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ABSTRACT

Despite the widespread adoption of large language models with hundreds of bil-
lions of parameters, these models still struggle on complex reasoning benchmarks.
In this paper, we argue that the autoregressive nature of current language models
are not suited for reasoning due to fundamental limitations, and that reasoning
requires slow accumulation of knowledge through time. We show that combining
latent diffusion models with an encoder-decoder transformer architecture provides
a scalable way to address some of the fundamental shortcomings posed by autore-
gressive models. Diffusion models can arrive at predictions through many forward
passes in latent space, and their reasoning is not handicapped by the order of the
tokens in the dataset. Through our experiments, we show that latent diffusion lan-
guage models is a feasible approach towards scalable language models that have
general complex reasoning abilities.

1 INTRODUCTION

In recent years, autoregressive large language models (LLMs) have become the de-facto for
natural language generation (Team et al., 2024; Radford et al., 2019). The excellent scalability of
transformers combined with the availability of large datasets has led to many practical applications
where language models elicit impressive emergent capabilities. However, even the biggest corporate
LLMs still struggle with complex reasoning benchmarks (Sawada et al., 2023). Prior work has
shown that LLMs are limited by their autoregressive nature because the FLOPs used to generate
each token is constant regardless of the difficulty of the token (Bachmann & Nagarajan, 2024). Ad-
ditionally, the model has to generate tokens in the order of the dataset it is trained on and therefore
cannot solve easier subproblems first (Bachmann & Nagarajan, 2024). The model will not ex-
plicitly generate easier reasoning chains first unless explicitly fine-tuned to do so on a subset of tasks.

Numerous approaches have tried to tackle this problem such as chain-of-thought (CoT) prompting
(Wei et al., 2022), enhancing model reasoning with longer context (Dai et al., 2019), or encoding
recurrence into transformers (Hutchins et al., 2022; Bulatov et al., 2022). These approaches,
however, are not a general solution to these shortcomings because pretraining datasets are rarely
CoT prompted, and compute allocated to each token is still constant. This is a fundamental
limitation when solving math problems. For example, not all tokens have equal difficulty, and
often times the answer to easier subproblems lead to better answers for harder subproblems (e.g.
geometry, algebra). Even though recurrent models can perform many forward passes in latent
space, prior work has not been able to scale efficiently due to its memory requirements, and it has
been observed that long unrolls lead to exploding or vanishing gradients (Vicol et al., 2021).

In this paper, we propose to combine latent diffusion models (LDMs) with encoder-decoder trans-
formers in an attempt to solve the mentioned shortcomings that are posed by autoregressive LLMs.
In contrast to traditional LLMs, LDMs generate a latent vector by iteratively denoising Gaussian
noise throughout many timesteps, which intuitvely makes it more suitable for tasks that require ex-
trapolating many facts over long horizons. Prior work has shown that text diffusion models elicit
self-correction abilities, where reasoning steps can be generated non sequentially and that the model
learns to correct its wrong answers from easier (and correct) reasoning steps (Ye et al., 2024). LDMs
perform reasoning in latent space which is semantically richer than discrete tokens. For a specific
task, the required semantics might not be representable by its token embeddings (e.g. spatial rea-
soning). LDMs also do not suffer from memory requirements and instabilities encountered by back-
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propagation through time (where it is a common practice to set max timesteps to 1000 or 4000). This
is due to the fact that gradients are not propagated through the same parameters multiple times (Ho
et al., 2020; Nichol & Dhariwal, 2021) which makes it an appealing candidate to solve the aforemen-
tioned shortcomings. It has also been shown that latent diffusion text models outperform discrete
diffusion text models, strengthening our claim that operating in latent space yields improvements
over operating with discrete tokens (He et al., 2022; Lovelace et al., 2024b).

We summarize the benefits of combining LDMs with encoder-decoder language models for complex
reasoning task as follows:

1. It can do reasoning in semantic space and does not rely on discrete tokens where the accu-
mulation of knowledge per forward pass only amounts to that particular generated token.

