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Abstract

Novel reinforcement learning algorithms, or im-
provements on existing ones, are commonly jus-
tified by evaluating their performance on bench-
mark environments and are compared to an ever-
changing set of standard algorithms. However,
despite numerous calls for improvements, experi-
mental practices continue to produce misleading
or unsupported claims. One reason for the on-
going substandard practices is that conducting
rigorous benchmarking experiments requires sub-
stantial computational time. This work investi-
gates the sources of increased computation costs
in rigorous experiment designs. We show that con-
ducting rigorous performance benchmarks will
likely have computational costs that are often pro-
hibitive. As a result, we argue for using an addi-
tional experimentation paradigm to overcome the
limitations of benchmarking.

1. Introduction
Performance evaluation has long been standard practice in
reinforcement learning (RL) research. Performance, e.g.,
the expected cumulative reward on a particular problem, is
also often the primary highlight in highly publicized works
(Mnih et al., 2015; Silver et al., 2016; Vinyals et al., 2019;
Berner et al., 2019; Ecoffet et al., 2021; OpenAI et al., 2019).
In fact, according to our survey of NeurIPS 2022 RL papers
(see Appendix A), performance evaluation is the primary
form of experimentation, with 91% of empirical papers
using it. This emphasis on performance evaluation has
been systematised into a standard protocol for RL research:
propose a new algorithm, describe it, and demonstrate its
superiority to existing algorithms on benchmark problems.
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The widespread use of this experiment paradigm also propa-
gated its issues. Many articles have pointed out problems
with reproducibility (Henderson et al., 2018; Islam et al.,
2017; Smith, 2018; Engstrom et al., 2020) or statistical
analyses (Colas et al., 2018; Agarwal et al., 2021). Other
works have examined methodological issues (Patterson et al.,
2023), showing that performance evaluation is sensitive to
subtle factors such as hyperparameter selection, score nor-
malization, and the weight assigned to each task in an aggre-
gate performance measure (Jordan et al., 2020; Whiteson
et al., 2011; Balduzzi et al., 2018; Eimer et al., 2023). These
works propose new methods to control for sources of vari-
ation in performance and make the process more rigorous,
including running more trials. However, these techniques
are not always straightforward and can complicate the pro-
cess further. With increased complexity and cost, few have
adopted these more rigorous and expensive practices.

Instead of attempting to improve the standard benchmarking
process further, we question if it is computationally feasible
to have rigorous benchmarking procedures. We will show
that it is often prohibitively expensive to have benchmarking
procedure that can reliably detect statistically significant dif-
ferences in algorithm performance. As a result it is unlikely
that benchmarking procedures by themselves will be able
to provide strong evidence for strong claims. An additional
empirical tool is needed to provide such support.

Although cost is a significant limitation of benchmarking,
its primary limitation is that it can only identify that an
algorithm worked well, but not why. Developing the under-
standing of how or when an algorithm succeeds or fails is
crucial for making algorithmic improvements. Both these
limitations of benchmarking can be avoided by asking a
different type of question, specifically, one that is aimed
at understanding how an algorithm works. Borrowing the
terminology of Hooker (1995), we refer to scientific testing
as the process of using carefully controlled experiments to
understand an algorithm. In addition to producing different
insights, scientific testing is not limited to the same com-
putational burdens as benchmarking. This is because the
set of interesting questions is not limited to running an al-
gorithm many times on many environments. As such there
usually exist interesting questions for any computational
budget. These kind of experiments are not uncommon, they
are present in approximately 35% of papers in our survey,
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but they do not receive the same emphasis as benchmarking.

The position of this paper is that rigorous benchmark-
ing is expensive and it is unlikely for the community to
resolve this issue. Thus, benchmarking should not be
the sole evidence for proving that an algorithmic idea
is correct. Instead using scientific testing to answer ques-
tions aimed at understanding how an algorithm works can
supplement the weaknesses of benchmarking. Together
these experimentation styles can provide a more complete
understanding of a proposed algorithm.

