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1 MORE EXPERIMENT DETAILS

Task Formulation. We first define zero-shot segmentation. Given a dataset D =
{

Xi,Yi
}M

i=1
and

the semantic embeddings A ∈ RN×C , where C is the channel dimension and N is the number of
categories in D. Here, X ∈ RH×W×3 represents the images with height H and width W . Y denotes
the corresponding pixel-level annotation for X, and M is the number of images in the dataset. The
semantic embeddings A are divided into two subsets: seen categories As ∈ RNs×C and unseen
categories Au ∈ RNu×C , where As ∩ Au = ∅. Here, Ns and Nu represent the number of seen
and unseen categories, respectively. During inference, the model is tested on both seen and unseen
classes jointly. In Zero-shot Semantic Segmentation (ZSS) (Ding et al., 2022; Zhou et al., 2023;
Chen et al., 2023), images may contain segments belonging to unseen categories Au. However,
in Zero-shot Panoptic Segmentation (ZPS), images only containing segments belonging to seen
categories As can be used for training. Additionally, ZPS requires distinguishing each instance in
the “thing” categories (Kirillov et al., 2019; He et al., 2023). This different setting leads to an absent
data scenario where a small fraction of data is retained and makes ZPS more challenging. Inspired by
ZSS (Zhou et al., 2023; Chen et al., 2023), we further divide ZPS into two settings: inductive ZPS,
where neither Au nor images containing Au can be accessed during training, and transductive ZPS,
where both As and Au are accessible during training, but images containing Au remain inaccessible.

Full experiment settings. For panoptic segmentation, we leverage MMDetection (Chen et al.,
2019), and for semantic tasks, we utilize MMSegmentation (Contributors, 2020) as the code base
and all the experiments are conducted on 8 V100 GPUs. Semantic embeddings are extracted using
the CLIP text encoder (Radford et al., 2021) with a ViT-B/16 (Dosovitskiy et al., 2020) backbone.
The text templates align with prior works (Ding et al., 2022; Chen et al., 2023; Zhou et al., 2023; He
et al., 2023). Our base model, Mask2Former (Cheng et al., 2022), employs a ResNet-50 (He et al.,
2016) backbone with the same hyperparameters as the original Mask2Former. The class projector is
a simple MLP, and the generator is a VAE structure consisting of four layers of MLP-Batchnorm1d-
leakyReLU for the encoder and decoder. The generator optimizer aligns with the base model but
with a learning rate ten times higher. In union-finetuning, the class projector’s learning rate is set
at 0.1 times the base model. The base model undergoes default training for 48 epochs (140,350
iterations), less than the original Mask2Former (368,750 iterations). In CAT, the model trains for 12
epochs (36,875 iterations). Hyperparameters include γ = 2, τ = 0.07, λ = {2, 5, 10, 20, 40, 60},
λr = 0.1, λf = 0.01, bank size in CGA is 32. During inference, the logit for unseen categories is
incremented by 1, and no other increments for transductive settings. For union-finetuning, we only
report the best performance as different settings lead to different convergence speeds.

2 MORE EXPERIMENTS

The number of negative pairs in V2C alignment. We conduct experiments on the size of the
token bank as shown in Table 1. For the inductive settings, we set the size of the bank to 16, 32,
and 64. The hPQs achieve 16.2%, 15.8%, and 14.6%, respectively due to the descending uPQs. In
the transductive settings, with a bank size of 32, hPQ reaches its peak at 22.6%, accompanied by a
slight decrease in sPQ and a substantial improvement in uPQ. When we ablate the bank, the hPQ in
inductive drops due to the decrease of uPQ. The hPQ for transductive is good.
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Table 1: Ablations on the number of CLS tokens serving as the negative pairs in V2T alignment.

# Pairs Inductive Transductive

hPQ sPQ uPQ hPQ sPQ uPQ

0 15.3 31.6 10.1 22.5 30.9 17.7
16 16.2 31.1 10.9 19.8 30.4 14.7
32 15.8 31.2 10.5 22.6 31.0 17.7
64 14.6 30.9 9.6 20.7 30.4 15.7

Table 2: Ablation studies on V∅.