2. It can perform reasoning non-sequentially regardless of the order of the tokens in the train-
ing data. Throughout denoising steps, LDMs elicit self-correction where correct reasoning
steps lead to corrections on harder reasoning steps.

3. It does not run into memory bottlenecks and instabilities that are encountered by recur-
rent transformers as we scale to larger unroll lengths because gradients are not propagated
through the same parameters multiple times.

2 RELATED WORK / PRELIMINARIES

Generative pretrained transformers (GPTs) have significantly transformed natural language process-
ing demonstrating exceptional scalability and achieving state-of-the-art performance on a variety of
downstream tasks, including translation, summarization, and instruction following (Achiam et al.,
2023). Meanwhile, image generation also had a renaissance powered by LDMs (Yang et al., 2023).
By iteratively denoising an image distribution from Gaussian noise, diffusion models have been
able to outperform generative adversarial networks on image generation benchmarks. Continuing
research on LDMs have also found that these models generate more diverse image samples, and
techniques such as Min-SNR-γ (Hang et al., 2023) and progressive distillation (Salimans & Ho,
2022) improved the efficiency of the training and inference such that LDMs can now generate high
quality images and videos at a fraction of the cost (Rombach et al., 2022). Since this paper combines
diffusion with autoregressive encoder-decoder language models, we briefly review the literature on
the reasoning abilities of LLMs and some basic concepts to understand diffusion models.

2.1 DENOISING DIFFUSION PROBABILISTIC MODELS

DDPMs (Ho et al., 2020) are a class of diffusion models that iteratively construct an image from
random Gaussian noise. We define x0 as the original image which is slowly corrupted into random
Gaussian noise iteratively. The forward process, which converts the original image into a corrupted
image (by adding Gaussian noise), can be formulated as xt =

√
ᾱtx0+

√
1− ᾱtϵ where we sample

noise ϵ ∼ N (0, I), and ᾱt is a noise scheduling hyperparameter that controls how noise is applied
on different timesteps. In order to learn the reverse process to reconstruct the target image x0, a
model θ is learned to predict the noise at each timestep, which is optimized by minimizing a simple
mean squared error loss between ϵ̂ = ϵθ(xt, t), the estimated noise of time t, and ϵ: Lsimple (θ) =

∥ϵθ (xt, t)− ϵ∥22. During each iteration of inference, random Gaussian noise can then be turned into
an image according to a target data distribution by iteratively removing ϵθ (xt, t). For each sampling
step, the denoised image for the next step is given by xt−1 = 1√

αt

(
xt − 1−αt√

1−ᾱt
ϵθ (xt, t)

)
+ σtz

where we sample noise z ∼ N (0, I), σt is the standard deviation, and ᾱt =
∏t

s=1 αs.

2.2 SCALABLE DIFFUSION MODELS WITH TRANSFORMERS

Diffusion transformers (DiT) is a variant of transformer that has been modified to incorporate con-
ditioning information for diffusion (Peebles & Xie, 2023). Conditional image generation can be
formulated as the probability of an image x given information such as a class label c, pθ(x|c),
where c is an additional information (such as the class of an image). The DiT architecture con-
sists of adaLN-zero blocks (Peebles & Xie, 2023) which incorporate conditioning information by
regressing dimension-wise over the scale and shift parameters used in adaptive layer normalization

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(adaLN) from the sum of the embedding vectors of the current timestep t and class c. In addition to
adaLN, DiT also regresses dimension-wise scaling parameters that are added prior to any residual
connections. They further initialize all multilayer perceptron to output the zero-vector for α since
this initializes the residual block to an identity block (by adding zero to the residual connections)
which leads to faster convergence empirically. DiT has shown to outperform traditional U-Net as
backbone for diffusion due to its remarkable scaling properties.

2.3 DIFFUSION-OF-THOUGHT

Due to the difficulty of reasoning tasks, LLMs perform poorly when they are tasked to directly
output an answer to a difficult reasoning problem. Therefore, CoT is a technique to improve LLM
accuracy by fine-tuning it to output a reasoning chain before the final answer (Wei et al., 2022). This
increases LLMs performance on hard reasoning benchmarks because the model can generate easier
reasoning first that can aid it in finding the final answer. Diffusion-of-thought (DoT) attempts to take
it a step further by having a discrete diffusion model diffuse CoT tokens. The authors found out that
DoT elicits self-correction abilities which is in contrast to traditional LLMs Huang & Chang (2022).
Our work attempts to take it a step further by augmenting it with LLMs so that it can get the best of
both worlds (efficient pretraining and strong reasoning abilities).

