
A Detailed derivations1

In this section, we provide detailed derivations for the Theorem and equations shown in the main text.2

We follow the regularization assumptions listed in Song et al. [12].3

A.1 Proof of Theorem 14

Proof. For any two timesteps 0 ≤ s < t ≤ T , i.e., the transition probability from xs to xt is written5

as qst(xt|xs) = N
(
xt

∣∣∣αt|sxs, σ
2
t|sI
)

, where αt|s = αt

αs
and σ2

t|s = σ2
t − α2

t|sσ
2
s . The marginal6

distribution qt(xt) =
∫
qst(xt|xs)qs(xs)dxs and we have7

∇xt
log qt(xt) =

1

αt|s
∇α−1

t|sxt
log

(
1

αk
t|s

E
N

(
xs

∣∣α−1
t|sxt,α

−2
t|sσ

2
t|sI

) [qs(xs)]

)

=
1

αt|s
∇α−1

t|sxt
log

(
E
N

(
η
∣∣0,α−2

t|sσ
2
t|sI

) [qs(α−1
t|sxt + η)

])

=

E
N

(
η
∣∣0,α−2

t|sσ
2
t|sI

) [∇α−1
t|sxt

qs(α
−1
t|sxt + η)

]
αt|sEN

(
η
∣∣0,α−2

t|sσ
2
t|sI

) [qs(α−1
t|sxt + η)

]

=

E
N

(
η
∣∣0,α−2

t|sσ
2
t|sI

) [qs(α−1
t|sxt + η)∇α−1

t|sxt+η log qs(α
−1
t|sxt + η)

]
αt|sEN

(
η
∣∣0,α−2

t|sσ
2
t|sI

) [qs(α−1
t|sxt + η)

]
=

E
N

(
xs

∣∣α−1
t|sxt,α

−2
t|sσ

2
t|sI

) [qs(xs)∇xs
log qs(xs)]

αt|sEN
(
xs

∣∣α−1
t|sxt,α

−2
t|sσ

2
t|sI

) [qs(xs)]

=

∫
N
(
xt

∣∣αt|sxs, σ
2
t|sI
)
qs(xs)∇xs

log qs(xs)dxs

αt|s
∫
N
(
xt

∣∣αt|sxs, σ2
t|sI
)
qs(xs)dxs

=
1

αt|s
Eqst(xs|xt) [∇xs

log qs(xs)] .

(1)

Note that when the transition probability qst(xt|xs) corresponds to a well-defined forward8

process, there is αt > 0 for ∀t ∈ [0, T ], and thus we achieve αt∇xt
log qt(xt) =9

Eqst(xs|xt) [αs∇xs
log qs(xs)].10

A.2 Proof of Eq0(x0) [∇x0
log q0(x0)] = 011

Proof. The input variable x ∈ Rk and q0(x0) ∈ C2, where C2 denotes the family of functions with12

continuous second-order derivatives.1 We use xi denote the i-th element of x, then we can derive the13
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1This continuously differentiable assumption can be satisfied by adding a small Gaussian noise (e.g., with
variance of 0.0001) on the original data distribution, as done in Song and Ermon [11].
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where x
\i
0 denotes all the k − 1 elements in x0 except for the i-th one. The last equation holds15

under the boundary condition that limxi
0→∞ q0(x

i
0) = 0 hold for any i ∈ [K]. Thus, we achieve the16

conclusion that Eq0(x0) [∇x0
log q0(x0)] = 0.17

A.3 Concentration bounds18

We describe concentration bounds [2, 1] of the martingale αt∇xt
log qt(xt).19

Azuma’s inequality. For discrete reverse timestep t = T, T − 1, · · · , 0, Assuming that there exist20
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Doob’s inequality. For continuous reverse timestep t from T to 0, if the sample paths of the25

martingale are almost surely right-continuous, then for the i-th element of x we have (note that26
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A.4 High-order SM objectives28

Lu et al. [6] show that the KL divergence DKL
(
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Moreover, Lu et al. [6] prove that if ∀t ∈ [0, T ] and ∀xt ∈ Rk, there exist a constant CF such that the31
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where ∥ · ∥F is the Frobenius norm of matrix. Then there exist a function U(t; δ1, δ2, δ3, q) that34

independent of θ and strictly increasing (if g(t) ̸= 0) w.r.t. δ1, δ2, and δ3, respectively, such that the35

Fisher divergence can be bounded as DF
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)
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The case after calibration. When we impose the calibration term η∗t = Eqt(xt) [s
t
θ(xt)] to get the37
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From these, we know that the Fisher divergence DF
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B Model parametrization44

This section introduces different parametrizations used in diffusion models and provides their cali-45

brated instantiations.46

B.1 Preliminary47

Along the research routine of diffusion models, different model parametrizations have been used,48

including score prediction stθ(xt) [11, 13], noise prediction ϵtθ(xt) [3, 8], data prediction xt
θ(xt) [5, 7],49

and velocity prediction vt
θ(xt) [9, 4]. Taking the DSM objective as the training loss, its instantiation50

at timestep t ∈ [0, T ] is written as51
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B.2 Calibrated instantiation52

Under different model parametrizations, we can derive the optimal calibration terms η∗t that minimiz-53
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C Visualization of the generations56

We further show generated images in Figure 1 to double confirm the efficacy of our calibration57

method. Our calibration could help to reduce ambiguous generations on both CIFAR-10 and CelebA.58

(a) CIFAR-10, w/ calibration (b) CIFAR-10, w/o calibration (c) CelebA, w/ calibration (d) CelebA, w/o calibration

Figure 1: Unconditional generation results on CIFAR-10 and CelebA using models from [3] and [10]
respectively. The number of sampling steps is 20 based on the results in Tables 1 and 2.
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