A Detailed derivations

In this section, we provide detailed derivations for the Theorem and equations shown in the main text.
We follow the regularization assumptions listed in Song et al. [12].

A.1 Proof of Theorem 1

Proof. For any two timesteps 0 < s < t < T, i.e., the transition probability from a:s to x; is written
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Note that when the transition probability gs:(z¢|xs) corresponds to a well-defined forward
process, there is az > 0 for V¢t € [0,7], and thus we achieve «;V,, logg:(x:) =
Eqst(:cs\xt) [asvrs 1Og qs(fﬂs)]- O
A2 Proof of Ey ;) [V, log go(z0)] =0

Proof. The input variable x € R¥ and go (o) € C?, where C? denotes the family of functions with

continuous second-order derivatives.! We use z* denote the i-th element of x, then we can derive the
expectation
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'This continuously differentiable assumption can be satisfied by adding a small Gaussian noise (e.g., with
variance of 0.0001) on the original data distribution, as done in Song and Ermon [11].
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where msi denotes all the £ — 1 elements in x( except for the ¢-th one. The last equation holds

under the boundary condition that lim,; _, ., go (x{) = 0 hold for any i € [K]. Thus, we achieve the
conclusion that Eg () [V, log go(z0)] = 0. O

A.3 Concentration bounds

We describe concentration bounds [2, 1] of the martingale oV, log q:(z:).

Azuma’s inequality. For discrete reverse timestep ¢t = 7,7 — 1,--- , 0, Assuming that there exist
constants 0 < ¢y, ca, - - - , < oo such that for the i-th element of x,
0 0
A < op 1 loggi—1(z¢—1) — sz logqs(zy) < Byand By — Ay < ¢4 3)
Ti—1 O

almost surely. Then Ve > 0, the probability (note that cvg = 1)
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Doob’s inequality. For continuous reverse timestep ¢ from 7 to 0, if the sample paths of the
martingale are almost surely right-continuous, then for the ¢-th element of x we have (note that
Qo = 1)
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P ()8 =log qo(wo) — w—arlogqr(zr)
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Specially, considering that g7 (x7) ~ N (2|0, 521), there is - log g7 (z7) ~ —2—17; Thus, we can
T

approximately obtain
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P <‘z log qo (o) + O‘ffT
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Ego (o) [max (3%6 log go (o), O)}
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P( sup iat log q¢(z¢) > O) < (6)

o<t<T 0%}

A.4 High-order SM objectives

Lu et al. [0] show that the KL divergence Dk (¢o||[p§°F(6)) can be bounded as
Dt (90llp§E(0)) < Dk (arllpr) + v/ Tsm(0; 9(t)2) - v/ Trisher (0), (7

where Jgisher() is a weighted sum of Fisher divergence between g;(z;) and pPPE(8) as

1 T
Tracl8) = 5 | 90D (allp?(0)) dr ®)

Moreover, Lu et al. [6] prove that if V¢ € [0,7] and Vz, € R, there exist a constant C'r such that the
spectral norm of Hessian matrix [|V2 log pP F(z¢; 0)[|2 < C, and there exist 1, d2, 65 > 0 such
that

|8h(2s) — Va, log qi(z1)||2 < 61,

[V, s§(xe) — V2, log g () | < b2, )
[V tr (Va,sh(z1)) — Vo, tr (V2 log g () ||2 < 3,
where || - || is the Frobenius norm of matrix. Then there exist a function U (¢; d1, d2, 03, ¢) that

independent of 6 and strictly increasing (if g(¢) # 0) w.r.t. 01, d2, and d3, respectively, such that the
Fisher divergence can be bounded as D (q.|[pfPE(6)) < U(t; 61, 62, 03, q).

The case after calibration. When we impose the calibration term 7} = Eq, (5, [s§(2¢)] to get the

score model s} (z¢) — i}, there is V,,n = 0 and thus V, (sh(z:) — 1) = V4, 85(xt). Then we
have

|85 () — 0 — Vi, log qi(z4)||l2 < 67 < 61,
IVa, (sh(ze) —nf) — Vi, log qs(4)|| p < 62, (10)
vattr (Vlt (Sé(mt) - 77:)) - thtr (Vit log qt(xt)) ||2 S 63~
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From these, we know that the Fisher divergence Dp (q|[pfPE(0,m;7)) < U(t;61,02,63,q) <

U(t; 61,02,03,q), namely, D (q:||p?°%(6,7n;)) has a lower upper bound compared to
Dp (q||pfPE(#)). Consequently, we can get lower upper bounds for both Jisher(6,77) and
Dk (qol[PSPE(0,m7)), compared to Jrisner(6) and Dk, (qo|[p§PE(0)), respectively.

B Model parametrization

This section introduces different parametrizations used in diffusion models and provides their cali-
brated instantiations.

B.1 Preliminary

Along the research routine of diffusion models, different model parametrizations have been used,
including score prediction s (x) [11, 13], noise prediction €} (x) [3, 8], data prediction &), () [5, 71,
and velocity prediction v} (z¢) [9, 4]. Taking the DSM objective as the training loss, its instantiation
at timestep ¢ € [0, T is written as

3Eqo(w0),a(e) [Hse(xt) + O.%H%} . score prediction;
a2 . .
¢ ﬁqu(wo),q(e) [||w§($t) - $0||§] ; data prediction;
Tosu(0) = 1 t 2 . . (1)
357 Eao(20).a(e) [ll€h(ze) — €3] noise prediction;
062 . . .
ﬁqu(%m(s) [||v§ (z¢) — (e — O'tiL'O)H%} , velocity prediction.

B.2 Calibrated instantiation

Under different model parametrizations, we can derive the optimal calibration terms 7; that minimiz-
ing Jtem (0, m:) as
mg Jpsm\b, 1t

Eq, () [52 (z¢)] s score prediction;
Eq, (@) [25(21)] = Egy(ay) [zo] . data prediction; )
’]’] =
' Eq, () [62(960], noise prediction;
Eq, () [0§(21)] + 0tE gy (z0) [0] . velocity prediction.

Taking 7} into Ji\ (6, 1) we can obtain the gap

$IEq, w0 [85 ()] 13 score prediction;

%;HIE%(M [f(24)] — Ego(z0) [x0] |3, data prediction;

Tpsm(0) — Tssm(0,17) = (13)

E”E‘h(”t) €5 (z4)] 1|3, noise prediction;

Olz . . -
ﬁ”eq(mt) [vh(2¢)] + 0¢Eqq (zo) [0] [|3.  velocity prediction.

C Visualization of the generations

We further show generated images in Figure 1 to double confirm the efficacy of our calibration
method. Our calibration could help to reduce ambiguous generations on both CIFAR-10 and CelebA.

(a) CIFAR-10, w/ calibration (b) CIFAR-10, w/o calibration (C) CelebA, w/ calibration (d) CelebA, wo calibration
Figure 1: Unconditional generation results on CIFAR-10 and CelebA using models from [3] and [10]
respectively. The number of sampling steps is 20 based on the results in Tables 1 and 2.
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