2.4 STEP-DPO

Mathematical reasoning is recognized as a long-chain reasoning ability in LLMs (Lai et al., 2024).
Previous work has tried to tackle this by applying Direct Preference Optimization (DPO) (Rafailov
et al., 2024) to the reasoning chain with the correct answer but with limited success. Step-DPO
addresses this issue by applying DPO to each reasoning step, and curate a dataset that contains
pairwise preference data generated by the model itself, which has been shown to improve training
compared to GPT-4 generated data and human labeled data Lai et al. (2024). With our proposed
model architecture, we show that diffusion can be an add-on to step-DPO.

2.5 INTEGRATING MONTE CARLO TREE SEARCH FOR LLM REASONING

Contuining work on LLM reasoning has turned to Monte Carlo tree search (MTCS) to create a
self-improving loop without the addition of annotated data (Tian et al., 2024). Since outputs from
MCTS are usually in much better quality, the gap ensures that LLM can continue to self-improve.
Results show that this method improves performance by as much as 30% for GSM8K and MATH
benchmarks Tian et al. (2024). Our proposed method can also be added on to the MTCS-based
reasoning approaches.

3 PROPOSED METHOD

In this paper, we propose to merge the encoder-decoder language model with LDMs in an attempt
to enhance reasoning in natural language processing. We use pretrained encoder-decoder LLMs
as our base model since these LLMs already contain high-level semantics that have been learned
from large corpus of text. Particularly, we use BART (Lewis et al., 2019) extensively throughout
our experiments to obtain its encoder representations. In constrast to next sequence prediction, the
decoder is fine-tuned to generate the original sequence given the encoder representation.

The main training consists of two stages. First, we fine-tune the decoder and an autoencoder such
that the variable length encoder representation can be compressed to a fixed length latent, which
can then be decoded back to its original token sequence. This improves reliability and efficiency
because diffusion models are more compute efficient at training smaller dimensional latent variables
and input tokens inherently have different lengths. Second, we train a diffusion model such that
the diffusion transformer denoises the target sequence compressed latent conditioned on the input
sequence compressed latent. Reasoning is achieved by iteratively constructing the target latent
through many forward passes in the diffusion model.
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Figure 1: Overview of our proposed architecture to improve reasoning.

During inference, the input sequence is fed into the encoder and autoencoder to obtain the
compressed input latent which is then used to condition the diffusion transformer to generate a
compressed target latent. This compressed representation is then passed through the autoencoder
and decoder to generate the predicted target sequence.

The following sections describe in more detail the architecture of the latent models and diffusion
models and how they are trained.

3.1 LATENT MODELS FINE-TUNING

Formally, we define a sequence of tokens as x = (w1, ..., wn) which are sampled from a dataset to
get its inputs and corresponding targets (xinput, xtarget) ∼ D. Then, we aim to learn a language
autoencoder θ such that x can be reconstructed by passing through an encoder Eθ and decoder Dθ;
that is, x ≈ Dθ(Eθ(x)). In our setting, Eθ(x) = Eae(Elm(x)), and Dθ(x) = Dlm(Dae(x))
where both the encoder and decoder are composed by an autoencoder denoted by Eae and Dae and
a pretrained BART encoder and decoder denoted by Elm and Dlm, respectively. Since changes in
the dimensionality of the latent representation can lead to drastic changes in final performance (He
et al., 2022; Nichol & Dhariwal, 2021), we compress the encoder representation to a fixed latent
space with length lae = 16 and dimension dae = 256. The autoencoder architecture consists of
only cross-attention transformer blocks where first block queries are learned from learnable hyper-
parameters of the target dimensions, and key and values are learned from the encoder representation
or compressed representations. We did not ablate over the autoencoder design choice. Our goal is to
have the compressed latents contain both low level features and high level semantics instead of sim-
ply compressing the token sequences, so we freeze Elm during all training stages because high level
semantics are obtained from BART since they are not retrained to overfit on simply compressing the
data.

