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Abstract

Simulating a single trajectory of a dynamical sys-
tem under some state-dependent policy is a core
bottleneck in policy optimization (PO) algorithms.
The many inherently serial policy evaluations that
must be performed in a single simulation consti-
tute the bulk of this bottleneck. In applying PO to
supply chain optimization (SCO) problems, simu-
lating a single sample path corresponding to one
month of a supply chain can take several hours.
We present an iterative algorithm to accelerate
policy simulation, dubbed Picard Iteration. This
scheme carefully assigns policy evaluation tasks
to independent processes. Within an iteration, any
given process evaluates the policy only on its as-
signed tasks while assuming a certain ‘cached’
evaluation for other tasks; the cache is updated at
the end of the iteration. Implemented on GPUs,
this scheme admits batched evaluation of the pol-
icy across a single trajectory. We prove that the
structure afforded by many SCO problems allows
convergence in a small number of iterations inde-
pendent of the horizon. We demonstrate practical
speedups of 400x on large-scale SCO problems
even with a single GPU, and also demonstrate
practical efficacy in other RL environments.

1. Introduction

The core problems in supply chain optimization (SCO) all re-
late to managing inventory over time across some potentially
large network of nodes, so as to match costly supply with
uncertain demand. These problems are naturally viewed
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as dynamic optimization problems, albeit with intractable
state-spaces that must track inventory and other resource
levels across a large number of products and nodes. The
development of detailed simulators (‘digital twins’) of sup-
ply chains in recent years has made SCO problems a ripe
target for reinforcement learning. A prime example of such
a target with immense economic significance is the so-called
Fulfillment Optimization (FO) problem (Amazon.com, Inc.,
2023; Acimovic & Graves, 2015; Acimovic & Farias, 2019;
Zhao et al., 2022; Liu et al., 2023), which will be a main
focus of this paper.

A time-step in an SCO problem typically corresponds to
either a demand or supply event; there are hundreds of mil-
lions of such events in a month for a large supply chain
(Shopping, 2024). As such, the task of simulating a fixed
control policy is onerous, requiring the serial evaluation of
the policy over a horizon, T, of tens or hundreds of millions
of time-steps. For a policy parameterized by a non-trivial
deep neural network (DNN), the task of simply simulating
a single sample path under the policy can thus take several
hours (or more) in the context of an SCO problem. This is
an impediment to the application of PO methods to SCO
problems which require simulating multiple sample paths
of the system at each policy update iteration, and conser-
vatively require hundreds of PO iterations to converge to a
good policy. The key expensive step in any policy simula-
tion is the task of evaluating a policy at a system state. This
cannot be batched since the states encountered on a sample
path are themselves computed serially. Still, one may hope
that a clever scheme for parallel discrete event simulation
(Fujimoto, 1990; Fujimoto et al., 2017) might help:

1.1. Time Warp Falls Short

Time Warp is the mainstay approach to parallel discrete
event simulation (Jefferson, 1985; Jefferson et al., 1987;
Ghosh et al., 1993; Barnes Jr et al., 2013; Fujimoto, 2024).
Time Warp is at its core a message passing framework: a
processor processes ‘events’ and then sends the outcome
of this processing to other processors that are potentially
impacted by these events. Upon receiving a processed event
from a neighboring processor, a processor may need to ‘roll
back’ its computations, if the received event invalidates
them. If the set of processors potentially impacted by a
given processor is small (so called ‘local causality’), Time
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Figure 1. (a) Time Warp is a widely used method for simulating discrete event trajectories. It employs a message-passing algorithm where
each processor (blue box) maintains a local time and processes events in parallel, potentially triggering new events. If a processor receives
an event with a timestamp earlier than its local time, it must roll back, potentially causing a cascading rollback effect. This overhead makes
Time Warp inefficient for general MDP trajectory simulation. (b) Instead, we observe that often for RL problems, the transition f; is
computationally cheap while the policy 7 is expensive. We propose Picard iteration by the following intuition: by initializing a trajectory
of states (or actions), the policy 7 can be executed in parallel. New trajectories are efficiently updated via lightweight transitions. This
process can be iterated until convergence. Compared to Time Warp, this proposed Picard (1) is GPU-friendly, (2) enables new analyses for
provable speedups, (3) achieves significant acceleration in practical SCO settings, and (4) demonstrates speedup potential for general RL.

Warp works well. But other than for special structures,
this is not true for general MDPs (e.g., for SCO problems)
— every processor must communicate in effect with every
other processor and the resulting rollbacks reduce Time
Warp to sequential evaluation while simultaneously adding
message passing overhead that is highly sub-optimal for
GPUs.

Indeed, it is unclear that parallelization can be fruitful for
policy simulation in general, but SCO problems have two
characteristics that make this a potentially feasible and
worthwhile task: (1) evaluating system dynamics is sub-
stantially cheaper than policy evaluation itself, and (2) a
large horizon T' makes the potential acceleration offered by
batching significant.

So motivated, imagine, as a thought experiment, that an
oracle revealed the sequence of 7' states encountered on
the sample path being simulated (i.e. what we are trying to
compute in the first place). In that event policy evaluation
could be trivially batched, and could even leverage the ‘sin-
gle program multiple data’ paradigm GPUs are optimized
for. Our goal here is to come close to this ideal via an itera-
tive scheme that ‘guesses’ at the entire sample path being
simulated, and rapidly improves this guess. See Figure 1.

1.2. This paper: the Picard Iteration

This paper proposes a novel iterative approach to policy
simulation we dub Picard iteration'. Succinctly, while Pi-
card iteration applies to general policy simulation tasks, it
provably yields a speedup in the context of SCO problems;
in practice we show this speedup is greater than 400x.

'The proof of the Picard—Lindelof theorem inspired our itera-
tive framework.

The Picard iteration proceeds by dividing up the simulation
horizon of T' time-steps across (potentially, virtual) pro-
cesses; the assignment of time-steps to processes may be
informed by problem structure. We also initialize a ‘cache’
of actions, one for each time-step, that can be thought of as
an initial guess of the actions that will eventually be simu-
lated. Each process runs an independent simulation of the
policy with an important tweak: a process only evaluates
the policy on time-steps it has been assigned; on all other
time-steps it simply uses the action for that time-step from
the cache (Figure 1(b) is an example where each process
is allocated a single time-step). While each process must
still evaluate system transitions at every time step, these
evaluations are assumed cheap relative to the cost of evalu-
ating the policy itself. As such, each process only takes time
that is roughly proportional to the number of time-steps it
is assigned. All processes run in parallel. At the end of an
iteration, each process updates the cache in the time-steps
it was responsible for. As such, a single Picard iteration
is faster than the serial policy simulation task by a factor
of roughly #processes. Moreover each such iteration al-
lows for batched policy evaluation with no message passing
across processes. The key question then is how many such
iterations are required to converge to the same outcome as
serial policy simulation?

Provable speedup: We prove that in Fulfillment Optimiza-
tion (FO), the number of Picard iterations required to com-
pute the same outcome as serial policy simulation is no
more than the number of nodes in the supply chain. Thus,
applied to such problems the Picard iteration yields an ef-
fective speedup of ~ #processes/#nodes. Since #nodes
is at most a few hundred?, and #processes can be scaled

2Amazon has ~ 200 nodes (Amazon, 2024); Walmart has ~
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to tens of thousands via a GPU implementation, the Picard
iteration guarantees a large speedup in policy simulation for
those problems. In addition, Appendix B shows how our
results can easily be extended to inventory control problems
with replenishment.

