove the following claim794

Claim 15. Assume that f̂ = argminf∈F L̂(f) is the empirical risk minimizer. Then f̂⊥ =795

argminf∈F⊥
L̂⊥(f), f̂∥ = argminf∈F∥

L̂∥(f), where f̂⊥ is the projections of f̂ in F⊥, and796

f̂∥ = f̂ − f̂⊥ respectively.797

Proof. Since f̂ ∈ F , by definition f̂∥ ∈ F∥. Assume that there exist f̂ ′
⊥, f̂

′
∥, and either L̂⊥(f̂ ′

⊥) <798

L̂⊥(f̂⊥), or L̂∥(f̂
′
∥) < L̂∥(f̂∥). Then799

L̂(f̂ ′) = L̂(f̂ ′
⊥ + f̂ ′

∥) = L̂∥(f̂
′
⊥ + f̂ ′

∥) + L̂⊥(f̂
′
⊥ + f̂ ′

∥) = L̂∥(f̂
′
∥) + L̂⊥(f̂

′
⊥)

< L̂∥(f̂∥) + L̂⊥(f̂⊥) = L̂∥(f̂⊥ + f̂∥) + L̂⊥(f̂⊥ + f̂∥) = L̂(f̂)

which shows that f̂ is not the minimizer of L̂(f) and violates the assumption.800

801

Then we bound MSE⊥(f). We convert this part into a finite dimension least square problem:802

f̂⊥ = argmin
f∈F⊥

L̂⊥(f)

= argmin
f∈F⊥

1

n

n
∑

i=1

(f(xi)− f0⊥(xi)− ϵi⊥)
2

= argmin
f∈F⊥

1

n

n
∑

i=1

(f(xi)− f0⊥(xi)− ϵi⊥)
2 + ϵ2i∥

= argmin
f∈F⊥

1

n

n
∑

i=1

(f(xi)− f0⊥(xi)− ϵi⊥ − ϵi∥)
2

= argmin
f∈F⊥

1

n

n
∑

i=1

(f(xi)− f0⊥(xi)− ϵi)
2

The forth line comes from our assumption that F⊥ is orthogonal to F∥, so ∀f ∈ F⊥, f + f0⊥ + ϵ⊥803

is orthogonal to ϵ∥.804

Let the basis function of F⊥ be h1, h2, . . . , hN , the above problem can be reparameterized as805

argmin
θ∈RN

1

n
∥Xθ − y∥2
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where X ∈ R
n×N : Xi = hj(xi),y = y0⊥ + ϵ,y0⊥ = [f0⊥(x1), . . . , f0⊥(xn)], ϵ = [ϵ1, . . . , ϵn].806

This problem has a closed-form solution807

θ = (XT
X)−1

X
Ty

Observe that f0⊥ ∈ F⊥, let y0⊥ = Xθ∗,The MSE of this problem can be computed by808

L(f̂⊥) =
1

n
∥Xθ − y0⊥∥2 =

1

n
∥X(XT

X)−1
X

T (Xθ∗ + ϵ)−Xθ∗∥2

=
1

n
∥X(XT

X)−1
X

T ϵ∥2

Observing that Π := X(XT
X)−1

X
T is an idempotent and independent projection whose rank is809

N , and that E[ϵϵT ] = σ2
I, we get810

MSE⊥(f̂⊥) = E[L(f̂⊥)] =
1

n
∥Πϵ∥2 =

1

n
tr(ΠϵϵT ) =

σ2

n
tr(Π)

which concludes that811

MSE⊥(f̂) = O
(N

n
σ2
)

. (22)

See also [17, Proposition 1].812

Next we study MSE∥(f̂). Denote σ̃2
∥ = 1

n

∑n
i=1 ϵ

2
i∥, E = maxi |ϵi|. Using Jensen’s inequality and813

union bound, we have814

exp(tE[E]) ≤ E[exp(tE)] = E[max exp(t|ϵi|)] ≤
n
∑

i=1

E[exp(t|ϵi|)] ≤ 2n exp(t2σ2/2)

Taking expectation over both sides, we get815

E[E] ≤ log 2n

t
+

tσ2

2

maximizing the right hand side over t yields816

E[E] ≤ σ
√

2 log 2n.