3.2 LATENT DIFFUSION

The second stage simply consists of learning a diffusion model in the latent space learned by the
autoencoder. The compressed latents with length lae = 16 and dimension dae = 256 are then pro-
jected up to dimension dproj which is then reshaped into length ldiffusion and a fixed dimension
ddiffusion = 768. Since DiT scales with decreasing patch size (or increasing sequence length),
we ablate sequence length for DiT to determine whether the same scaling law holds for latent text
diffusion. We follow the standard DDPM approach to train x0 and train the variance Σθ with the
full loss L(θ) = − log pθ(x0|x1)+

∑
t DKL(q

∗(xt−1|xt, x0)∥pθ(xt−1|xt)). In preliminary exper-
iments, we observed that predicting x0 instead of ϵθ was crucial to generate coherent text, and that
pretrained encoder-decoder transformers are not sensitive to small pertubations of encoder represen-
tations. We use a cosine schedule with the max timestep as T = 1000 since higher T improves the
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log-likelihood of the generated samples (Nichol & Dhariwal, 2021), and that we can always sample
more efficiently using different samplers from the literature that trade off sample quality.

3.3 IMPROVEMENTS

In addition to using diffusion to predict the target tokens, we could alternatively concatenate the
input token sequences or representations to the decoder input to allow the decoder to do additional
computations before outputting tokens to improve Perplexity. If we add noise to the encoder rep-
resentation during training, it learns to differentiate between noise and signal from representations,
teaching it that the diffusion output contains useful semantics but are not always reliable. Alterna-
tively, we could also use encoders trained with contrastive learning to improve the quality of the
latent representations. This allows the architecture to retain GPT performance while being able to
solve additional reasoning tasks with diffusion output. If the latent representations from diffusion is
unreliable, then the model defaults to autoregressive inference (Lovelace et al., 2024a). We opt to
only give diffusion output to the decoder since the performance improvements would also depend
on the decoder which would not reflect the capabilities of diffusion.

3.4 COMPARISON AGAINST STATE-OF-THE-ART

Previous related work shows that discrete diffusion models have reasoning potential but lack the
training efficiency to rival traditional LLMs (Gulrajani & Hashimoto, 2024). By combining encoder-
decoder transformer with diffusion, we can leverage the best of both worlds: training efficiency and
enhanced reasoning. Since representation is learned using traditional LLMs, the diffusion model is
able to directly utilize high-level semantics without the inefficiencies of training diffusion. Addi-
tionally, if the decoder takes in input tokens alongside output from diffusion, it can selectively utilize
signals from the diffused latent representation for complex reasoning tasks while discarding noise
if the output is not useful (such as when optimizing for Perplexity instead of BertScore). This work
does not overlap most prior work on reasoning, making it a suitable add-on to the state-of-the-art
reasoning techniques such as Monte Carlo tree search (Xie et al., 2024) or graph of thought (Besta
et al., 2024).

4 RESULTS

Throughout our experiments, we study the potential benefits and the scalability of our approach
to augment encoder-decoder LLMs with diffusion to enhance reasoning. Specifically, we test this
approach against tasks that aim to measure arithmetic reasoning and spatial reasoning. Additionally,
we ablate different architecture variants, diffusion sequence length, and model layers to determine
the best architecture for scaling. We then summarize our findings to provide insights on how to scale
this hybrid architecture.

4.1 ARITHMETIC REASONING

To analyze the performance of the proposed hybrid architecture with downstream math tasks, we
create single digit addition problem sets where 3-5 single digit numbers are added together. CoT
reasoning chains are provided as the target where the model is trained to iteratively add the first
two digits. The model is required to output the first token as an answer along with its subsequent
reasoning. Table 1 presents comparison between the performance of latent diffusion and fine-tuned
BART for arithmetic tasks.