We support this argument in two ways. First, we show
that unless compute clusters with thousands of cores are
available and it only takes a few minutes to run an algo-
rithm, rigorous benchmarking will require too many trials
(or seeds) to be practical. Second, we use exploration al-
gorithms to demonstrate how scientific testing can produce
additional insights, not possible with benchmarking alone.

2. Background
This section provides background on RL, performance evalu-
ation procedures, and defines notation. For simplicity of no-
tation, we assume that an RL agent interacts with a discrete
episodic Markov decision process (MDP). For each time
step t ∈ {1, 2, . . . }, the agent observes the state St ∈ S,
takes the action At ∈ A, then transitions to the next state
St+1 and receives the reward Rt+1 ∈ R, where S is the set
of all states and A is the set of all actions. This process
repeats until, at some finite time t, the agent transitions to
a terminal absorbing state where all rewards are zero. The
initial state is sampled from the initial state distribution
d0, i.e., d0(s) := Pr(S0 = s). The agent’s objective is to
find a policy π, the process an agent uses to selects actions,
that maximizes the expected discounted sum of rewards
(called the return), i.e., J(π) := E [

∑∞
t=0 γ

tRt+1], where
γ ∈ (0, 1] is the reward discount factor and π is a policy.

We consider evaluation procedures that compare the perfor-
mance of a set of algorithms U on a set of environments M.
Performance is a user-specified metric quantifying how well
an algorithm i solves an environment j, and is represented
by the random variable Xi,j . The metric used in this work
is J(πfinal), where πfinal is the policy returned by the algo-
rithm after a fixed number of episodes.1 The performance
evaluation procedure’s purpose is to estimate an aggregate
performance measure, yi, for each algorithm i ∈ U , using
samples of Xi,j , so that yi summarizes each algorithm’s

1Our conclusions will likely apply to other metrics (e.g., the
average return from each episode) since the essential factor in
the number of required trials to evaluate algorithm performance
is how similar the algorithms’ performance metrics are for each
environment and not what the metric represents.

performance across all environments:

yi :=
∑
j∈M

∑
k∈U

qj,kE [gj(Xi,j , k)] , (1)

where gj(x, k) normalizes a score x (a realization of Xi,j)
relative to the performance of an algorithm k, which is taken
as a baseline, and q ∈ [0, 1]|M|×|U|, represents a weighting
for each environment and normalization baseline algorithm
k, with

∑
j,k qj,k = 1. To construct yi, one needs to choose

a way to sample each Xi,j , normalize an algorithm’s perfor-
mance on each environment, and aggregate the performance
on each environment into a single score. To sample per-
formance we use the fully-specified algorithms approach
(Jordan et al., 2020; Patterson et al., 2023), where an algo-
rithm is fully-specified when there are no hyperparameters
the user needs to set. For the experiments below, we use
the algorithms and specifications defined by Jordan et al.
(2020). We review the other components of the evaluation
procedure below.

For a meaningful comparison across environments, the per-
formance metrics need to be scaled so each metric is on
a similar scale for all environments. In this work, we in-
vestigate the relative normalization techniques performance
ratios that scale the performance of an algorithm i relative to
the performance of another baseline algorithm k. We present
results for another normalization technique in Appendix C.
Performance ratios are a common technique that normalizes
a score x proportionally to the baseline algorithm’s perfor-
mance, i.e., gj(x, k) =

x−aj

E[Xk,j ]−aj
, where aj is a constant

representing the minimum possible performance on environ-
ment j. This method assumes that the difficulty of achieving
a given level of performance is linear relative to the baseline
algorithm k’s performance. The baseline algorithm k needs
to be chosen, but choosing one particular baseline algorithm
could unintentionally favor one particular algorithm over an-
other in the final aggregate performance measure (Fleming
& Wallace, 1986). Instead of choosing a single algorithm
k, we use a weighted combination (defined below) of all
algorithms, e.g., the weights q in (1).