Let F̃∥ be the covering set of F∥ = {f∥ : f ∈ F}. For any f̃∥ ∈ F̃∥,817

L∥(fj)− L̂∥(fj) =
1

n

n
∑

i=1

(fj∥(xi)− f0∥(xi))
2 − 1

n

n
∑

i=1

(f̃∥(xi)− yi∥)
2 +

n−N

n
σ2

=
1

n

n
∑

i=1

ϵi∥(2f̃∥(xi)− f0∥(xi)− yi∥) +
n−N

n
σ2

=
1

n

n
∑

i=1

ϵi(2f̃∥(xi)− f0∥(xi)− yi∥) +
n−N

n
σ2

=
1

n

n
∑

i=1

ϵi(2f̃∥(xi)− 2f0∥(xi)) +
n−N

n
σ2 − σ̃2

∥

The first term can be bounded using Bernstein’s inequality: let hi = ϵi(fj∥(xi) − f0∥(xi)), by818

definition |hi| ≤ 2EF ,819

Var[hi] = E[ϵ2i (f̃∥(xi)− f0∥(xi))
2]

= (f̃∥(xi)− f0∥(xi))
2
E[ϵ2i ]

= (f̃∥(xi)− f0∥(xi))
2σ2
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using Bernstein’s inequality, for any f̃∥ ∈ F̃∥, with probably at least 1− δp,820

1

n

n
∑

i=1

ϵi(2f̃∥(xi)− 2f0∥(xi)) =
2

n

n
∑

i=1

hi

≤ 2

n

√

√

√

√2

n
∑

i=1

(

f̃∥(xi)− f0∥(xi)
)2
σ2 log(1/δp) +

8EF log(1/δp)

3n

= 2

√

(

L∥(f̃∥)−
n−N

n
σ2
)2σ2 log(1/δp)

n
+

8EF log(1/δp)

3n

≤ ϵ
(

L∥(f̃∥)−
n−N

n
σ2
)

+
8σ2 log(1/δp)

nϵ
+

8EF log(1/δp)

3n

the last inequality holds true for all ϵ > 0. The union bound shows that with probably at least 1− δ,821

for all f̃∥ ∈ F̃∥,822

L∥(f̃∥)− L̂∥(f̃∥) ≤ ϵ
(

L∥(f̃∥)−
n−N

n
σ2
)

+
8σ2 log(N (F∥, δ)/δp)

nϵ
+

8EF log(N (F∥, δ)/δp)

3n

+
n−N

n
σ2 − σ̃2

∥.

By rearanging the terms and using the definition of L(f̃∥), we get823

(1− ϵ)
(

L∥(f̃∥)−
n−N

n
σ2
)

≤ L̂∥(f̃∥) +
8σ2 log(N (F∥, δ)/δp)

nϵ
+

8EF log(N (F∥, δ)/δp)

3n
− σ̃2

∥.

Taking the expectation (over D) on both sides, and notice that E[σ̃2
∥] =

n−N
n σ2. Furthermore, for824

any random variable X,E[X] =
∫∞
−∞ xdP (X ≤ x), we get825

max
f̃∥∈F̃∥

(

(1− ϵ)MSE∥(f̃∥)− E[L̂∥(f̃∥)]
)

≤
(8σ2

nϵ
+

8Fσ
√
2 log 2n

3n

)(

logN (F∥, δ)−
∫ 1

δ=0

log(δp)dδp

)

− n−N

n
σ2

=
(8σ2

nϵ
+

8Fσ
√
2 log 2n

3n

)

(logN (F∥, δ) + 1)− n−N

n
σ2.

(23)

where the integration can be computed by replacing δ with ex. Though it is not integrable under826

Riemann integral, it is integrable under Lebesgue integration.827

Similarly, let f̌∥ = argminf∈F∥
L∥(f),828

L∥(f̌∥)− L̂∥(f̌∥) =
1

n

n
∑

i=1

ϵi(2f̌∥(xi)− 2f0∥(xi)) +
n−N

n
σ2 − σ̃2

∥

with probably at least 1− δq , for any ϵ > 0,829

− 1

n

n
∑

i=1

ϵi(2f̌∥(xi)− 2f0∥(xi)) ≤ ϵ
(

L∥(f̌∥)−
n−N

n
σ2
)

+
8σ2 log(1/δp)

nϵ
+

8EF log(1/δp)

3n
,

L̂∥(f̌∥) ≤ (1 + ϵ)
(

L∥(f̌∥)−
n−N

n
σ2
)

+
8σ2 log(1/δp)

nϵ
+

8EF log(1/δq)

3n
+ σ̃2

∥.

Taking the expectation on both sides,830

E[L̂∥(f̌∥)] ≤ (1 + ϵ)MSE∥(f̌∥) +
8σ2

nϵ
+

8Fσ
√
2 log 2n

3n
+

n−N

n
σ2. (24)
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Finally, let f̂∗ := argminf∈F̃∥

∑n
i=1(f̂∥(xi) − f(xi))

2 be the projection of f̂∥ in its δ-covering831

space,832

MSE∥(f̂∥) = E

[ 1

n

n
∑

i=1

(f̂∥(xi)− f0∥(xi))
2
]

= E

[ 1

n

n
∑

i=1

(f̂∗(xi)− f0∥(xi))
2 +

1

n

n
∑

i=1

(f̂∥(xi)− f̂∗(xi))(f̂∥(xi) + f̂∗(xi)− 2f0∥(xi))
]