Table 1: Single digit additions
Architecture Accuracy↑

Latent Diffusion (T=500) 97.2
Latent Diffusion (T=1000) 96.7
Latent Diffusion (T=4000) 97.3

BART (First token as answer) 1.3
BART (Last token as answer) 0.3
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We further study the proposed hybrid model’s performance by testing out different arithmetic tasks
that mirrors the arithmetic experiments done for GPT-3 (Brown, 2020). We observe that latent
diffusion performs remarkably well for its given model size. We acknowledge that this might not
be a fair comparison because GPT-3 is not fine-tuned for arithmetic tasks but it should still reflect
model capacity and scaling law.

Table 2: Double digit additions.
Architecture Accuracy↑

Latent Diffusion (T=1000, 140M) 87.2
BART (fine-tuned) 0.0

GPT-3 (400M) 5.0
GPT-3 (13B) 57.0

GPT-3 (175B) 99.0

Table 3: Single digit three operations.
Architecture Accuracy↑

Latent Diffusion (T=1000, 140M) 100.0
BART (fine-tuned) 11.8

GPT-3 (400M) 2.5
GPT-3 (13B) 10.5

GPT-3 (175B) 21.0

Given the same number of training iterations, our findings show that the proposed architecture learns
various arithmetic tasks while BART fails completely. The reason is that predicting the first token as
answer leads to worse performance for the encoder-decoder because it is unable to self-correct after
giving an incorrect answer and have to give subsequent reasoning for the wrong answer (OOD).
This is an advantage of diffusion because pretraining data scraped from the internet are rarely well
behaved (ordered from easy tokens to hard tokens).

4.2 MOCK SPATIAL REASONING

To study the benefits of latent diffusion augmented LLMs against conventional LLMs, we create a
mock spatial reasoning problem where four numbers are presented as input and the model is tasked
with coming up with the answer as the first token and subsequent reasoning. The reasoning consists
of rotations of up → down → left → right → up. Initially, we start with up, then rotate n times
where n is the first number, and each subsequent number reverses the direction of the rotation. For
example, given input 1 3, the output should be left. Specifically, the output sequence is left up down
up right where left is the final answer. We first start with up, then rotate one time to down, then
reverse direction and rotate three times to left.

The problem consists of easy reasoning chains which is required for computing the first token.
However, coming up with the first token directly is nearly impossible. In practice, reasoning might
not be representable by tokens but the model could still rely on high-level semantics learned by the
BART model’s encoder-decoder.

Table 4: Mock spatial reasoning for the rotation task.
Architecture Accuracy↑

Latent Diffusion (T=500) 90.4
Latent Diffusion (T=1000) 92.3
Latent Diffusion (T=4000) 89.5

BART (fine-tuned) 0.0

The Encoder-Decoder performs as good as the random baseline throughout training, and predicted
the end of text token as the answer near the end of training. We show from the results that latent
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diffusion does not have to rely on the order of the dataset and can do easy reasoning chains to
extrapolate harder answers. Many hard reasoning problems in the real world are impractical to
be represented by CoT tokens, therefore, doing reasoning in latent space could be a promising
alternative. Augmenting latent diffusion also has an additional benefit when there is many repetition
in the reasoning chain. For example, if reasoning requires many multiplication arithmetics, diffusion
is able to reuse its layers to compute many repetitive multiplications throughout many timesteps,
whereas autoregressive models can only use the same layer once to produce a token.

4.3 ABLATIONS

We first ablate different architectures to incorporate input text conditioning since text latents could
have different properties compared to image class labels (Table 5 presents the results). Throughout
experiments, we found that in-context conditioning has minimal compute overhead, while having
negligible difference on BertScore, hence we adopt in-context conditioning for most of the ablations.
We use the Common Crawl (C4) dataset for all of the ablation experiments since it includes a variety
of different sequences from most domains.

In-Context · We concatenate the noised target representation sequence with the input representation
sequence. The output is split into two sequences, where the first one is the model output, and the
second one is the predicted variance.

Cross-Attention · An additional cross-attention module is added after self-attention for each
DiT block to incorporate input text conditioning.