To obtain an aggregate measure, one needs to choose a
statistical parameter to summarize the performance across
environments and select a weighting for each environment.
The most common statistical parameter to summarize per-
formance across environments is the mean, but some have
proposed other parameters such as the median or interquar-
tile mean (Agarwal et al., 2021), which are robust and have
greater statistical efficiency (requires fewer samples for sta-
tistical significance). However, if one cares about identi-
fying algorithms that work reliably on each problem, then
a metric that includes the lower tail of the distribution is
more appropriate. Thus, to include the lower tail and for
simplicity, we focus on using the mean.
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Each environment does not have to be equally important ac-
cording to the weights q in the aggregate performance mea-
sure. One algorithm may even be ranked the best because
the weighting was favorable for that algorithm. Balduzzi
et al. (2018) showed that treating all environments as equally
important (a uniform weighting) led to misleading claims
of superhuman performance on Atari 2600 games. Instead
of a uniform weighting, one can automatically determine
a weighting such that no one algorithm can be ranked first
solely due to the choice of weighting by using an equilib-
rium solution to a two player game (Balduzzi et al., 2018).
We consider finding weights for both the environment and
normalization baseline k by finding the equilibrium solution

max
p

min
q

|U|∑
i=1

pi

|M|∑
j=1

U∑
k=1

qj,k E[gj(Xi,j , k)], (2)

where p ∈ [0, 1]|U| and
∑

i pi = 1. The weights q from the
equilibrium solution can be used in (1) to get yi.

Notice that due to stochasticity in the algorithms and envi-
ronments, yi will usually be unknown. Thus, for the exper-
imenter to confidently make claims about any algorithm’s
performance, the evaluation procedure needs to account for
uncertainty by constructing confidence intervals [Y −

i , Y +
i ]

for each yi such that for a confidence level α ∈ (0, 0.5],

Pr(∀i yi ∈ [Y −
i , Y +

i ]) ≥ 1− α. (3)

Unfortunately, applying typical concentration inequalities
(Hoeffding, 1994) to construct confidence intervals as above
is impossible because the aggregate measure uses weights
from an equilibrium solution, which are unknown. An al-
ternative is to use statistical bootstrapping (Efron, 1992),
which often produces narrow confidence intervals but tends
to be too narrow and not provide the coverage desired in
(3). While bootstrap intervals are not guaranteed to provide
valid confidence intervals, they are often the narrowest and
hold empirically in many settings. Since we primarily care
about evaluating how much uncertainty is produced by each
evaluation procedure, we use bootstrap intervals to approx-
imate a lower bound on the number of samples needed to
identify differences in algorithm performance.

3. Performance Evaluation
In this section, we conduct experiments to understand how
much uncertainty there is of the aggregate performance yi
for different configurations of the benchmarking process.
We investigate two choices for the weights q: Uniform and
Adversarial. Uniform uses an equal weight on each envi-
ronment and baseline algorithm for the score normalization.
Adversarial uses the game-based weighting for both the en-
vironment and normalization algorithm choice. We consider
other choices for the weights in Appendix C. Additionally,

we consider variations in the number of algorithms and en-
vironments. The experiments will examine the influence of
these factors on three measures of the amount of uncertainty
on yi: the width of the confidence intervals, the failure rate
of the confidence intervals, and the number of algorithms
that are not statistically significant from the best.

To measure the impact of each configuration, we will
use eight standard algorithms and fourteen classic bench-
mark environments (listed in Appendix B). To measure
the reliability of the confidence intervals, we need to have
ground truth information about each algorithm’s perfor-
mance. Since we do not know the performance distribution
for each algorithm, we will approximate it and treat the
approximate distribution as the ground truth. We create the
approximate distribution for each Xi,j from approximately
334,000 executions of each algorithm-environment pair.
We then create 1,000 datasets for different sample sizes,
(10, 25, 50, 100, 500, 1000), by sampling with replacement
from the empirical distribution. We treat each dataset as a
single trial of the evaluation procedure. To compute 95%
confidence intervals, we use the percentile bootstrap tech-
nique with 10,000 bootstrap samples and use Boole’s in-
equality (Boole, 1847) to correct for multiple comparisons
by scaling the confidence level δ by δ/(|U||M|); see Ap-
pendix E for more details. Additionally, as a reference, we
include experiments using confidence intervals leveraging
the t-distribution in Appendix D.