≤ E

[ 1

n

n
∑

i=1

(f̂∗(xi)− f0∥(xi))
2
]

+ 4Fδ

= MSE∥(f̂∗(xi)) + 4Fδ,

and similarly833

L̂∥(f̂∗) ≤ L̂∥(f̂∥) + (4F + 2E)δ. (25)

We can conclude that834

MSE∥(f̂∥) ≤
1

1− ϵ

(

E[L̂∥(f̂∗)] +
(8σ2

nϵ
+

8Fσ
√
2 log 2n

3n

)

(logN (F∥, δ) + 1)− n−N

n
σ2
)

+ 4Fδ

≤ 1

1− ϵ

(

E[L̂∥(f̂∥)] + (4F + σ
√

8 log 2n)δ

+
(8σ2

nϵ
+

8Fσ
√
2 log 2n

3n

)

(logN (F∥, δ) + 1)− n−N

n
σ2
)

+ 4Fδ

≤ 1

1− ϵ

(

E[L̂∥(f̌∥)] + (4F + σ
√

8 log 2n)δ

+
(8σ2

nϵ
+

8Fσ
√
2 log 2n

3n

)

(logN (F∥, δ) + 1)− n−N

n
σ2
)

+ 4Fδ

≤ 1 + ϵ

1− ϵ
MSE∥(f̌∥) +

1

n

(8σ2

ϵ
+

8Fσ
√
2 log 2n

3

)( logN (F∥, δ) + 2

1− ϵ

)

+
(

4F +
4F + σ

√
8 log 2n

1− ϵ

)

δ,

where the first line comes from (23), and second comes from (25), the thid line is because835

f̂∥ = argminf∈F∥
L̂∥(f), and the last line comes from (24). We also use that fact that L̂∥(f̂) ≤836

L̂∥(f), ∀f . Noticing that MSE(f̂) = MSE∥(f̂) + MSE⊥(f̂), combining this with (22) finishes the837

proof.838

G Detailed experimental setup839

G.1 Target Functions840

The doppler function used in Figure 2(d)-(f) is841

f(x) = sin(4/(x+ 0.01)) + 1.5.

The “vary” function used in Figure 2(g)-(i) is842

f(x) = M1(x/0.01) +M1((x− 0.02)/0.02) +M1((x− 0.06)/0.03)

+M1((x− 0.12)/0.04) +M3((x− 0.2)/0.02) +M3((x− 0.28)/0.04)

+M3((x− 0.44)/0.06) +M3((x− 0.68)/0.08),

where x+ := max(x, 0). We uniformly take 256 samples from 0 to 1 in the piecewise cubic843

function experiment, and uniformly 1000 samples from 0 to 1 in the doppler function and “vary”844

function experiment. We add zero mean independent (white) Gaussian noise to the observations.845

The standard derivation of noise is 0.05 in the piecewise cubic function experiment, 0.4 in the846

doppler function experiment and 0.1 in the “vary” function experiment.847
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G.2 Training/Fitting Method848

In the piecewise polynomial function (“vary”) experiment, the depth of the PNN L = 10, the width849

of each subnetwork w = 10, and the model contains M = 500 subnetworks. The depth of NN is also850

10, and the width is 200 such that the NN and PNN have almost the same number of parameters. In851

the doppler function experiment, the depth of the PNN L = 12, the width of each subnetwork w =852

10, and the model contains M = 2000 subnetworks, because this problem requires a more complex853

model to fit. The depth of NN is 12, and the width is 400. We used Adam optimizer with learning rate854

of 10−3. We first train the neural network layer by layer without weight decay. Specifically, we start855

with a two-layer neural network with the same number of subnetworks and the same width in each856

subnetwork, then train a three layer neural network by initializing the first layer using the trained857

two layer one, until the desired depth is reached. After that, we turn the weight decay parameter and858

train it until convergence. In both trend filtering and smoothing spline experiment, the order is 3,859

and in wavelet denoising experiment, we use sym4 wavelet with soft thresholding. We implement860

the trend filtering problem according to Tibshirani [37] using CVXPY, and use MOSEK to solve861

the convex optimization problem. We directly call R function smooth.spline to solve smoothing862

spline.863

G.3 Post Processing864

The degree of freedom of smoothing spline is returned by the solver in R, which is rounded to the865

nearest integer when plotting. To estimate the degree of freedom of trend filtering, for each choice866

of λ, we repeated the experiment for 10 times and compute the average number of nonzero knots as867

estimated degree of freedom. For neural networks, we use the definition [38]:868

2σ2df = E∥y′ − ŷ∥22 − E∥y − ŷ∥22 (26)

where df denotes the degree of freedom, σ2 is the variance of the noise, y are the labels, ŷ are869

the predictions and y′ are independent copy of y. We find that estimating (26) directly by sampling870

leads to large error when the degree of freedom is small. Instead, we compute871

2σ2d̂f = Ê∥y0 − ŷ∥22 − Ê∥y − ŷ∥22 + Ê∥y − ȳ0∥22 − ∥y0 − ȳ0∥22 (27)

where d̂f is the estimated degree of freedom, E denotes the empirical average (sample mean), y0 is872

the target function and ȳ0 is the mean of the target function in its domain.873

Proposition 16. The expectation of (27) over the dataset D equals (26).874

Proof.