Practical speedup for SCO: We show that even on a single
A100 GPU, the use of the Picard iteration yields an effective
speedup of greater than 400x relative to serial policy eval-
uation for a large-scale FO problem. The speedup relative
to a (tailored, highly optimized) Time Warp algorithm is
approximately 100x. The speedup displays attractive linear
scaling with the number of processes (as predicted by our
theory) and is robust across a range of challenging prob-
lem instances. In addition, this speedup is persistent when
scaling to an end-to-end RL pipeline.

Practical speedup for RL problems beyond supply chain:
In general MDP problems, we show Picard converges to the
sequential simulation output after no more than 7" iterations.
Given its correctness in general, we explore whether the
number of Picard iterations required is a lot smaller than T’
for problems outside SCO. Here we show that for a majority
of OpenAl Gym MuJoCo environments, the Picard iteration
could potentially yield a speedup of up to 40x.

1.3. Related literature

SCO and RL: Supply Chain Optimization (SCO) problems
represent a classic family of dynamic optimization problems
with intractable state-spaces, and are becoming increasingly
important due to the growing volumes in e-commerce. For
instance, a 1% cost reduction in fulfillment for Amazon can
be translated to about 1B US dollars savings (Amazon.com,
Inc., 2023). Applying Deep Reinforcement Learning (RL)
to solve intractable SCO problems has garnered increasing
interest in recent years (Oroojlooyjadid et al., 2022; Gijs-
brechts et al., 2022; Temizoz et al., 2025; Alvo et al., 2023).
Large companies such as Amazon (Madeka et al., 2022),
Alibaba (Liu et al., 2023), and JD.com (Qi et al., 2023)
have reportedly been testing RL at scale in SCO contexts.
Our motivation for this work is to eliminate the high costs
of training and back-testing in these problems due to long
horizons, T'. While our framework is general, we showcase
it on a representative problem in SCO: online fulfillment
optimization (Acimovic & Farias, 2019; Zhao et al., 2022;
Xu et al., 2020; Talluri & Van Ryzin, 1998; Ma, 2023; Amil
et al., 2022; Acimovic & Graves, 2015; Jasin & Sinha, 2015;
Andrews et al., 2019).

Parallel RL: There is a substantial body of literature on
parallel reinforcement learning (see e.g., Asynchronous RL
(Mnih et al., 2016), RLIib (Liang et al., 2018), Envpool
(Weng et al., 2022), and others (Stooke & Abbeel, 2018;

30 nodes in the U.S (Walmart, 2022).

Clemente et al., 2017; Petrenko et al., 2020; Rutherford
et al., 2023)), where embarrassing parallelism is imple-
mented across different agents or rollouts. In contrast Picard
iteration is concerned with an orthogonal problem: accelerat-
ing the evaluation of a single trajectory, which is particularly
relevant for our SCO settings where T is gigantic. For such
problems Picard iteration complements parallel RL.

Parallel Discrete Event Simulation: As discussed earlier,
Time Warp (Jefferson et al., 1987; Steinman, 1993; Barnes Jr
et al., 2013; Fujimoto et al., 2017; Fujimoto, 2024), a main-
stay parallel discrete event simulation algorithm could rea-
sonably be considered an alternative to our proposal; in fact
Time Warp has recently been optimized for GPUs (Liu &
Andelfinger, 2017). As discussed, SCO problems (and we
anticipate many RL problems in general) do not satisfy the
local causality assumptions needed for Time Warp to work
well (Radhakrishnan et al., 1996). We implement an opti-
mized variant of Time Warp suitable to GPUs and show that
Picard iteration is almost two orders of magnitude faster
that Time Warp. We attribute this to the inability to re-use
policy evaluations computed on incorrect states within Time
Warp, a point that will become clear later.

Picard iteration leverages the batch computation power of
GPUs for sequential problems. Non-RL examples in this
spirit include using lookahead decoding for LLM inference
(Fu et al., 2024) and a three-stage algorithm for simulating
cellular base stations (Li et al., 2013). A distinctive feature
of our approach is the theoretical guarantee of speedup,
where the number of required Picard iterations captures how
coupled a problem is. This is rarely seen in the parallel
computing literature and may be of broad interest.

2. Model and algorithm

We consider a dynamical system with general state-space S,
action space A, and a disturbance space (2. The dynamical
system itself is specified by a function f : S x A x 2 — S.
We assume the existence of an ‘always feasible’ action a?,
so that for all s, a® € A(s), the set of feasible actions
at state s. For our purposes a policy is simply a map 7 :
S x Q — A; one may think of 7(-) as a DNN and assume
7(s) € A(s) Vs. We may think of the disturbance here as
capturing both exogenous shocks (e.g., demand in an SCO
problem), as well as any randomization endogenous to 7.

We next formally define the task of policy simulation.
As input, we are given an initial state s; € S, a hori-
zon T, and a sequence of disturbances {w; : t € [T]}.
Our desired output is the sample path of actions under 7,

a;*? : t € [T)} defined according to a;*! = (s, wy),
where s;11 = f(s¢,a; %, w;). We remark that we view the
application of 7 (-), i.e. the computation 7(s,w) as com-

putationally costly, while we view the application of f(-)
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given an action, f(s,a,w) as computationally cheap. This
is certainly the case in RL for SCO problems. Assuming
a single application of 7 (-) takes unit time, our desire is to
compute {a;°?} in time < 7.

We next present the Picard iteration (Algorithm 1). We
assume M virtual processes indexed by m. Each m is
assigned a disjoint partition of time-steps, 7, C [1'] where
U Tm = [T]. Algorithm 1 implicitly assumes the ‘cache’
of actions, {af} and the disturbance sequence {c;} sit in
shared memory. Several remarks are in order:

Correctness: It is easy to see that the Picard iteration out-

. . seqy :
puts the correct sequence of actions, i.e. {a; '} in at most
T iterations. Observe that for the processor responsible
for time-step ¢ = 1, say m, a;’™ = ai°d. Consequently,
at = a}®. Thus, at iteration k = 2, the processor responsi-
ble for t = 2, say m, will take the correct sequential action
att = 1 and thus the correct sequential action at ¢ = 2, i.e.
a2™ = a5, so that o2 = a5°%. Continuing in this fashion,
we can show:

Proposition 2.1. The Picard iteration converges in at most
T iterations and returns {a;°"}.

While this proposition shows the correctness of the algo-
rithm, it is not useful: if we required 7" iterations for conver-
gence, we would achieve no speedup. We will later prove
that Algorithm 1 converges in a small number of iterations
independent of T' in a large class of SCO problems.

Speedup and batching: A single iteration of Algorithm 1
achieves substantial speedup over sequential computing.
Specifically, assume that time-steps are divided up equally
across all processes so that |7,,| ~ T'/M for all m. Then,
under the assumption that the time to evaluate 7(-) is much
larger than the time to evaluate f(-), this speedup is approx-
imately M. Consequently, the effective speedup provided
by Algorithm 1 is M /+#iterations. It is also worth noting
that Algorithm 1 allows for the batched application of 7 (-).
Specifically, the first application of 7(-) on each of the M
processes can be batched together, following which the sec-
ond application of 7(-) on each of these processes can be
batched, and so forth.

Our discussion so far applies to general dynamical systems.
We cannot hope for an effective speedup in this generality.
The next Section will focus on a large class of SCO prob-
lems, where we will theoretically establish that Algorithm 1
achieves a non-trivial speedup over sequential computation.

