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In this supplementary material, we provide the following items:

• Partial DCT vs full DCT algorithms.
• Evaluation of the number of DCT coefficients.
• Evaluation on UAV-Human dataset.
• Additional results.
• Implementation details.
• More visualizations.
• Limitations and future work.

1 Partial DCT vs Full DCT Algorithms
In FreqMixFormer, we utilize DCT in Frequency-aware Attention
Block (FAB) to extract skeletal frequency features. As illustrated
in Fig. 2 and 3 in the main paper, only Query matrix 𝑄 and Key
matrix 𝐾 are processed with DCT and IDCT modules for attention
score, Value matrix 𝑉 is only processed with linear transformation,
the methodology can be found in Algorithm 1 as Partial DCT Al-
gorithm. Moreover, we also investigate the Full DCT Algorithm,
where DCT and IDCT process 𝑉 , and the methodology is shown in
Algorithm 2. However, the full DCT algorithm performs poorly in
the experiment: the full DCT algorithm only achieves 87.7% on the
NTU-60 X-Sub setting, while the partial DCT algorithm achieves
91.5% accuracy. The overview of the FreqMixFormer with full DCT
algorithm is illustrated in Fig. 2. The Spatial Attention Block (SAB)
in this experiment is shown in Fig. 1 (a) and the Frequency-aware
Mixed Former (FAB) with full DCT algorithm is shown in Fig. 1 (b).

We hypothesize that the primary issues contributing to this gap
are: 1) Applying DCT to 𝑄 and 𝐾 can effectively highlight key
frequency features and improve the model accuracy by matching
relevant features during the computation of attention scores. 2)
By excluding 𝑉 from the frequency domain, the original temporal-
spatial information is retained. This retention may help preserve
more detailed and dynamic information in the final representation,
enhancing the model’s ability to utilize these details for action
recognition. 3) Recognizing actions relies not only on the frequency
characteristics of movements (such as the speed and rhythm) but
also on the specifics of how the actions are performed (like the
swinging of an arm). Processing 𝑄 , 𝐾 , and 𝑉 in different domains
may allow the model to balance these needs.
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Figure 1: (a) SAB utilized in this experiment. (b) FAB with
full DCT algorithm.

2 Evaluation of the number of DCT coefficients
In order to explore the frequency operator in-depth, we conduct
an evaluation of the number of enhanced DCT coefficients. Table 2
shows the extra ablation study on the number of DCT coefficients
𝑁𝑐 that we set as high-frequency coefficients (the rest are set as
low-frequency coefficients). The high-frequency coefficients are
enhanced by a frequency operator coefficient 𝜑 discussed in Section
3.4 of the main paper. For a fair comparison, we keep 𝜑 = 0.5 during
the experiments. As shown in the table, with the number of the
enhanced DCT coefficient 𝑁𝑐 = 12, the model achieves the best
performance on NTU-60 (91.5% in X-Sub and 96.0% in X-View)
dataset, and further increasing does not result in improvements.

Algorithm 1 Partial DCT

Input: the skeleton sequence is processed with joint embedding
and positional embedding as the initial input 𝑋 , where 𝑋 ∈ R𝐶×𝐹× 𝐽 .

Init:𝑊𝑄 ,𝑊𝐾 and𝑊𝑉 are the learnable weight matrices.
Output: the partial DCT attention score

(1) 𝑋 = 𝐷𝐶𝑇 (𝑋 )
(2) 𝑄 = 𝑋𝑊𝑞, 𝐾 = 𝑋𝑊𝑘 ,𝑉 = 𝑋𝑊𝑣

(3) 𝑄 = 𝑋𝑊𝑞, 𝐾 = 𝑋𝑊𝑘

(4) 𝐴𝑡𝑡𝑒𝑛(𝑄,𝐾,𝑉 ) = 𝐼𝐷𝐶𝑇
(
𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑄𝐾

𝑇

√
𝑑

))
𝑽
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Figure 2: Overview of the proposed FreqMixFormer with full DCT algorithm. The overall structure is similar to the method introduced in
Section 3.2 of the main paper. The detailed structures of SAB and FAB are illustrated in Fig. 1.

(5) 𝐴𝑡𝑡𝑒𝑛1 = 𝐴𝑡𝑡𝑒𝑛(𝑄,𝐾,𝑉 )
Return : 𝐴𝑡𝑡𝑒𝑛1

Algorithm 2 Full DCT

Input: the skeleton sequence is processed with joint embedding
and positional embedding as the initial input 𝑋 , where 𝑋 ∈ R𝐶×𝐹× 𝐽 .