2σ2d̂f = ED[Ê∥y0 − ŷ∥22 − Ê∥y − ŷ∥22 + Ê∥y − ȳ0∥22 − ∥y0 − ȳ0∥22]
= E∥y0 − ŷ∥22 − E∥y − ŷ∥22 + ED[Ê[(y − y0)(y + y0 − 2ȳ0)]]

= E∥y0 − ŷ∥22 − E∥y − ŷ∥22 + E

[

n
∑

i=1

ϵi(2yi + ϵi − 2ȳ0)
]

= E∥y0 − ŷ∥22 − E∥y − ŷ∥22 + nσ2

= E∥y′ − ŷ∥22 − E∥y − ŷ∥22
where D denotes the dataset. In the third line, we make use of the fact that E[ϵi] = 0,E[ϵ2i ] = σ2,875

and in the last line, we make use of E[ϵ′i] = 0,E[ϵ′i
2
] = σ2, and ϵ′i are independent of yi and y0,i876

One can easily check that a “zero predictor” (a predictor that always predict ȳ0, and it always predicts877

0 if the target function has zero mean) always has an estimated degree of freedom of 0.878

G.4 More experimental results879

G.4.1 Regularization weight vs degree-of-freedom880

As we explained in the previous section, the degree of freedom is the exact information-theoretic881

measure of the generalization gap. A Larger degree-of-freedom implies more overfitting.882
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Figure 3: The relationship between degree of freedom and the scaling factor of the regularizer λ.
The solid line shows the result after denoising. (a)(b)in a NN. (c)(d) In trend filtering. (a)(c): the
piecewise cubic function. (b)(d) the doppler function.

In figure Figure 3, we show the relationship between the estimated degree of freedom and the scaling883

factor of the regularizer λ in a parallel neural network and in trend filtering. As is shown in the884

figure, generally speaking as λ decreases towards 0, the degree of freedom should increase too.885

However, for parallel neural networks, if λ is very close to 0, the estimated degree of freedom will886

not increase although the degree of freedom is much smaller than the number of parameters —887

actually even smaller than the number of subnetworks. Instead, it actually decreases a little. This888

effect has not been observed in other nonparametic regression methods, e.g. trend filtering, which889

overfits every noisy datapoint perfectly when λ → 0. But for the neural networks, even if we do890

not regularize at all, the among of overfitting is still relatively mild 30/256 vs 80/1000. In our891

experiments using neural networks, when λ is small, we denoise the estimated degree of freedom892

using isotonic regression.893

We do not know the exact reason of this curious observation. Our hypothesis is that it might be894

related to issues with optimization, i.e., the optimizer ends up at a local minimum that generalizes895

better than a global minimum; or it could be connected to the “double descent” behavior of DNN896

[24] under over-parameterization.897

G.4.2 Detailed numerical results898

In order to allow the readers to view our result in detail, we plot the numerical experiment results of899

each method separately in Figure 4 and Figure 5.900

G.4.3 Practical equivalence between the weight-decayed two-layer NN and L1-Trend901

Filtering902

In this section we investigate the equivalence of two-layer NN and the locally adaptive regression903

splines from Section B. In the special case when m = 1 the special regularization reduces to weight904

decay and the non-standard truncated power activation becomes ReLU. We compare L1 trend fil-905

tering [20] (shown to be equivalent to locally adaptive regression splines by Tibshirani [37]) and906

an overparameterized version of the neural network for all regularization parameter λ > 0, i.e.,907

a regularization path. The results are shown in Figure 6. It is clear that as the weight decay in-908
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Figure 4: More experiments results of Doppler function.
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Figure 5: More experiments results of the “vary” function.

creases, it induces sparsity in the number of knots it selects similarly to L1-Trend Filtering, and the909

regularization path matches up nearly perfectly even though NNs are also learning knots locations.910
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Figure 6: Comparison of the weight decayed ReLU neural networks (Top row) and L1 Trend
Filtering (Bottom row) with different regularization parameters. The left column shows the fitted
functions and the right column shows the regularization path (in the flavor of [15]) of the coefficients
of the truncated power basis at individual data points (the free-knots learned by NN are snapped to
the nearest input x to be comparable).
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