3. Picard Iteration and RL for Fulfillment
Optimization
We focus here on the Fulfillment Optimization (FO) problem,

a central class of SCO problems that has recently attracted
significant attention for RL solutions (Amazon.com, Inc.,

2023; Acimovic & Farias, 2019; Amil et al., 2022; Acimovic
& Graves, 2015; Andrews et al., 2019). We also applied
Picard to inventory control with replenishment, another rep-
resentative class of SCO problems (Alvo et al., 2023; Gi-
jsbrechts et al., 2022; Madeka et al., 2022; Dehaybe et al.,
2024; Liu et al., 2023), demonstrating favorable theoretical
and practical speedups. Details are deferred to Appendix B.

For FO, We are concerned with I products, indexed by i €
[I]. Inventory of each product is carried at one or more of
J nodes, indexed by j € [J]. Each node is endowed with a
processing capacity. Let ¢; ; € R be the remaining capacity
of node j at time ¢. In addition to the capacity constraint,
let z; ;; € R be the inventory level of product i at node
j and time t. We use ¢; € R” and 2; € R’7 to simplify
the notation. The state at time ¢ is then s; := (x¢,¢;). An
order at time ¢ is associated with a product i(w;) and a
reward vector 7(w;) € R7. A policy 7 assigns this order to
a node with available inventory of product i(w;) and non-
zero capacity and earns the corresponding reward (or it does
not fulfill and earns zero reward):

ay 1= W(St,wt) e {_] € [J] | Ct,j > Ovmt,i(wt),j > O}U{O}

where ‘0’ is the action of not fulfilling, i.e., a®. The goal
is to design a policy that maximizes the total reward over
some finite horizon 7.

The FO problem has state space S = R’” x R” and action
space A = [J] U {0}. Capacity is updated according to
Ct+1 = Ct — €q, While available inventory is updated accord-
ing to Ty 41 = T4 — €4(w,),a, (Where e; denotes the jth unit
vector); this specifies f(-), which is computationally trivial.

There is just one design decision we need to make in consid-
ering how to apply the Picard iteration to the FO problem,
viz. how to assign time-steps to each of the M processes.
We consider the approach of partitioning by products: all
time-steps associated with a given product are assigned to
the same process. Specifically, let T; = {¢ : i(w;) = i}. Let
[I] be divided into M disjoint partitions; denote the mth I,,.
Let processor m be responsible for all time-steps associated
with products in I,,, i.e., , T, = User,, 1;. Ideally, we find
a partition of [I] such that each 7, is roughly the same size.
With this setup, we now state the main result of this section
informally:

Theorem 3.1 (Informal). Provided 7 (-) satisfies a set of
regularity conditions, the Picard iteration, Algorithm 1, con-
verges in at most J + 1 iterations for the FO problem.

Speedup: A corollary of the above result is that Algorithm 1
provides an effective speedup of T'/(J max,, | T, |). When
tasks are constant sizes, T/ max,, |T,,| ~ M (see e.g.,
‘balls into bins’ problems (Raab & Steger, 1998)) so that the
speedup provided by Algorithm 1 is ~ M/J. As noted in
the introduction, even for a large instance of the FO problem
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Algorithm 1 The Picard Iteration

0: k <+ 1,a? < a® for t € [T {Initialize cache to always feasible action a®}

0: while true do

0 parfor m < 1 to M{Evaluate each process in parallel }

0 k o S1

0 for t«< 1toT do

0 ift e T, then ak (sftC " wy) {Process m evaluates 7(-)}

0: else a™ = of lif ol € A(sf ™) (or a? 0.w.) {Process m uses cached action}
0 sf J:T = f(sP™, a¥™ w;) {Process m updates its state}

0 of = ™ for m < 1to M, t € T,, {Process m updates cache on t € 7, }

0 if of = o1 V¢ then return {a} {Converged}

0 elsek — k+1

(corresponding say to a retailer like Amazon), J ~ 200,
whereas we can take M ~ 10* to 10° so that we can hope
for a speedup on the order of 102 to 103.

3.1. Proof of special case

We present here a short proof of a special case of Theo-
rem 3.1, which should serve to provide some intuition about
the result and its proof. Theorem 3.1 will also hold for a
much more general class of policies, which we make pre-
cise in Theorem 3.2; however we defer this proof to the
Appendix. For the special case we consider, we assume
that (1) inventory is not a constraint (or equivalently that
x1 = T1), and (2) that the policy 7 (-) is greedy (greedy
policies have been used widely in practice (Zhao et al., 2022;
Xu et al., 2020)) so that 7(s, w) € argmax;,. 57 (w).

The crux of the proof lies in understanding the structural
properties of ‘wrong’ actions. To show that a¥ is correct
(i.e., a¥ = a;°?), we need to show that the mistakes made in
round k — 1 by other processors are constrained in a desired
way (they would impact s; and, therefore, a¥). We conduct
an inductive proof for showing those properties, where the
challenges lie in identifying the ‘right’ induction hypothesis

and connecting different structural properties.

For the special greedy case, the ‘right’ structure properties
turn out to be related to the set of nodes that run out of
capacity in the sequential scenario. In particular, denote
by 7; the first time at which node j runs out of inventory
assuming sequentially correct actions: 7; = min{t : ¢} =
0} (or T+ 1if ¢! > 0 forall ¢ € [T]). Next we deﬁne
Q; to be the set of all nodes that have run out of capacity at
some time ¢’ < t: Q; = {j € [J] : 7; < t}. We then have
the following invariant:

Lemma 3.2. For any t € [T] and all iterations k of Algo-
rithm 1, we have that the cached action of € {a;**} U Q.

That is to say, the action taken at time ¢ is either going
to be correct or will go to a node that would run out of

capacity in the sequential scenario. Assuming Lemma 3.2,
we prove Theorem 3.1 for the special case. Let us denote
by 71,72, ..., 7, the values of 7; sorted from smallest to
greatest. We establish by induction that in iteration k, af =
a;° for all t < 7y, i.e. the cached action is correct for all
times ¢ < 7. This establishes a stronger statement: we
converge after |Qr| + 1 iterations.

The induction statement is vacuously true for the initial
cache; assume the statement true up to some k, and consider
k+ 1. By the induction hypothesis, at iteration &+ 1, all pro-
cesses m have access to the correct cached action for times
t < 7 so that af ™1™ = a$°% for ¢ < 7. Consequently,

f“ = }* for t < 7y, and in particular, c];:jlm =0 for
all j € Q;k. Now by Lemma 3.2, we must have that for any
t € T, such that 7, <t < Tpy1,

af T e (U Q= ()"} U s,

But since ck 'H " = (forall j € Qz, it must be that
aythm = aieq so that af ™ = a3 for 7, < t < Ty

proving the inductive step and completing the proof. We
finish up with proving Lemma 3.2.

Proof of Lemma 3.2: Assume the Lemma holds for all
t'" € [T] for iterations up to k — 1, and for ¢ < t in
iteration k. Consider time-step ¢t + 1 then and assume
that this is handled by processor m. If afff € Q11 we

are done, and so assume that a’: e [J ]\Qtﬂ Now
So if ct Y, >0
for all j € [J]\Q¢4+1, wWe are done. Now assume that
ab™ = j € [J]\Qi41 for some # < t. By the induc-
tion hypothesis, it must be that j € {a;"} U Qy. But
Qp C Qi41, and since j € [J]\Q¢41 by assumption, it
must then be that j = a;°®. We have consequently shown:

k,m mo_ -
et =cny =y Hag™ = j}
<t

—Zl{aseq—j}—ct+1j>0

<t

seq
Ay € argmaxp o, 7j(Wit1)-

> 15
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for j € [J]\Qi+1 completing the proof.