3.1. Understanding the Failures of Confidence Intervals

Two elements are required to make claims about the ranking
of algorithms: 1) the uncertainty in aggregate performance
must be small enough to differentiate two or more algo-
rithms’ performances, i.e., the confidence intervals do not
overlap, and 2) the uncertainty estimate must be accurate,
i.e., the inequality defined in 3 must hold. Because the boot-
strapped confidence intervals are not guaranteed to satisfy
3, we need to identify how much data is needed to differen-
tiate algorithm performances and how much data is needed
before the confidence intervals are reliable.

We first investigate how the number of random seeds per
algorithm-environment pair impact the average width of
the confidence intervals for each weighting method. We
illustrate the results in Figure 1. These plots show that
adversarial weightings add significant uncertainty to the
aggregate performance at medium and large sample sizes.
For example, at 100 random seeds, Adversarial has average
confidence interval width of approximately 0.183, while
the Uniform method only had an average width of approxi-
mately 0.150. This indicates that using adversarial weight-
ings makes estimating the aggregate performance a more
difficult statistical task. However, both weighting methods
have large uncertainty at small samples indicating that it
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Figure 1. This plot shows the average width, over all algorithms,
of the bootstrapped 95% confidence intervals versus the number of
samples (seeds) of each Xi,j . Different colors indicate a different
aggregate weighting method. The shaded regions represent stan-
dard deviations of average confidence interval width. A total of
1,000 independent trials of the evaluation procedure were executed
for each sample size. Note that a confidence interval width of 10−1

is substantial because the performance ratio will generally keep the
aggregate performance in the range [0, 1]. Additionally, this level
of confidence is only achieved after using more than 100 random
seeds per algorithm-environment pair. So it will take many random
seeds to make statistically significant comparisons between all
algorithms.

could require using hundreds to thousands of random seeds
per algorithm-environment pair to identify statistically sig-
nificant differences.

To investigate the limits of how few seeds are needed to
have reliable comparisons between algorithms over a set of
environments, we examine the rate at which the confidence
intervals fail for each method. We plot the confidence in-
terval failure rate in Figure 2. We see that the confidence
intervals for Adversarial are valid at sample sizes greater
than 10. We attribute this to the large confidence intervals:
even though they are valid, they cannot identify statisti-
cally significant differences, i.e., the confidence intervals
overlap. The Uniform weighting methods only achieve the
desired failure rate sample sizes greater than 100. Thus the
minimum number of seeds per algorithm-environment pair
needs to be at least 100, otherwise the we cannot trust the
confidence intervals.

Note that in the literature it is common for highly cited
works to only have few samples per algorithm-environment
pair, e.g., 1, 3, or 5 random seeds (Lillicrap et al., 2016;
Bellemare et al., 2017; Hessel et al., 2018; Schulman et al.,
2017; 2015; Haarnoja et al., 2018). Scaling up these exper-
iments to use enough random seeds to have reliable confi-
dence intervals requires at least 20-50 times more compute.
This is either impractical or too expensive (using cloud com-
puting services) when using environments that take hours to
complete a single run.
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Figure 2. This plot shows the coverage probability of the boot-
strapped 95% confidence intervals at each sample size (number
of random seeds). The shaded region represents 95% confidence
intervals of the coverage probability using the Clopper–Pearson
method (Clopper & Pearson, 1934). The dotted line indicates
the target failure rate of 0.05. Confidence interval methods can
only be relied when the failure is at or below the target level. In
this case, the bootstrap method is only usable when at least 10
(Adversarial-Both), 50 (Uniform-Both) or 100 (Adversarial-Env)
samples per algorithm-environment pair are available.