F∅ Inductive Transductive
hPQ sPQ uPQ hPQ sPQ uPQ

w/o 15.8 31.2 10.5 22.1 31.0 17.2
w 22.6 31.0 17.7

Table 3: Ablation studies on CLS bank size and τr.

Bank Size τr
Inductive Transductive

hPQ sPQ uPQ hPQ sPQ uPQ

16 0.07 16.2 31.1 10.9 19.8 30.4 14.7
0.15 22.0 31.1 17.1

32
0.07

15.8 31.2 10.5
22.6 31.0 17.7

0.15 22.0 31.1 17.0
0.30 22.1 31.0 17.2

64 0.07 14.6 30.9 9.6 20.7 30.4 15.7
0.15 20.9 30.7 15.9

Ablation studies on the F∅ in embedding contrast. We perform experiments to validate the
efficacy of V∅, as illustrated in Table 2. Our findings reveal that under transductive settings, our
approach yields superior hPQ metrics compared to counterparts lacking F∅, owing to the augmented
uPQ. This elevation in uPQ stems from the more distributed visual data trained by CAT.

Ablation studies on the τr. One of the most critical hyperparameters in embedding contrast is τr,
which regulates the distribution of pseudo-visual embeddings. The results are depicted in the third
to fifth line of Table 3. It can be observed that when the τr is set to 0.07, i.e., the visual embeddings
are widely distributed, and the hPQ peaks at 22.6%. However, as the τr is increased, leading to a
tighter distribution of visual embeddings, the hPQ begins to decline to 22.0% due to a reduction in
uPQ. This experiment highlights the benefits of maintaining distributed visual embeddings.

Experiments on the relationship of τr and CLS token bank. During experiments, we find an
interesting fact that different bank size needs different temperatures to achieve the highest perfor-
mance as shown in Table. 3. When we set the bank size to 16, we choose two different temperatures,
i.e., 0.07 and 0.15, and find a huge performance gap. Precisely, when τr is 0.07 the hPQ is 19.8%
and when τr is 0.15 the hPQ is 22.0%, which indicates the gap is 2.2% in hPQ. The gap attributes
for both sPQ and uPQ. When the bank size is set as 64, the same phenomenon can be observed,
however, the gap is not so big. This experiment shows that the bank size and the temperatures need
careful design.

Experiments on the num of pseudo visual seen embeddings in union-finetuning. In the union-
finetuning stage, we do not generate pseudo seen visual embeddings. This experiment validates how
much the pseudo visual embeddings will affect the performance as shown in Table 4. As we increase
the number of pseudo seen embeddings, the hPQ decreases due to the decrease of uPQ. Meanwhile,
the sPQ also decreases slightly. From this experiment, we can conclude that first there is still a large
gap between the real and pseudo embeddings. The pseudo seen and unseen visual embeddings are
not separated enough.

Experiments on the num of pseudo visual unseen embeddings in union-finetuning. We conduct
experiments on the sampling number of noise in union finetuning as shown in Table. 5. First, we
increase the sampling number from 50 to 300 to produce more pseudo unseen visual embeddings.
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Table 4: Ablations on the
pseudo seen embeddings in
union finetuning.

Num hPQ sPQ uPQ

0 22.6 31.0 17.7
10 20.7 30.8 15.6
50 20.0 30.9 14.7

150 17.7 30.7 12.4

Table 5: Ablation studies on
sampling number of pseudo un-
seen embeddings.

Num hPQ sPQ uPQ

50 22.3 31.0 17.5
150 22.6 31.0 17.7
300 22.6 31.0 17.8
600 22.1 31.0 17.1

Table 6: Ablation studies on
increment in the inductive set-
tings.

Num hPQ sPQ uPQ

0.0 6.0 30.6 3.3
1.0 15.8 31.2 10.5
1.5 17.7 30.7 12.4
2.0 17.1 27.9 12.3

Table 7: Ablation studies on γ in V2C alignment.

γ
Inductive Transductive

hPQ sPQ uPQ hPQ sPQ uPQ

1.5 13.3 31.4 8.4 20.2 31.2 14.9
2.0 15.8 31.2 10.5 22.6 31.0 17.7
3.0 16.0 30.5 10.8 22.4 30.1 17.9

Table 8: Ablation studies on enhancement in V2C alignment.