3.2. The general setting

We now remove the restrictions considered in the special
case above, allowing for arbitrary initial inventories (so that
inventory feasibility matters) and consider a more general
class of state-dependent policies. Specifically, we require
that the policy 7(+) satisfy the following assumptions:

Assumption 1 (Inventory Independence): Fix some
i € [I] and let x and 2’ be two inventory positions in
R’/ such that z; ; = a ; for all j. Then, if i(w) = i,
we must have 7((z, ¢),w) = 7((2/, ¢),w). In simple terms,
the fulfillment decision for an order of a specific product
depends only on the inventory position across all nodes of
that product.

Assumption 2 (Consistency): 7((z,c),w) = j, and let
i(w) = 4. Consider a distinct state (z,¢’) such that 2’
differs from z only in its (¢,;’)th component, and ¢’ dif-
fers from c only in its j° component. Then, we must have

(2, ), w) € {4,5'}-

Assumption 3 (Monotonicity): Let 7((z,c),w) = j, and
let i(w) = i. Then, if 2’ = = + e; ;, 7((2/,¢),w) = jJ,
i.e. increasing inventory of product ¢ to the node it was
originally fulfilled from by 7 will not change the fulfillment
decision. Similarly, let ¢ = ¢ + e for any j" such that
¢jv > 0. Then, 7((z,c'),w) = j. Specifically, adding
capacity to any node with positive capacity will not change
the fulfillment decision.

The Assumptions 1-2 are natural and met by most policies
proposed for the FO problem thus far. The Assumption 3
is also met by perhaps the most important class of policies
proposed for the FO problem, the so-called ‘bid price’ poli-
cies (Talluri & Van Ryzin, 1998; Andrews et al., 2019)3.
Having stated these requirements, we can now re-state a
refined version of Theorem 3.1 formally.

Theorem 3.2. Provided 7 (-) satisfies Inventory Indepen-
dence, Consistency and Monotonicity, Algorithm 1 con-
verges in at most |Qr| + 1 iterations for the FO problem.

The proof of Theorem 3.2 is more advanced due to the
broader class of policies we allow. As the policy can depend
on the inventory in a general way, Lemma 3.2 no longer
holds. Instead, we find that the inventory levels maintain
certain monotonicity. The formal proof is provided in the
Appendix A.2. Recall that |Qr| represents the number
of nodes that reach their capacity limit under the assump-
tion of sequentially correct actions. In scenarios where
demand is less than supply, |Qr| can be significantly less
than J. Consequently, Theorem 3.2 can be interpreted as an

3We experimentally demonstrate the robustness of Picard when
Assumption 3 violated; see Appendix.

instance-dependent bound for Picard iterations.

In addition, we also generalize the theorem to the scenarios
where replenishment is allowed (see Appendix C).

4. Experiments with Fulfillment Optimization

This section presents the results of an implementation of the
Picard iteration on large scale FO problem instances. We
also conducted experiments on Inventory Control problems,
another representative class of SCO problems. The results
are qualitatively similar (see Appendix B). The source code
has been made publicly available (see the supplementary for
anonymity). We seek to establish a few key points:

¢ Policy Evaluation Speedup. The Picard iteration of-
fers a speedup of 350-450x over sequential simulation
in the FO problem. The speedup scales approximately
linearly with batch size and is robust to a variety of
problem characteristics.

¢ Policy Optimization Speedup. An end-to-end imple-
mentation of a policy gradient algorithm on the FO
problem highlights the value of our speedup: on a
large scale instance, time to convergence with sequen-
tial evaluation is ~10h; speeding up policy evaluation
on that instance with Picard iteration yields the same
policy in 2mins.

¢ Message Passing Degrades Performance. A well re-
garded scheme for parallel discrete event simulation is
Time Warp. Carefully adapting Time Warp to the FO
problem yields only a 5x improvement over sequen-
tial simulation assuming special structure; on those
problems, Picard is 88x faster than Time Warp.

Implementation. We implement two practical optimiza-
tions that improve performance (but do not impact our the-
oretical analysis): First, if {,cset 1S the smallest ¢ for which
af # ozf_l, then we know that the actions evaluated for
times ¢ < tyeset are correct and it is sufficient to start the
kth Picard iteration at time ¢ = t,get- Second, as opposed
to running Picard iteration over the entire horizon, we run
the iteration in ‘chunks’ of size max_steps and move on
to the next chunk only after convergence of the preceding
one. More precisely, we run the for loop in Line 5 of the
algorithm over ¢t € [treset, Min(7T, treset + max_steps)].
Tuning the max_ steps parameter thus trades off the need
for synchronization (the number of iterations of the while
loop in Line 2), with the potential for ‘wasting” computation
(the number of iterations of the for loop in Line 5). Tuning
max_steps is straightforward: a reasonable heuristic is
to simulate a sub-trajectory of length < T, and select the
values which minimize the time required to simulate this
sub-trajectory. All experiments were conducted on a single
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Figure 2. Picard runtime on problem instances with uniformly dis-
tributed demand, as a function of the number of processes (batch
size M). The y-axis normalizes computation time to M = 1 (i.e.,
speedup). For M = 1e4, we achieve a 441 x speedup relative to
the sequential algorithm.

A100 GPU with 40GB of VRAM. The code is implemented
in JAX (Bradbury et al., 2018) and is available on Github?*.
See further details in Appendix A.3.

4.1. Policy evaluation speedup

For policy evaluation, we approximate a greedy-like pol-
icy using a simple MLP with two layers of width 64, with
the goal of constructing a policy with predictable behavior
which represents a realistic computational workload. We
evaluate problem instances with J = 30 nodes, I = 1M
products, and 7" = 3M orders, which represent a (moder-
ately) large-scale real-world problem (Amazon, 2025; Wal-
mart, 2022). We conduct two sets of experiments:

Uniform Demand, Increasing Batch Size: We divide the
T orders across the I products uniformly at random, and
vary the batch size M. We determined that our choice of
m(-) allowed for a batch size of up to le4 and thus vary
M in factors of 10 up to le4. Products are assigned to
each partition 7, at random. Recall from our discussion in
Section 3, we expect a speedup of at least O(M/J).

Figure 2 plots our speedup relative to the sequential baseline.
We see in all cases a speedup greater than M /.J; in the case
of M = le4 this translates to an actual speedup of 441x. We
observe further that the speedup is largely linear with respect
to M, but flags as M grows large. We attribute this to an
increased number of iterations required for convergence as
the number of products assigned to a single partition 7,
decreases.

Heavy-Tailed Demand, Maximum Batch Size: We next
consider that the 7" orders are not split uniformly across
the I products, but rather that a large fraction of the orders

*nttps://github.com/atzheng/
picard-iteration-icml

B8 Product Partitions  Uniform Partitions

0.0 441 363
-0.2 431 360
-0.4 194 361
-0.6 154 358
-0.8 24 354
-1.0 5 355

Table 1. Speedup of Picard Iteration relative to sequential, as a
function of the demand distribution.

are covered by a disproportionately small fraction of the
products. We model this as Q; o i?, with typical values of
[ between -0.6 and -0.8 (Brynjolfsson et al., 2003; 2010).
The case 5 = 0 corresponds to uniform demand.

We expect this setting to be more challenging. If all orders
for a product were assigned to the same partition 7,,, parti-
tions would be highly imbalanced, bottlenecking line 3 of
the algorithm and limiting batching opportunities. A sim-
pler alternative is to assign each of the T" orders randomly
to a partition, ensuring uniform sizes but likely increasing
conflicts (e.g., multiple partitions acting on the same inven-
tory). We evaluate both approaches in Table 1, finding that
uniform assignment dominates for larger 5 (heavy-tailed
demand). Regardless of 3, we achieve at least 350x speedup.