With the high failure rate of the confidence intervals in
Figure 2, it is unwise to blindly trust bootstrap to provide
reliable confidence intervals for a small number of samples,
as is currently practiced. This result further indicates that
rigorous evaluation with only a few trials per algorithm-
environment pair may be a rare possibility and, thus, em-
phasizes the difficulty of adequately comparing algorithms
using standard benchmarking methods, particularly when
the computational cost of running the algorithms on many
environments is non-negligible.

3.2. Impact of Number of Algorithms and Environments

The above results may only be relevant for the specific algo-
rithms and environments included in the evaluation. How-
ever, general properties of comparing random variables will
also be present in performance evaluation. For example, it is
easier to identify when two populations have different means
if they are far apart than when they are close. Similarly, if
one algorithm dominates others across all environments, it
should be easy to identify. Additionally, we want to under-
stand if there is a positive correlation between the number of
algorithms or environments and the amount of uncertainty
in aggregate performance. In this section, we conduct ex-
periments with different combinations of algorithms and
environments to study these questions.

We consider three sets of algorithms and environments to
test how different algorithm and environment combinations
can impact the amount of uncertainty on the aggregate per-
formance. The three sets of algorithms containing 8, 3,
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Figure 3. This plot illustrates the aggregate performance measure
and confidence intervals for each algorithm. These results used 50
seeds for each algorithm-environment pair, and each algorithm was
run on five environments. The algorithms with blue confidence
intervals indicate that any one of them could be the best algorithm,
i.e., a statistically significant difference can not be detected. We
use the number of these algorithms as the measure of uncertainty
for the plots in Figure 4.

and 3 algorithms, respectively. One of the sets of three al-
gorithms contains the algorithms Sarsa-Parl2, AC-Scaled,
and NAC-TD, which are well separated in aggregate per-
formance. The other set of algorithms contains Sarsa-Parl2,
Q-Parl2, and AC-Parl2, the top three algorithms in aggre-
gate performance. The three environment sets contain 14,
8, and 5 environments, respectively. The details of each set
are in Appendix B.

While the average confidence interval width allowed us to
compare uncertainty in the previous section, but it does not
provide a consistent measure of uncertainty when the set
of algorithms or environments are changed. Instead, we
define our own measure of uncertainty as the number of
algorithms with overlapping confidence intervals with the
first-ranked algorithm. This measure also reflects the goal
of many performance evaluations where experimenters seek
to identify the best algorithm. We illustrate this measure in
Figure 3.

We test the evaluation procedure with each algorithm and
environment set and show the results in Figure 4. The exact
results of any evaluation will depend on the specific combi-
nation of environments and algorithms, but there are several
revealing insights. The first is evident: if algorithms have
similar performance across environments, it will require
many random seeds to identify the differences in aggregate
performance. The results also suggest that unless the top
algorithm is close in performance to another algorithm, re-
ducing the number of algorithms to compare can make it
easier to identify the top algorithm. In an opposite trend, the
results suggest that using more environments reduces uncer-
tainty in the aggregate performance. Furthermore, because
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Figure 4. This plot shows the average number of algorithms that
have overlapping confidence intervals with the best algorithm. The
error bars represent the standard deviations. The solid lines cor-
respond to using adversarial weightings and the dashed lines for
uniform weightings. (Top) Each line color corresponds to a differ-
ent group of environments denoted by the number of environments.
(Bottom) Each line color corresponds to a different group of algo-
rithms denoted by the number of algorithms. 3 (Sep) and 3 (Sim)
correspond to the algorithm sets that are well separated and similar
in performance, respectively.

no one algorithm dominates across all environments, these
results show it can take hundreds or thousands of seeds to
identify the top-performing algorithm. Overall, these results
show that it can be hard to predict how many seeds will be
necessary to identify the top-performing algorithm.