AdaLN-Zero · Input text conditioning information is incorporated by adding it to the timestep
representation which is fed into the AdaLN-Zero block similar to the DiT architecture for class
labels.

We further observe improved performance with increasing depth. However, we observe a weak
negative correlation between both metrics and loss with increasing diffusion sequence length which
is in contrast to image diffusion transformers. This suggests that further architecture improvements
can be made or scaling should be done through increasing layers and not sequence length. We further
observe that BertScore does not always correlate with Perplexity, which leads us to hypothesize that
the loss function that optimizes representation could sacrifice coherence for semantic similarity.
Hence we use BertScore as the main metric for determining performance since it also correlates
better with loss, whereas Perplexity has very high variance and depends significantly on the target
sequence length and architecture. Images are known to be more parallelizable since there are more
independent patches whereas text data are more interdependent.

To further study the effects of high-level semantics learned by the encoder-decoder architecture, we
compare the performance of BART-base (140M parameters) and BART-large (406M parameters) to
determine whether the improved quality of both low- and high-level representations also carries over
after augmenting with LDMs of the same size. The results show that diffusing better representations
from pretrained weights improves BertScore.

We highlight that for this experiment, instead of compressing the last representation of the encoder,
we compress the concatenation of the first and last representation of the encoder. This is due to the
observation that the decoder did not provide an accurate reconstruction of the original text from
only the last encoder representation of BART-large.

We’ve found that generation length decreases with longer training times from preliminary
experiments which led to uncomparable BertScores since longer sequences have higher BertScores
on average and that shorter sequences have lower Perplexity on average. One hypothesis is that the
diffusion model only denoises signals from earlier tokens since they have lower variance (e.g. the
next token is easier to predict than the 16th token), leading to later positions denoised as paddings.
Since experiments are trained with different hyperparameters for different learned generation
lengths, metrics cannot be compared between different experiments. Further research on how to
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Table 5: Model, architecture, sequence length, and model depth ablation studies
Architecture Layers Sequence Length BertScore↑
In-Context 6 16 70.0
In-Context 12 16 70.2
In-Context 24 16 70.6
In-Context 6 16 70.0
In-Context 6 32 70.2
In-Context 6 64 69.6

Cross-Attention 6 16 70.2
Cross-Attention 12 16 70.4
Cross-Attention 24 16 70.4
Cross-Attention 6 16 70.2
Cross-Attention 6 32 70.0
Cross-Attention 6 64 68.1

AdaLN-Zero 6 16 69.7
AdaLN-Zero 12 16 69.8
AdaLN-Zero 24 16 70.1
AdaLN-Zero 6 16 69.7
AdaLN-Zero 6 32 69.0
AdaLN-Zero 6 64 70.1

Table 6: Comparison between BART-base and BART-large.

Model BertScore↑
BART-base 67.64
BART-large 69.80

better evaluate these variable length diffusion models will be required to improve the reliability of
current metrics.

5 IMPLEMENTATION DETAILS

Throughout our experiments, we adopt classifer-free guidance to improve sample quality at the
expense of sample diversity. We also use Min-SNR-γ because it improves the training efficiency.

5.1 CLASSIFIER-FREE GUIDANCE

Classifier-free guidance is widely known to improve sample quality. (Ho & Salimans, 2022; Nichol
et al., 2021). By jointly training the unconditional pθ(x) and conditional pθ(x|c) model for a specific
class c, we can sample using a linear combination of the score estimates. This is relatively straight-
forward to implement by randomly setting pθ(x|c = ∅) during training. Classifier-free guidance
can be used to encourage the sampling procedure such that log p(c|x) is high and tradeoff between
sample quality and diversity.