4.2. End-to-end policy optimization for FO

Next, we turn to finding an optimal policy for a sequence
of FO instances using a policy gradient approach. At each
iteration the approach rolls-out the policy at that iterate and
computes a policy gradient. We will consider the speedup
achieved by computing this roll-out via the Picard iteration,
as compared with simply rolling it out sequentially.

In greater detail, we consider the following policy
parametrization: let fp(s) = [ul . (s), ufap(s)] with
ph (s) € RY b (s) € RY, be some function of state
parameterized by 6; here we take fy to be a two layer MLP
of width 64. We then consider the dual policy (Balseiro
et al., 2023)

mo(st,we) € arg m?X(Tj (Wt)*ﬂ?nv,(i(wt),j) (St)*ﬂgap,j(st))-

For optimizing 8, we perform 1K gradient steps using Adam
with learning rate 3e-3. Table 2 reports our results for a
sequence of problems of increasing size. In each experiment,
we report overall runtime for both sequential policy roll-
out and roll-out via the Picard iteration. For the problem
instance with 3M orders, the sequential implementation
takes approximate 10hrs of wall clock time; whereas using
the Picard iteration requires less than 2mins, demonstrating
the value of Picard iteration for speeding up RL in SCO
problems.
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Problem Scale Runtime Runtime Picard
#Orders/ #Products Sequential Picard Speedup
30k/10k 6m55s ImO1s 6.8x
300k /100k ~ 1h 1mO04s 56.25x
3M/1M ~ 10h 1m39s 363x

Table 2. Runtimes for an end-to-end RL pipeline.

4.3. A comparison to Time Warp on the GPU

Surprisingly, there is no obvious baseline approach for the
parallel policy simulation task. As detailed in Section 1.1,
one popular family of approaches to parallel discrete event
simulation is the Time Warp algorithm (Fujimoto et al.,
2017; Jefferson et al., 1987; Steinman, 1993; Barnes Jr
et al., 2013) which recently has been adapted to GPUs (Liu
& Andelfinger, 2017).

In attempting to generalize Time Warp, at least to the FO
problem, we make the following observation: suppose a
policy for FO satisfies the regularity conditions outlined
in Section 3.2 (Assumptions 1, 2 and 3), and suppose all
processes have the correct state at time ¢o. Then, we observe
that all processes can execute in parallel between ¢y and
to +min; ¢, ; without requiring a rollback. We exploit this
to implement Time Warp efficiently on GPU, in analogy to
(Liu & Andelfinger, 2017).

We benchmark this approach in the setting with 3M orders
and 1M products. Recall that Picard Iteration achieves its
441x speedup over sequential simulation in this section (Sec-
tion 4.1). In contrast we observe that Time Warp achieves
a speedup of 5x. Picard is thus 88x faster than Time Warp,
even when the latter is specifically tuned to exploit problem
structure.

S. Exploratory Experiments on RL problems
beyond Supply Chain

While we have focused our experiments and analysis on
SCO problems, our Picard iteration applies to general
RL environments. This Section briefly explores apply-
ing the Picard iteration to RL environments outside SCO.
Specifically, we consider a variety of OpenAl gym MuJoCo
environments commonly used for RL benchmarks, imple-
mented in jax via the Brax library (Freeman et al., 2021).
We consider using the Picard iteration for policy roll-out
at each policy optimization iteration in place of sequential
simulation. We use PPO (Schulman et al., 2017), although
our simulation approach is agnostic to the learning algo-
rithm. Our goal here is simple: we wish to show that Picard
iteration converges in a small number of iterations, < 7.

We adopt the network architecture for 7, and most policy
optimization hyperparameters from the CleanRL benchmark
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Figure 3. Convergence of the Picard iteration for Gym MuJoCo
environments, measured in relative RMSE between the Picard
trajectory and the sequentially simulated correct trajectory (nor-
malized by RMSE of the draft trajectory {s{};(r)). Solid line
shows median RMSE at each iteration over 30 seeds; error bars
show 20th and 80th percentiles. Median rel. RMSE converges to
< 0.1% in under fifteen iterations for all environments, whereas
T = 200; five of eight converge within 5 iterations.

(Huang et al., 2022), a popular baseline implementation
for RL algorithms. Jax training code is adapted from (Lu
et al., 2022), which tries to replicate CleanRL functionality.
For numerical stability, we set a learning rate of 3e-5 and
perform one update per trajectory instead of 10.

Setup: Our goal is to measure the speedup afforded by
Picard iteration to the policy evaluation step in a given PPO
iteration. For each environment, we run PPO for a total of
100k time-steps with policy updates occurring every 2048
time-steps. We collect the final and penultimate policy
iterates which we refer to as 7 and 7" respectively. Our
goal is to simulate 7T via Algorithm 1. We choose to set
M =T = 200, such that each 7T,,, consists of a single time-
step. There is a natural and attractive choice of the initial
cache: specifically, we set o = 7%(s¥, w;), the sequence
of actions taken by the previous policy iterate on the sample
path in question.

Results: Figure 3 plots the convergence of the Picard iter-
ation across several environments, and multiple seeds for
each environment. Defining the state trajectory simulated at
the kth Picard iteration according to sf_; = f(sF, aF, w;),
we measure convergence here via relative root-mean-
squared-error (RMSE): 3, [|s;%% — sF|l2/ 32, |ls %Y.
where s;7°°% is the ‘correct’ state under 7 at ¢. This quan-
tity is guaranteed to be O (up to numerical precision) for
k =T = 200 by Proposition 2.1, but the key question is
whether we get convergence in k < 7.

Figure 3 answers this question in the affirmative. We see
that in five of eight environments, the relative RMSE (me-
dian over 30 random seeds) converges to < 0.1% in under
five iterations whereas 7' = 200; further, all environments
converge within fifteen iterations. These are exciting results
suggesting the Picard framework might be of value in gen-
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eral environments as well. For instance if evaluation of f
were sufficiently faster than evaluation of 7 (i.e. if dynamics
were cheaper to simulate than policy evaluation), the results
here would lead to an end-to-end speedup of 13-40x.

6. Future Work

There are exciting avenues for future work on the surpris-
ingly under-explored problem of parallel policy simulation:
SCO Problems: Our findings extend to other SCO prob-
lems. In Appendix B, we show that Picard iteration achieves
comparable empirical and theoretical speedups when ap-
plied to the One Warehouse Multi-Retailer replenishment
problem. Many more opportunities for exploration remain.
Convergence in Other Environments: We showed promis-
ing results for environments outside SCO (viz. MuJoCo),
although the theoretical basis for Picard’s success in these
settings remains unclear. Analyzing the factors influencing
convergence in different environments would be a valuable
next step, perhaps starting with simple time-varying linear
systems. In ‘contractive’ systems, Picard iteration should
converge linearly, with the rate determined by the associated
contraction factor.

Overall Speedup in Other RL problems: Assuming a
batch size M and that we require K Picard iterations for
convergence, the overall speedup is (n + 1)/(n + 1/M)K.
Here 7 is the ratio of the amount of time it takes to evaluate
f(+) to that of evaluating 7 (+). In the case of SCO problems
this ratio is ~0. On the other hand, for environments like
MuJoCo, this ratio is actually close to 1/5. As such, we see
that speeding up f can result in dramatic time savings in
concert with Picard. In the case of MuJoCo, this could be
achieved with a more efficient vectorized physics engine.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Appendix / supplemental material
A.1. Proof of Proposition 2.1

We will prove the proposition by induction on the following
hypothesis:

k seq
Qp = Gy

vt < k,

whence the desired result will follow immediately by setting
k = T. Letting m} denote the processor to which order ¢ is

-1
assigned in iteration k, we have o} = a;™ = a5*%, since
all processors have the correct state at the beginning of the
horizon: 5™ = s, Vm.