We draw a few conclusions by examining the results of this
and the preceding section. First, the high failure rate of
bootstrap confidence intervals in Figure 2 means that RL
researchers should not rely on them for general benchmarks
with less than 100 seeds per algorithm-environment pair.
Second, having a rigorous benchmark that uses adversarial
weightings could require 1,000 seeds or more to identify
the top algorithm unless it dominates the other algorithms
across all environments. Lastly, all of these results make
it clear that benchmarking RL algorithms is an expensive
experimentation practice.

Moreover, the complexity of the environments and the com-
putational resources required to run algorithms is increasing.
Thus, benchmarking will take even longer to complete in
the future and it may only be possible to run an algorithm
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once. With these insights, researchers should (1) soften
their claims about ranking algorithms via benchmarking,
where statistically reliable results require massive numbers
of seeds even in small MDPS, and (2) instead characterize
such results are demonstrative of possible outcomes. In
addition, empirical work could be strengthened by augment-
ing benchmarking results with more targeted experiments
where significance is more feasible, as described in the sec-
ond part of this paper. Together both styles of results paints
a fuller picture of the empirical properties of a proposed
new algorithm.

4. Scientific Testing
Papers with impactful contributions go beyond presenting
a new algorithm; they present new ideas that inform fu-
ture algorithm design. In addition to benchmarking being
computationally expensive, it only shows which algorithms
worked well but leaves the reader to speculate why the algo-
rithms performed well. Thus, there is a need for a different
experimentation paradigm to serve as the primary investiga-
tive tool. Scientific testing sheds light on how an algorithm
works and is thus a valuable tool for informing future al-
gorithm design. In this section, we show examples where
scientific testing provides significant insight, to motivate it
as a primary method of experimentation.

Scientific testing represents a broad class of experiment
types, and we differentiate it from benchmarking through
their respective objectives. Benchmarking seeks to learn an
ordering of algorithms or identify which algorithm performs
best. In contrast, scientific testing seeks to acquire or test
knowledge about how a particular algorithm works. Experi-
ments that fall under the scientific testing category may still
concern performance, e.g., when testing the sensitivity of
an algorithm to a specific hyperparameter. However, they
may also be concerned with issues that are orthogonal to
performance, e.g., identifying what kind of features neural
networks learn when approximating a value function. Since
the goal of scientific testing is to increase the understand-
ing of an algorithm, it should enable others to identify and
answer open questions.

Scientific testing is commonly used in RL research, but its
extent varies from a single experiment that checks a spe-
cific algorithm property, such as comparing pseudo-counts
to observed frames (Bellemare et al., 2016), to more com-
prehensive investigations that demonstrate the limitations
or effectiveness of proposed methods, as in the work by
Tucker et al. (2018). To determine the prevalence of sci-
entific testing in recent RL research, we conducted a sur-
vey of NeurIPS 2022 proceedings and found that among
144 non-theory papers, 131 (91%) contained benchmark-
ing experiments, while only 51 (35%) included scientific
experiments. These results suggest that the RL community

primarily relies on benchmarking, but a notable portion of
works integrate scientific testing into their experiments. Our
argument is for scientific testing to become a primary ex-
perimentation paradigm, which means it needs to provide
sufficient knowledge for approximately 90% of papers. For
more details on our survey, see Appendix A.

Below we provide examples of scientific testing to illustrate
its benefits and show how it can overcome the burdens of
benchmarking. For these experiments, we consider the
domain of exploration algorithms, which are commonly
evaluated based on their ability to solve “hard” exploration
problems. Our experiments show the inner workings of
two classes of exploration algorithms: intrinsic motivation
algorithms, which add auxiliary rewards that represent the
novelty or surprise of an agent taking a particular action,
and restart-based algorithms, which specify a particular
state for an agent to start in. We describe the versions of the
algorithms we investigate in the following section.