Init:𝑊𝑄 ,𝑊𝐾 are the learnable weight matrices.
Output: the full DCT attention score

(1) 𝑋 = 𝐷𝐶𝑇 (𝑋 )
(2) 𝑄 = 𝑋𝑊𝑞, 𝐾 = 𝑋𝑊𝑘 ,𝑉 = 𝑋𝑊𝑣

(3) 𝑄 = 𝑋𝑊𝑞, 𝐾 = 𝑋𝑊𝑘 ,𝑉 = 𝑋𝑊𝑣

(4) 𝐴𝑡𝑡𝑒𝑛(𝑄,𝐾,𝑉 ) =
(
𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥
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𝑇
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𝑑

))
𝑽

(5) 𝐴𝑡𝑡𝑒𝑛2 = 𝐼𝐷𝐶𝑇 (𝐴𝑡𝑡𝑒𝑛(𝑄,𝐾,𝑉 ))
Rreturn: 𝐴𝑡𝑡𝑒𝑛2

3 Evaluation on UAV-Human Dataset
3.1 UAV-Human Dataset
UAV-Human [6] is an action recognition dataset comprising 22,476
video clips with 155 classes. The dataset was collected via a UAV
across various urban and rural settings, both during daytime and
nighttime. It extracts action data from 119 distinct subjects engaged
in 155 different activities across 45 diverse environmental locations.

For evaluation (X-Sub, 17 joints in each subject), 89 subjects are
selected for training and 30 for testing.

3.2 Experiment Settings
The hardware configurations are the same as the experiments re-
ported in the main paper. The model is trained with 100 epochs,
and the batch size is 128. We set a warm-up at the first 5 epochs.
The weight decay is set as 0.0005, and the basic learning rate is 0.2.
There is a 0.1 reduction at the 50th epoch.

3.3 Comparison Results
As Table 3 shows, we compare our performance with the state-of-
the-art methods on the UAV-Human dataset. Our FreqMixFormer
outperforms all the existing methods and achieves the new state-
of-the-art results on this benchmark.

4 Additional Results
4.1 Accuracy Difference Results
We further analyze the Top-1 Accuracy Difference (%) between the
proposed FreqMixFormer and the baselinemethod SkeMixFormer[10]
with the joint input modality on NTU RGB+D 120 X-Sub. As il-
lustrated in Fig. 6, the most significant improvements typically
appear in confusing actions with subtle movements. For instance,
our model achieves an improvement of 35.09% for "make OK sign",
21.55% for "make victory sign", and 18.56% for "counting money".
These results underscore FreqMixFormer’s performance in recogniz-
ing actions that are visually confusing by extracting the frequency-
spatial features.
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Table 1: Comparison with recent Frequency-based methods. The best performance is highlighted in bold.

Method Frequency Transformation NTU-60 X-Sub (%) NTU-60 X-View (%) Param (M) GFLOPS
SLnL-rFA Fast Fourier Transform (FFT) 89.7 95.4 9.46 7.78
DCE-CRL Discrete Cosine Encoding (DCE) 90.6 96.6 2.92 39.2
WDCE-Net Discrete Wavelet Transform (DWT) 93.0 97.2 - -

FreqMixFormer(ours) Discrete Cosine Transform (DCT) 93.6 97.4 2.04 2.40

Table 2: Search for the best number of DCT coefficient 𝑁𝑐 .

𝑁𝑐
NTU-60

X-Sub (%) X-View (%)
3 91.3 95.6
6 91.0 95.2
9 91.2 95.5
12 91.5 96.0
15 91.4 95.7

Table 3: Comparison with the SOTA on UAV-Human dataset.
The best performance is highlighted in bold. T indicates the
Transformer-based method.

Method Source UAV-Human X-Sub (%)

G
CN

ST-GCN [11] AAAI’18 30.3
DGNN [8] CVPR’19 29.9
2s-AGCN [13] CVPR’19 34,8
HARD-Net [5] ECCV’20 37.0
Shift-GCN [12] CVPR’20 42.9
MS-G3D [4] CVPR’20 43.4
CTR-GCN [1] ICCV’21 43.4
ACFL [9] ACMMM’22 45.3

T

SkeMixFormer [10] ACMMM’23 48.9
FreqMixFormer (ours) 49.6

4.2 Comparison with Frequency-based Results
We provide an extra comparison with the previous frequency-based
methods in skeleton action recognition. As shown in Table 1, our
FreqMixFormer outperforms all the existing methods utilizing fre-
quency analysis on the NTU-60 X-Sub dataset. Moreover, our model
also plays a significant role in efficiency, as it has the least parame-
ters (2.04M) and the best GFLOPs (2.40) among the frequency-based
methods.