Now, assume that of = a;°! V¢ < k. By this induction

hypothesis (and the state update defined in Section 3), we

have s:’m = s Vm. Therefore, processor mZﬁ makes
the right decision for order k + 1, and we have: o1} =
k+1 M1 seq . . .
ap, = a;;. This completes the induction. O

A.2. Proof of Theorem 3.2

We will use the following lemma, which will facilitate
greatly the proof of Theorem 3.2.

Lemma A.l. Ler QQ, := {j € [J] | 7; < t} be the set of
nodes that run out of capacity before t in the sequential
scenario. We have, at any iteration k > 1, any time step
t € [T), any product i € [I| and any process m € [M]

k,m

ity 2 > 25 V5 & Qr. (1
T > Y ¢ Qe @)

Proof of Theorem 3.2. We will invoke Lemma A.1 for the
proof. To begin, we state that for all £ > 1, the following
holds

af = a1 <t <7

3

We can see that (3) directly implies Theorem 3.2. We pro-
ceed to prove (3) by induction, assuming it holds when 1 <
k < k.. We want to prove the case for k = k.. By induction,
ke,m __ .5€ ke,m __ se
we have z ol = T kq_l ;;and ¢ o1y = C'Fk(j—17j for
all i € [I],j € [J] and m € [M]. In particular, the set of
. ke,m o o . se

nodes {] € [‘]]7 C'T-kc_l Jj 0} - {] € [‘]}7 C'T'k(:_l,j
0} = Qﬁ-c have run out of capacity at time 7__; for both
the local process m and the sequential scenario.

Now, consider ¢ € [7;.—1 + 1, 7%, ), we have that in the
sequential scenario no node is running out of capacity dur-
ing this period (note that the next depleted one is at 7y, ).
Therefore Q; = Q7 and ¢;}' > 0,Vj ¢ Qz_. Then by
Lemma A.1, we have that fort € [Tho—1+ 1,7k, )s

ke,m
Ct]

> 5 >0,V ¢ Q-

Therefore, for t € [7,—1 + 1, 7%, ), the process m maintains
the same feasible set of fulfillment nodes as the sequential
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scenario:

{1(thg7m > 0)}36[7 - {1(015] > 0)}]€[J]

Now consider an arbitrary product i. € [I] and its orders .A
within the time period [T, _1+1, 7% ]: A C [Tk —1+1, Tr.]-
The orders in A is processed sequentially by a process and
for any ¢ € A, we aim to show

kC

ke,m
Qy

ay

k,m k,m
({2 i b ALy ;> 0) e, we)
W({xiiql,ic,j}jE[J]’ {1(Ci 15~ O)}JE [J]» wt)

— o5€d
=a,

This is evident since the capacity-feasible set remains iden-
tical between the local process and the sequential process,
and the inventory levels a:t ;.,; and a3 . share the same
initial points at time 75,_; and solely determined by the
fulfillment decisions made for product i. at ¢ € A. Thus
all states and decisions remain the same between the local
process and the sequential process during [7x 1 + 1, T%_]-
This completes the proof. O

A.2.1. PROOF OF LEMMA A.1

Note that the capacity consumed at a node is the sum of
the inventories consumed at that node. Therefore, for given

j € [J] t € [T), xf;'jl > a7 for all i € [I] implies that
ct " > ¢} Thus it is sufficient to show (1).

We prove this by induction. (1) holds for k¥ = 0 since all
orders are not fulfilled and all inventories are not consumed.
For any given k. € N, t. € [T, assume this holds for any
0<k<k.,te[T)andk = k., 1<t <t.. Now we want
to prove (1) for k = k¢, t = t..

Consider a process m associated with product subset A,,
and order subset P,,. Let the product at Time t. be .. It is
sufficient to show

k,m

seq
xtcvz .7 -

t yic,J)

Vj ¢ Q. 4

since the inventory levels for other products will remain the
same in processing order t.

If 4. is handled by a process m/’ that is not m, i.e., i €
A # A, m will skip the invocation of 7 and take
f:l’m,. In fact, this skip will occur for every
order related to i, i.e., af ' af “Lm' gorall ¢ e [T] with
i(w¢) = ic. This implies that the inventory level for i, at
process m is the same as the inventory level at m’ from the
previous iteration, thus (4) holds by induction:

k,m
ay,

m

k,m k—

l,m/
‘Tt e T

tesic,d

seq
t Jic,]?

N2 ¢ Q.-
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Next we consider the case 4. is handled by process m, i.e.,
ic € A,,. Recall that the dynamics of the states are

7)
k, k, K, .
e =" = a" = ).

k,m

km -
te—1,ic,J

teyic,]

— 1"

We aim to show that even the decision af "™ is wrong, mean-
ing not the same as at 4 the inventory monotonicity in (4)
still hold. Spemﬁcally, we will show

" e e UQu UG E Quoa ™ > it Y

—1,ic,j

&)

S
Qt.» Wh1ch is excluded When examing (4), or at e { jé¢

Q. actc_l o > Ty g0 j}, which will maintain the inven-
tory monotonicity after the state update. Thus, (5) implies

CF

To prove that (5) holds, we examine the capacity level at
time ¢.. Note that the capacity consumed is the aggregation
of inventories consumed at any time point, thus for all j ¢

Qt.

(5) implies that when a "™ # a7, we have either ak’m

k,m _ o o k,m
Cri-1,j = C0.j (20,5, = 210 5)
i€[I]
L R seq . .
2 Co,j E (w0,4,5 mtc—l,i,j) by induction
i€[1]
_ seq
- ct —1,5°

Thus, both capacity and inventory for the node j ¢ Q. sat-
isfy the monotonicity comparing to the sequential scenario:

k,m seq
Cto—1,j = Cto—1, ©)

k.m seq
xtc—l i,] = ‘rtc—l 1,9 (7)

We are going to use (6), (7), Assumptions 1-3 to show
(5). Note that following our requirements for 7 given by
Assumption 3

({xt —1 2L,j}J€ [J]> {1( e

®

By Assumption 2, we can replace the inventory and capacity
of the nodes in the set Q);_ by xtc cff_nl j and obtain

i 0)}jei we.) = atc

—1,ic,5°

k,
”({Iifiuc,j}j%@tc Uz i )
k,m

{15 > Ohjgan, ULLE™ ;> 0)}eq. wr.)
e {aHuQ,

Note that ¢;°*, ; > 0 for j ¢ Q. by the definition of

@+ (the set of nodes running out of capacity before ¢, i.e.,
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= {jlcc, ; = 0}). Together this with (6), we have
1(c;e‘11] > 0) = 1(c™,; > 0) for j ¢ Q.. Thus (10)

can be simplified to

k,
W({xiil,imj}ﬁ@tc U {xtch,ic,j}jEQw (10)

(™, > 0)be o)
€ {a U QL

Finally, by invoking Assumption 2-3 on the set of {j ¢
Q. ) ’T1 iy foo } and replace x}°1, . . by

> Ty 14, JJ c—1,2c,d
one can verify that

Thus (5) holds and this completes the proof.