4.1. Exploration Algorithms

Exploration enables an agent to try new actions to identify
whether they work better or worse than the other actions. A
standard exploration method is to select actions randomly
with some small probability. However, this randomness
does not lead to the efficient discovery of good policies.
A more effective family of methods is intrinsic motivation
(Schmidhuber, 2010; Chentanez et al., 2004; Oudeyer et al.,
2007). With intrinsic motivation, the agent receives ad-
ditional rewards for taking actions that lead to surprising
events or states with low visitation frequency. Over time,
intrinsic rewards are adjusted based on the agent’s previ-
ous actions to reflect each state’s current novelty. This
way, the agent keeps learning to find new unexplored ar-
eas. We study a count-based intrinsic motivation strategy
(Strehl & Littman, 2008), i.e., the agent receives the reward
R̃t+1 = Rt+1 +

β√
η(St,At)

, where Rt+1 is the external re-

ward (comes from the environment), β > 0 controls the
amount of intrinsic reward, and η(s, a) is the total number
of times the agent has taken action a in state s.

Alternatively, instead of using reward bonuses, restart-based
exploration strategies force the agent to learn how to be-
have from unexplored states by controlling the agent’s start
state distribution. With restart-based exploration strate-
gies, the agent starts in a state sampled from a restart
distribution, specified by the function µ : S → [0, 1], i.e.,
µ(s) := Pr(S0 = s). The restart distribution could be a
fixed distribution with high coverage of the state space, such
as a uniform distribution, or it could be an adaptive distribu-
tion using a heuristic based on the agent’s past experiences
that determines the value of learning from a particular state
(Ecoffet et al., 2021). For our experiments, we use a simple
version of an adaptive restart distribution, which restarts the
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agent in states that are less frequently visited; this restart
distribution function in particular is: µ(s) := η(s)−1∑

s′ η(s
′)−1 ,

where, with a mild abuse of notation, η(s) is the total num-
ber of times the agent has visited state s, and η(s)−1 = 0 if
η(s) = 0. This function will sample states with a probability
that is inversely proportional to how often they are visited,
and will ignore states that have not been visited. Ignoring
states the agent has not encountered forces the agent to learn
to reach new states from the start state.

When investigating the exploration methods, we use
Sarsa(λ) as our base algorithm, coupled with one the meth-
ods described above. We also consider the combination of
both exploration methods.

4.2. Scientific Testing Experiments

To provide a grounded example of scientific testing and how
it can be informative, we present results from three experi-
ments with exploration algorithms in this section. The first
experiment studies the role of β in influencing how much the
agent explores the environment. The second experiment in-
vestigates the ability of restart-based exploration algorithms
to explore hard-to-reach states. The third examines how ef-
fective each method is at learning high-performing policies
across the entire state space. Due to space restriction we
defer the first two experiments to Appendix G and focus on
the third in this section.

The goal of these experiments is to study the fundamental
properties of the algorithms—properties that are not directly
tied to the continuity of the state representation—so we limit
our experiments to discrete MDPs. We use a variant of the
four rooms MDP (Sutton et al., 1999) where there are two
goal states: one ten steps away from the start state yielding
a reward of 5, and one at 17 steps away from the start state
yielding a reward of 10. The environment dynamics are
stochastic, and with probability 1

3 the state transitions as if
the agent had randomly selected one of three other actions
with equal probability. More details of the experiments can
be found in Appendix F.

We choose a simple MDP for our study to eliminate con-
founding factors and accurately attribute the results to the
algorithm’s behavior. Our goal is also to demonstrate that
even simple environments can provide valuable insights into
how an algorithm works. However, scientific testing is not
limited to using simple environments. We discuss scaling
up the results to function approximation in Section 5.

4.3. Experiments Investigating Policy Optimization
Over All States

Typically, when optimizing the return from the start state
distribution, there are few opportunities to improve the pol-
icy in states that do not have a high visitation frequency.