Enhancement Inductive Transductive
hPQ sPQ uPQ hPQ sPQ uPQ

multiply 15.8 31.2 10.5 22.6 31.0 17.7
plus 14.5 31.4 9.4 22.3 31.1 17.4

minus 14.1 31.4 9.1 21.0 30.8 15.9

The hPQ and uPQ increases to their peak of 22.6% and 17.8%. However, when we further increase
the sampling number, we observe that the hPQ and uPQ drop to the lowest.

Experiments on the increments in the inductive settings. We conduct experiments on how
much the increment of the unseen category will affect the performance as shown in Table. 6. As
can be seen, we first add nothing to the logits of unseen categories, the hPQ is low due to the low
performance of uPQ.

Experiments on the γ in V2C alignment. We conduct experiments on how much the visual em-
beddings with segments should be enhanced as shown in Table. 7. As can be seen, in inductive
settings, when we increase the enhancement level, though the hPQ increases, the sPQ drops more
drastically than the increment of uPQ. In transductive settings, the same phenomenon can be ob-
served and becomes even more apparent. Formally, the hPQ of γ = 2.0 is higher than γ = 3.0 due
to the large gap in the sPQ. To achieve the balance between the inductive and transductive settings,
the γ should also be considered.

Experiments on the enhancement in V2C alignment. We conduct experiments on how the seg-
ments are enhanced as shown in Table. 8. As can be seen, in inductive settings, multiply achieves the
highest performance. Plus and minus achieve similar hPQ, however, they can achieve higher sPQ.
In the transductive settings, multiply and plus can achieve similar hIoU, and their performance is
much higher than minus. This experiment indicates enhancing rather than reducing the embeddings
with segments is beneficial for the performance.

3 OTHER SETTINGS IN EXPERIMENTS

We apply the same settings as the original settings as MaskFormer Cheng et al. (2021) and
Mask2Former Cheng et al. (2022). For all the two tasks and three stages, the images are randomly
flipped with a probability of 0.5, and the batch size is set to 16. In ZPS, the image is resized with
the scale from 0.1 to 2.0 and cropped to 1024 × 1024. In ZSS, the images are cropped to 512 × 512
and trained in 80K iterations for all three stages. We use AdamW Loshchilov & Hutter (2017) as
the optimizer with an initial learning rate of 10−4 for ResNet He et al. (2016). Meanwhile, all the
ResNet is pre-trained on ImageNet1K Russakovsky et al. (2015).
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Images

GTs

PADing

Ours

Seen Person  Cat  Truck  Snow  Building Backpack  Car  Chair  Floor Unseen Grass  Tree  Road  Cow   Sky  Suitcase  Frisbee

Figure 1: Visualization of our proposed methods in ZPS. The first row shows the input images and
the following columns are the labels, PADing’s, and ours.

Images

Labels

PADing

Ours

Seen Straw  Sheep  Pavement  Wood  Motorbike  Fence  Metal  Snow  Bench  Bird  Floor

Unseen Sky  Giraffe  Tree  Road  Grass  Branch  Clouds  Suitcase  River  Cow

Figure 2: Visualization of our proposed methods in ZSS. The first column shows the input images
and the following columns are the labels, PADing’s, and ours.

Unseen categories. For ZPS, the unseen thing categories are cow, giraffe, suitcase, frisbee, skate-
board, carrot, and scissors. The unseen stuff categories are cardboard, sky-other-merged, grass-
merged, playing-field, river, road, and tree-merged. For ZSS, the unseen categories are cow, giraffe,
suitcase, frisbee, skateboard, carrot, scissors, cardboard, clouds, grass, playing-field, river, road,
tree, and wall-concrete.

4 MORE VISUALIZATIONS

In this section, we give more visualization results for both ZPS and ZSS. First, we show more results
on ZPS as shown in Fig. 1. We can find that our method can segment both seen categories, e.g.,
cat in the first image and truck in the fourth image, and unseen categories, e.g., sky in the second
last image and suitcase in the second image. This figure shows the merits of our methods. In the
supplementary materials, we visualize the results for ZSS shown in Fig. 2. We can find that our
method can balance the performance for seen and unseen categories.
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