A.3. Details of Problem Setup and Data-Generation
Process

Our experiments use synthetic data based broadly on
fulfillment-network and demand-distribution patterns ob-
served at modern (moderately) large industrial-scale retail-
ers. We consider a fulfillment network comprising J = 30
nodes located in the 30 most-populous states (each one in the
most-populous city of the corresponding state). Although
the distribution of demand among products was varied in
certain experiments, in all cases, we provided sufficient in-
ventory and fulfillment capacity at the network level (i.e.
across all J nodes) to permit the fulfillment of 80% of de-
mand (not accounting for occasional cases of ‘stranded’
inventory, in which one is unable to use inventory left over
at a node with no remaining capacity). For each product,
1, the network inventory inventory was distributed across
nodes pro rata based on population: zg; ; o population,;
similarly, network capacity was distributed pro rata across
nodes based on population: ¢ ; o population;. For each
(order, node) pair (¢, j), we computed the distance between
the zip codes, d;;, and then defined a reward for fulfilling
Order ¢ from Node j as follows:

max; dtj — dtj

ri(wy) = 11

J ( t) max; dt 7 ( )
Finally, a® (the always-feasible action) was associated with
a zero reward and had ties broken against it to ensure that

we only choose it in the absence of any feasible alternatives.

We implement two practical optimizations that improve
performance (but do not impact our theoretical analysis):
First, if t,.cq0¢ 1S the smallest ¢ for which ozt #* a ! then
we know that the actions evaluated for times ¢ < treget
are correct and it is sufficient to start the kth Picard iter-
ation at time ¢ = tyeset- Second, as opposed to running
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Picard iteration over the entire horizon, we run the iteration
in ‘chunks’ of size max_steps and move on to the next
chunk only after convergence of the preceding one. More
precisely, we run the for loop in Line 5 of the algorithm
over t € [treset, MIN(T, treset + max_steps)]. Tuning the
max_steps parameter thus trades off the need for syn-
chronization (the number of iterations of the while loop in
Line 2), with the potential for ‘wasting’ computation (the
number of iterations of the for loop in Line 5).

We consider a high-level (JAX (Bradbury et al., 2018)) im-
plementation of Picard that does not require custom ker-
nels. Notably, Line 3 of our algorithm is implemented via
jax.vmap so that we forego fine-grained control of batch-
ing evaluations of 7(-).

All experiments were run on a single A100 GPU with 40GB
of VRAM, at 16 bit precision. All key operations are jit-
compiled. We also implement the sequential baseline on
GPU, where it can leverage parallelism in subroutines such
as matrix multiplication.

A 4. Practical performance with capacity-dependent
policies

The bound on number of iterations until convergence in Sec-
tion 3.2 assumes that the fulfillment policy does not depend
on node capacity. As a final robustness check, however,
we are interested in gauging the empirical performance of
Picard Iteration for policies that do depend on capacity (be-
yond ensuring feasibility), a regime for which our theory
does not directly apply. We therefore conduct an ablation
study using a simplified version of the policy that penal-
izes capacity usage at low-capacity nodes using shadow
prices, with strength modulated by a parameter . Ranging
~ from 0 to oo interpolates between a closest-node policy
and a policy that always fulfills from the node with greatest
remaining capacity (an unrealistic extreme scenario); for
reference, a value of v = 1.0 allows the node with greatest
remaining capacity to improve its ranking by up to J — 1
positions (i.e. even the most-expensive node may be chosen
if its remaining capacity is sufficiently attractive). The re-
sults are shown in Table 3 and demonstrate that empirically,
the constraint on capacity (non-)dependence is non-vacuous
but can be relaxed substantially: Performance is virtually
unchanged for realistic settings of y that incorporate shadow
costs on capacity.

Table 3. Ablation study on a policy that discounts node proximity
by (remaining) capacity scarcity

¥ Conflicts Speedup
0 (no capacity dependence) 13 441x
0.5 14 427x
1.0 15 401x

14

A.5. Effect of initial action sequence

Loosely speaking, the closer the initialization is to the cor-
rect trajectory, the fewer iterations will be required. We
test the sensitivity of Picard Iteration to the initialization by
experimenting with three natural initializations:

1. Unfulfill (441x Speedup): initially, all orders are unful-
filled. This setting corresponds to the theoretical results
and experiments in the main body of the manuscript.

Naive (358x Speedup): Initially, fulfill all orders from
their nearest fulfillment center, ignoring inventory and
capacity constraints.

. Random (390x Speedup): Initially, fulfill all orders
from a random FC.

Clearly, different initialization methods have an impact on
the simulation speed, although massive speedups are possi-
ble regardless. Here, it appears that the “Unfulfill” strategy
works the best. The intuitive explanation for this is con-
sistent with our analysis: using this initialization strategy,
after the first iteration, each processor will have correctly ac-
counted for inventory and capacity consumed by orders for
that processor’s own products — in some sense, a “greedy”
initialization which is less naive than the “Naive” approach
above. Further, unlike the alternatives, when initializing
each chunk, this procedure is able to account for inventory
and capacity consumed in previous chunks.

A.6. Limitations and worst-case set-up

To understand potential limitations, consider a back-of-the-
envelope analysis of the key factors contributing to the sim-
ulation runtime:

* t., the time to execute the policy at a single time step
* t, the time to execute one step of the dynamics

e T, the problem horizon (number of steps)

* K, the number of iterations required to converge

e M, the number of parallel processors available

Sequential execution requires time 7'(t, + ts), whereas
Picard iteration requires:

Ttr
K| —
<M

Potential limitations are easy to see from this equation:

—|—th> for M <T)
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o If K is sufficiently large, this can offset the benefits
of parallelization. As we show in the paper, K is
provably small in many useful cases, but this does not
hold universally; see the worst-case setup in response
to the next question.

* If ¢y is sufficiently large (i.e., dynamics are very expen-
sive), then the term KTty can dominate. In many real
problems (such as the FO and inventory management
settings we analyze), the dynamics are trivial to com-
pute, so t; is negligible. For settings where this is not
true, this dependence can be improved by computing
expensive parts of the state transitions in parallel and
caching them, as we do for actions.

One can construct a problem and Picard iteration scheme
(i.e., allocation of tasks to processors), for which conver-
gence requires 7T’ iterations, although this is quite pathologi-
cal. Consider a setting with a single product, two parallel
processors and two fulfillment centers (FC), FC1 and FC2,
starting with equal capacity. Suppose that event assignments
alternate between the two processors (i.e., processor 1 is
responsible for odd-numbered events, and processor 2 for
even-numbered events). Suppose that the policy is simply
to fulfill orders from the FC having the largest remaining
capacity, with a preference for FC1 over FC2 in case of ties.
Finally, suppose that the initial trajectory provided to Picard
Iteration is to unfulfill all orders. In this scenario, at the first
iteration, both processors will fulfill all orders from FC1;
In the second iteration, starting from the time ¢ = 2, both
processors fulfill all subsequent orders from FC2; and in the
third, starting from the time ¢ = 3, both processors fulfill
all subsequent orders from FC1. They continue to alternate
like this for 7" iterations until convergence. Note that, in the
implementation of Picard iteration that we analyze, since
there is only one product, all events would be assigned to
the same processor, which avoids these conflicts.

B. Extension: Inventory Control with
Replenishment

B.1. Problem formulation

We describe here the One Warehouse Multi-Retailer
(OWMR) problem. We have one central distribution center
and N retailers, indexed by n € [N]. Let x4 ¢ € R be the
inventory of the central warehouse at time ¢ and 2 ,, € R
be the inventory level of retailer n at time t. The state at
time ¢ is then

St = (lﬂt,oa Tt 1y - 7It,N)-

For now, we assume all replenishments are immediate,
hence we have no in-transit inventory. Each period ¢, a
demand arrives at retailer n(w;) of quantity d(w). A policy
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7 decides (i) how much the central warehouse replenishes,
qt,0, and (ii) how much retailer n(w;) replenishes from the
central warehouse, q; p(w,):

a = (8¢, wWt) = (qt,05 Gt.n(wr)) € R?.