5.2 MIN-SNR-γ

Min-SNR-γ (Hang et al., 2023) improves the training efficiency by weighing each loss term as
wt = min{SNR(t), γ} where t is the timestep and γ is a hyperparameter. By taking into account
the signal-to-noise ratio (SNR), min-SNR-γ is better able to traverse the loss landscape by weighing
conflicting gradients between earlier and later diffusion steps. Furthermore, Min-SNR-γ takes the
minimum between SNR(t) and γ to avoid the model focusing too much on small noise levels. All
training run uses γ = 5 as our weighing strategy.
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6 DISCUSSION

It has been known that diffusion language models yield better diversity when generating text. We
show from our work that augmenting latent diffusion with language models outperforms autore-
gressive models for certain reasoning cases. A notable limitation of diffusion is that it is relatively
inefficient to train compared to conventional language models. One hypothesis is that there is a com-
binatorial explosion as more tokens are diffused at once, hence the gradients are not as well-behaved
(noisy gradient landscapes). As research on diffusion continues, we should expect that it will
play a more prominent role in natural language processing to address some of our current limitations.

An exciting research direction would be to utilize the proposed architecture for idea generation
while implementing the ideas with the same architecture specialized for coding. This could be a
feasible approach towards artificial general intelligence (AGI) because it has more diverse ideas,
and it can directly implement the programs by reasoning about the structure of the code in latent
space beforehand. This could initiate recursive self-improvement, leading to increasingly automated
deep learning research. However, due to its inefficiencies and other potential obstacles, it remains
uncertain how far we can practically scale such architectures with current hardware and algorithms.

7 CONCLUSION

Reasoning involves extrapolating across many facts over extended horizons. In this paper, we
demonstrated that augmenting latent diffusion with encoder-decoder architecture outperforms au-
toregressive language models in scenarios where tokens have different levels of difficulty (more
reasoning required), and that adhering strictly to the sequential order of the dataset is not beneficial
for accuracy. We propose that this architecture offers a promising approach for solving real-world
reasoning tasks by operating in latent space. To our knowledge, this is the first work exploring the
augmentation of latent diffusion for reasoning. As research on diffusion models continue to narrow
the gap with autoregressive models, we are optimistic that this new architecture can achieve better
reasoning with further scale and advancements.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. arXiv preprint
arXiv:2403.06963, 2024.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 17682–17690, 2024.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev. Recurrent memory transformer. Advances in
Neural Information Processing Systems, 35:11079–11091, 2022.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Ishaan Gulrajani and Tatsunori B Hashimoto. Likelihood-based diffusion language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Tiankai Hang, Shuyang Gu, Chen Li, Jianmin Bao, Dong Chen, Han Hu, Xin Geng, and Baining
Guo. Efficient diffusion training via min-snr weighting strategy. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 7441–7451, 2023.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Zhengfu He, Tianxiang Sun, Kuanning Wang, Xuanjing Huang, and Xipeng Qiu. Diffusion-
bert: Improving generative masked language models with diffusion models. arXiv preprint
arXiv:2211.15029, 2022.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
arXiv preprint arXiv:2212.10403, 2022.

DeLesley Hutchins, Imanol Schlag, Yuhuai Wu, Ethan Dyer, and Behnam Neyshabur. Block-
recurrent transformers. Advances in neural information processing systems, 35:33248–33261,
2022.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-
wise preference optimization for long-chain reasoning of llms, 2024. URL https://arxiv.
org/abs/2406.18629.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461, 2019.

Justin Lovelace, Varsha Kishore, Yiwei Chen, and Kilian Q Weinberger. Diffusion guided language
modeling. arXiv preprint arXiv:2408.04220, 2024a.

Justin Lovelace, Varsha Kishore, Chao Wan, Eliot Shekhtman, and Kilian Q Weinberger. Latent dif-
fusion for language generation. Advances in Neural Information Processing Systems, 36, 2024b.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning, pp. 8162–8171. PMLR, 2021.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Tomohiro Sawada, Daniel Paleka, Alexander Havrilla, Pranav Tadepalli, Paula Vidas, Alexander
Kranias, John J Nay, Kshitij Gupta, and Aran Komatsuzaki. Arb: Advanced reasoning benchmark
for large language models. arXiv preprint arXiv:2307.13692, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

10

https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Haitao Mi, and Dong Yu. Toward self-
improvement of llms via imagination, searching, and criticizing, 2024. URL https://arxiv.
org/abs/2404.12253.

