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A BACKGROUND ON OPTIMAL TRANSPORT

Optimal transport (Villani, 2009; Peyré & Cuturi, 2019) tools allow us to compare probability
measures while incorporating the geometry of the space. The entropic 2-Wasserstein distance
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where I' = {y € RT*T : 1 = 471 = %1} is the set of coupling matrices, and d is a metric.
Adding the entropic term has two main benefits: 7) the induced problem can be solved in quadratic
time via Sinkhorn’s algorithm (Sinkhorn & Knopp, 1967), and i) the resulting distance is smooth
in the measures’ samples. Intuitively, the optimal coupling matrix ~ provides an alignment of the
samples of fi;, p,, which minimizes the cost of transport between these. The distance then consists of
the weighted sum of distances between aligned samples, along with an entropic penalty.

B ALGORITHMS

Algorithm 1 Inverse reinforcement learning core. Different methods can be instantiated by changing
the rewarder function.
fort € Ttotal do
if done then
r1.7 = rewarder(episode)
Update episode with 7.7 and add all quadruples [0, a;, 0441, 7] to D.
o; = env.reset(), done = False, episode = [ ]
end if
a; ~ w(-|oy) — 041, done = env.step(a;), episode.append([oy, at, 0¢+1])
Update DrQ-v2’s actor and critic, and rewarder-specific functions using D.
end for
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C HYPERPARAMETERS

We provide a list of all hyperparameters in table 1. The only environment-specific variation is that
the number of n-steps is set to 1 for walker tasks.

Agent Parameter Value 1
Common Replay buffer size 150000
Learning rate le™*
Exploration Schedule linear(1, 0.1, 500000)
Discount 0.99
n-step returns 3
Action repeat 2
Frame stack 3
Seed frames 2000
Exploration steps 4000
Mini-batch size 256
Agent update frequency 2
Critic soft-update rate 0.01
Features dim 50
Hidden dim 1024
Optimizer Adam
P-SIL Target update frequency 10000
Reward scale factor 10
P-DAC  Gradient penalty coefficient A 10

Table 1: List of hyperparameters.

13



Under review as a conference paper at ICLR 2022

D EXTRA ABLATION PLOTS
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Figure 9: Ablation study on the number of demonstration. We train all P-DAC, P-SIL and BC
on 1,10 and 50 demonstrations. We observe P-DAC and P-SIL are robust to the number of
demonstrations, while BC is not, and fails on most tasks for the 1-demonstration setting.
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Figure 10: Ablation study on data augmentation (DA). We compare P-DAC, P-SIL and BC with and
without data augmentation. We observe the gap in performance to be significantly larger for P-DAC
and P-SIL, showing that DA is a crucial component of our methods.
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Figure 11: Ablation study on the distance between trajectories for P-SIL. We compare our approach
(OT alignment with cosine cost), to the cosine distance and the Euclidean distance between trajectories
(without OT). We observe that OT significantly outperform non-OT approaches. Hence, OT alignment
is also an essential component of P-SIL.
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Figure 12: Ablation study on the need for expert actions. We train P-DAC with and without actions
concatenated to observations (the former is privileged). We observe the performance gap to be
marginal, hence actions are not necessary in the considered environments, contrarily to popular
beliefs on GAIL-like algorithms.
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