5 Implementation Details
5.1 Multi-stram Fusion Strategy
The comparison is made with three ensembles of different modali-
ties (joint only, 4-stream ensemble, 6-stream ensemble. We denote
the stream as S for convenience) following the setting of InfoGCN
[2]: S1: k = 1, motion = False; S2: k = 2, motion = False; S3: k = 8
(k = 6 for NW-UCLA and UAV-Human datasets), motion = False;
S4: k = 1, motion = True; S5: k = 2, motion = True; S6: k = 8 (k = 6
for NW-UCLA and UAV-Human datasets), motion = True, where k
indicates k value of k-th mode representation of the skeleton. And
4-stream = S1+S2+S4+S5, 6-stream = S1+S2+S3+S4+S5+S6. For a

fair comparison, experiments using the baseline method are also
conducted with this emsemble strategy.

5.2 Evaluations of the Batch Size
Fig. 3 illustrates the impact of batch size during the training. We
take the experimental results on the NTU-60 dataset as an example.
As we can see, increasing the batch size from 32 to 128 enhances
performance. However, a higher batch size (256) is not better be-
cause it requires more memory and leads to convergence issues.
Thus, we choose 128 as our default batch size.

Figure 3: The batch size settings.

5.3 Channel Transformation in Temporal
Attention Block

As we mentioned in Section 3.4 of the main paper, we adopt some
tricky strategies in the baseline method [10] as our temporal chan-
nel transformation 𝐶𝑇 (·), which is stacked with two modules: 1)
Channel Reforming Model. An improving model derived from SE-
net[3], which enhances the feature separation between groups and
reduces noise, it is essential to reorganize the channel relationships
within each group. 2) Multiscale Convolution Module. The first part
of the Temporal MixFormer in [10], which is a simple optimization
from MS-G3D [7] of maintaining a fixed filter while adjusting dila-
tion, enabling the acquisition of more diverse multiscale temporal
information and reducing computational costs. We simply adopt
this combination as the 𝐶𝑇 (·) operation.

6 More Visualizations
In this section, we exhibit more attention maps, the same as the
visualization results illustrated in Section 4.5 of the main paper.
Since we have provided the action "eat a meal" from the Hard set,
we give more visualization results from the Medium set (headache)
and Easy set (kicking) as examples. All the skeletons and attention
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maps are generated by the NTU-60 dataset. As shown in Fig. 4
and Fig .5, our proposed Frequency-aware Mixed attention maps
(extracted by FAB modules) contain more detailed information and
joint correlations compared with the spatial maps (extracted by
SAB).

7 Limitations and Future Work
Despite the high accuracy of our model, it still has some limitations.
Firstly, our model is still not efficient and lightweight enough. As
we discussed in the ablation study from the main paper, there is
a gap between our method and the recent GCN-based methods
such as HD-GCN [4] (1.68M parameters vs 2.04M, 1.60 GFLIOPS vs
2.40 GFLOPS), and we have no remarkable advantages of efficiency
over the recent transformer-based methods. Secondly, we keep
all the high-frequency coefficients during the training, which is
not robust to noisy joint information. The more efficient way is to
enhance the high-frequency coefficients selectively instead of the
whole coefficients. Our future work will focus on finding the best
trade-off point between efficiency and accuracy.
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(b) Mixed spatial attention map (c) Mixed frequency-aware attention map

(a) “headache” action from NTU-60 dataset
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Figure 4: The visualization results of "headache" action from the NTU-60 dataset. (a) is the skeleton sequence, the red box indicates the
attention area with stronger correlations. (b) is the mixed spatial attention map. (c) is the mixed frequency-aware attention map. (d) is the
mixed frequency-spatial attention map. In this example, FAB focuses more on correlations of arms and legs, while SAB only focuses on the
correlations of the right hand.

(b) Mixed spatial attention map (c) Mixed frequency-aware attention map
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(d) Mixed frequency-spatial attention map

(a) “kicking” action from NTU-60 dataset

Figure 5: The visualization results of "kicking" action from the NTU-60 dataset. (a) is the skeleton sequence, the red box indicates the attention
area with stronger correlations. (b) is the mixed spatial attention map. (c) is the mixed frequency-aware attention map. (d) is the mixed
frequency-spatial attention map. In this example, FAB focuses more on the correlations of the spine and right leg, while SAB only focuses on
the correlations of the left hip and right ankle.
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Figure 6: Top-1 Accuracy Difference (%) between the proposed FreqMixFormer and the baseline method SkeMixFormer with the joint input
modality on NTU RGB+D 120 X-Sub.
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