Paul Vicol, Luke Metz, and Jascha Sohl-Dickstein. Unbiased gradient estimation in unrolled com-
putation graphs with persistent evolution strategies. In International Conference on Machine
Learning, pp. 10553–10563. PMLR, 2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi,
and Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning.
arXiv preprint arXiv:2405.00451, 2024.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM Computing Surveys, 56(4):1–39, 2023.

Jiacheng Ye, Shansan Gong, Liheng Chen, Lin Zheng, Jiahui Gao, Han Shi, Chuan Wu, Zhenguo
Li, Wei Bi, and Lingpeng Kong. Diffusion of thoughts: Chain-of-thought reasoning in diffusion
language models. arXiv preprint arXiv:2402.07754, 2024.

A TRAINING HYPERPARAMETERS

A.1 ABLATING ARCHITECTURE

Hyperparameters In-Context Cross-Attention AdaLN-Zero
Diffusion sequence length 16 (each input) 32 32
Depth 12
Batch size 128
Sequence Length 64
Latents sequence length 8
Latents dim 256
Hidden size 768
Number of heads 12
Total timesteps (T) 1000
Learning rate 1e-4
Iterations 200k
Floating Point float32

A.2 ABLATING DEPTH

Hyperparameters 6 Layers 12 Layers 24 Layers
Layers 6 12 24
Architecture In Context
Diffusion sequence length 16
Batch size 128
Sequence Length 128
Latents sequence length 16
Latents dim 256
Hidden size 768
Number of heads 12
Total timesteps (T) 1000
Learning rate 1e-4
Iterations 200k
Floating Point float16
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A.3 ABLATING DIFFUSION SEQUENCE LENGTH

Hyperparameters In Context 16 In Context 32 In Context 64
Diffusion sequence length 16 32 64
Batch size 128
Sequence Length 128
Latents sequence length 16
Latents dim 256
Hidden size 768
Number of heads 12
Layers 6
Total timesteps (T) 1000
Learning rate 1e-4
Iterations 200k
Floating Point float16

A.4 ABLATING ENCODER REPRESENTATIONS

Hyperparameters BART-base T5-large
Diffusion sequence length 64
Batch size 128
Sequence Length 128
Latents sequence length 16
Latents dim 256
Hidden size 768
Number of heads 12
Layers 18
Total timesteps (T) 1000
Learning rate 1e-4
Iterations 200k
Floating Point bfloat16

A.5 MOCK SPATIAL REASONING FOR THE ROTATION TASK.

Hyperparameters LD (T=500) LD (T=1000) LD (T=4000) Encoder-Decoder
Diffusion sequence length 16 -
Sequence Length 128 -
Latents sequence length 16 -
Latents dim 256 -
Hidden size 768 -
Number of heads 12 -
Layers 24 -
Total timesteps (T) 500 1000 4000 -
Pretrained Encoder-Decoder BART-base BART-base BART-base BART-base
Batch size 128 128 128 128
Learning rate 1e-4 1e-4 1e-4 1e-4
Iterations 500k 500k 500k 500k
Floating Point bfloat16 bfloat16 bfloat16 bfloat16
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A.6 BIG TRAINING RUN

Hyperparameters Main Run
Architecture Cross-Attention
Diffusion sequence length 32
Sequence Length 128
Latents sequence length 16
Latents dim 256
Hidden size 768
Number of heads 12
Layers 24
Total timesteps (T) 1000
Pretrained Encoder-Decoder BART-base
Batch size 128
Learning rate 1e-4
Floating Point bfloat16

A.7 MULTISTEP ADDITION

Hyperparameters LD (T=500) LD (T=1000) LD (T=4000) Encoder-Decoder
Diffusion sequence length 16 -
Sequence Length 128 -
Latents sequence length 16 -
Latents dim 256 -
Hidden size 768 -
Number of heads 12 -
Layers 24 -
Total timesteps (T) 500 1000 4000 -
Pretrained Encoder-Decoder BART-base BART-base BART-base BART-base
Batch size 128 128 128 128
Learning rate 1e-4 1e-4 1e-4 1e-4
Iterations 500k 500k 500k 500k
Floating Point bfloat16 bfloat16 bfloat16 bfloat16
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