The inventories evolve as follows:

(xt,n(wt) - d(wt))+

+ min(gs p(w,), Tr0), if 0= n(wy),

if n # n(wy).
(12)

LTt4+1,n =

Tty

The inventory of the central warehouse evolves as:

Tip1,0 = (Te0 — qt,n(wt))+ =+ qt,0,

where (-)* represents the non-negative part. We also assume
there is an upper bound for how much inventory can be hold
at each location: z;,, < ¢, Vn =0,1,...,N.

B.2. Theoretical Guarantee

Policy. We consider the following policy 7. For each retailer
n € [N], the replenishment decision ¢; , = 0, (Z¢,n, W)
is a function of its local inventory and the exogenous in-
formation (this exogenous information can include the his-
torical demand across retailers). The function 7,, can be
arbitrary (e.g., a neural net) except satisfying the capacity
condition (24, — d(w¢))* + g1, < ¢y, and positivity con-
dition g¢ ,, > 0. For the central warehouse, we consider an
(s,.5)-policy (i.e., an order is placed to increase the item’s
inventory position to the level S as soon as this inventory
position reaches or drops below the level s). That is

Tt,0 = Gt,n(w;) <s,
otherwise.

S
Ti41,0 = (13)
Tt,0 — Gt,n(w;)

The (s, S)-policy is known to be optimal in a single-product
setting with fixed ordering costs (Scarf et al., 1960), making
it a common starting point for practical inventory manage-
ment. We further assume s > ¢,,, Vn to simplify the analy-
sis, whereas the experiments in Appendix B.3 are performed
without this constraint.

Picard Iteration. We allocate time steps based on retailers:
T, = {t | n(wt) = n}, with the intuition that the replenish-
ment decisions across retailers are weakly entangled only
through the central warehouse. Under this setup, the conver-
gence speed of Picard iteration can be bounded by R, the
number of times the central warehouse is replenished:

R =
t

1(g; "

T
> 0).
=0
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In many practical scenarios, it is reasonable to expect that
R <« T (e.g., when the cost of replenishing the central
warehouse is high). In particular, we establish the following
theorem:

Theorem B.1. For the OWMR problem and the correspond-
ing policy T described in this section, the Picard Iteration
converges in at most 2R iterations.

Proof Sketch. Under the (s, .S)-policy, we have V¢, z; o >

8 > @t n. Thus, the replenishment decisions at local retailers

are completely separable (i.e., q,ﬁ W = ;). making it

sufficient to consider the decisions for the central warehouse.
The dynamics of the central warehouse at each processor
evolve as follows: when n(w;) ¢ Ny, where \V,,, denotes
all retailers handled by processor m, we have

seq )+

, o k-1
(xtjf,o T G n(wy) if di0 0,

k

S
If the decision to replenish the central warehouse at iteration
k — 11is incorrect, then :chf”m will be wrongly replenished to

S, causing error propagation and presenting a major obstacle
to proving convergence.

Ty = :
otherwise.

Fortunately, the following lemma ensures the correctness of
the central warehouse decisions, leading to the guarantees
stated in the theorem:

seq

Lemma B.2. Suppose q; > 0 for some t,. Let iy
min{t | t > t1,q; ¢ > 0} U{T'} be the next time step when
the central warehouse is replenished. Assume q;i =
forallt € [T],n € [N] and qf’om = q; o fort < ty. Then
for any {qﬁo,Vt € (t1,t2]} a’t the kﬂ’i iteration, after 2

= qis;,c}??Vt € (tlat2]~

iterations, we have q"{*

The intuition for Lemma B.2 is that, regardless of how
incorrect Qf,o is at the kth iteration, the £ + 1th iteration
will not replenish the central warehouse between t € (1, t2)
because the incorrect decisions from other processors will
only delay the time that the inventory drops below s. Then,
the k + 2th iteration will ensure the central warehouse is
replenished at t5. Details are omitted for simplicity.

B.3. Experiments

Base case. We consider a base setting inspired by Walmart,
which operates over 4,000 stores (Walmart, 2022) to fulfill
their online demand. We simulate one year of data of one
product that sells about 10,000 units per day across the 4,000
stores (2.5 units per store per day). We set the replenishment
policy of the central warehouse and local stores such that
the central warehouse replenishes about once weekly. Such
frequency is often observed in practice due to the presence
of fixed order costs. Simulating one year of data (I' =
10,000 x 365 = 3,650, 000) yields an empirical speed-up

16

of 230x compared to a naive sequential evaluation. We use
4,000 parallel workers and set max_ st eps=130; the policy
call consists of a Multi-Layer Perceptron with two hidden
layers with width 512. As per Theorem B.1, Picard Iteration
needs 110 iterations (twice per weekly replenishment of the
central warehouse). Next, we demonstrate the robustness of
our results through an ablation study, systematically altering
various problem and algorithm parameters.

Ablation Study. We start by evaluating robustness under
heavy-tailed demand. To do this, we define the weights
for store selection as w; = (1 — «)*, where i represents
the store index and o € [0, 1] controls the skewness of the
distribution. The weights are normalized into probabilities
pi = w;/ Y ;w;. When a = 0, the distribution is uniform
across stores. As « increases, the distribution becomes pro-
gressively more skewed, favoring stores with lower indices.
For instance, 20% of retailers are responsible for 80% of
the demand when o = 0.002. Table 4 presents the speedup
of Picard iteration compared to sequential evaluation. As
expected, the performance improvement decreases as the
demand distribution becomes more heavy-tailed. Note that
we assign one processor per retailer; further optimization
of the partitioning could yield better results, making the
reported speedups a conservative estimate.

Q@ Speed-up @ Speed-up
0.000 230x 0.006 55x
0.001 227x 0.007 50x
0.002 113x 0.008 44x
0.003 111x 0.009 39x
0.004 74x 0.010 36x
0.005 72x 0.011 33x

Table 4. Speedup of Picard Iteration relative to sequential, for dif-
ferent o values in the demand distribution.

Figure 4 illustrates the effect of varying the number of re-
tailers NV and batch size on speedup. As the number of
retailers increases, we observe speedups reaching up to
380x for 1,000 retailers, followed by a gradual decline for
larger counts, likely due to GPU memory. Varying the batch
size for Picard iteration exhibits a comparable trend, with
speedups peaking at 383x for 1,000 parallel workers before
slightly decreasing at larger batch sizes.

Lastly, we modify the width of the two hidden layers in
our DNN. While our speedups remain high, they gradually
decline as the neural network size increases.
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Figure 4. Speedup of Picard Iteration relative to sequential, as a
function of different number of batch size and retailers V.
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Figure 5. Speedup of Picard Iteration relative to sequential, as a
function of size of neural net.
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C. Extension: Fulfillment Problem with
Refreshing Capacity

Consider a setting where there are exogenous steps that
periodically refill the capacity with a fixed amount, mod-
eling, for example, the daily or hourly replenishment of a
fulfillment center’s capacity.

Theorem C.1. For T steps, assume there are K refills, the

frequency of each product in the demand is bounded by M,

and the number of processors is P. Then, the computational

complexity of the Picard iteration is given by (assume T >
T(K+J)M

T o[

where J is the number of fulfillment nodes.

Proof. We model each refill as introducing a new fulfillment
node into the system. By treating these nodes as part of the
overall network, we can then apply the reduction to obtain
the bound. O