Since exploration enables the agent to visit more states, it
is helpful to understand how each exploration technique
can lead to policy improvement across the whole state
space. Since restart distribution methods start the agent
in more states, we test the following hypothesis: do explo-
ration methods quickly improve the policy in all states, or
just policy in the states frequently visited under the cur-
rent policy? To test this hypothesis, we measure the dis-
tance ∥vπ − v⋆∥2 between the value function vπ and the
ϵ-greedy optimal value function, v⋆ : S → R, where ∀s,
v⋆(s) = maxπ∈Πϵ

E [
∑∞

t=0 γ
tRt|S0 = s] (Sutton & Barto,

2018). Here, Πϵ is the set of all ϵ-greedy policies and

∥v1 − v2∥2 =
√∑

s (v1(s)− v2(s))
2. In addition to the

exploration methods, we also evaluate the behavior of the al-
gorithms Sarsa(λ) and Sarsa(λ) with the start state sampled
uniformly over the state space.

Figure 5 shows the start state return and the distance to
the optimal value function. The results show that the ex-
ploration methods, particularly restart distribution methods,
optimize the policy over larger regions of the state space.
Additionally, we see that, for this environment, the restart
distribution methods behave similarly as uniformly sam-
pling the start state. These results suggest that controlling
the start state distribution is likely essential to learning a
good policy across the entire state space. Surprisingly, none
of these methods converge to a value function close to the
optimal value function. As alluded to earlier, scientific test-
ing often reveals interesting questions for further research.
Here we hypothesize that this performance gap may be
partly due to not having a decaying step size, and could use
another experiment to test this hypothesis, but we leave that
for future work.

This experiment showed two things. First, a restart distribu-
tion with high coverage tends to improve the policy across
the whole state space. Second, these scientific experiments
provide more information than benchmarking, using fewer
computational resources. These insights can be used to de-
sign better algorithms, e.g., an intrinsic motivation algorithm
with adaptive β, or identify when to use various techniques
to improve performance, e.g., using a restart-based strategy
in environments with hard to reach states.

4.4. Scientific Testings and the Computational Demands
of Experiments

Using scientific testing does not guarantee that experiments
will be easier to analyze statistically. However, scientific
testing enables researchers to pose fundamentally different
questions that benchmarking cannot answer. Although sim-
ple environments with sufficient computational resources
are often useful for answering these questions, scientific
testing can also be applied to more complex scenarios.
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Figure 5. (Left) This plot shows the return for each algorithm over the number of episodes. (Right) This plot shows the distance of the
learned policy’s value function to the ϵ-greedy optimal policy. Each line represents the average value computed from 100 trials, and the
shaded regions correspond to the standard deviation. Each color corresponds to a different algorithm.

In our experiments, we ran each algorithm one hundred
times under different conditions. However, if we want to
apply these experiments to larger environments, running
many trials of an algorithm may become infeasible. In such
cases, we need to asking questions that are computation-
ally feasible to answer. Consider the case where it is only
feasible to run an algorithm once. Then benchmarking and
scientific tests that examine multiple runs of an algorithm
are inapplicable. Instead, the only questions we can answer
about an algorithm are those that test for properties during
learning. For example, instead of looking at the ability to get
close to v⋆ over many agent lifetimes, we could investigate
how each exploration method will help decrease the distance
to v⋆ during a single lifetime. One way to conduct this ex-
periment is to freeze the algorithm, change the exploration
method, run it for a small amount of time, and then reset it
to its original state after measuring the distance to v⋆. This
experiment design dramatically reduces the computation
needed since it only requires running the algorithm with
different settings for short periods. While not all questions
for scientific testing can be answered in large environments,
interesting ones exist for both large and small environments.

5. Discussion
It is tempting to ask a performance evaluation question such
as “does the exploration method X improve performance
more across the state space than method Y ?” We urge
caution with this route as focusing only on algorithm perfor-
mance will conflate issues with function approximation and
algorithmic ideas. Therefore it is essential to answer ques-
tions that disentangle the two components and understand
their interaction. For example, does the function approxima-
tor measure the state density well enough to provide good
intrinsic rewards, or does the function approximator fail to
represent specific states? Ultimately, the experiments should
elucidate the algorithm’s properties so others can make an

informed guess about its behavior in novel problems and
use insights to develop even better algorithms.

As we showed, rigorous benchmarking can be costly, which
leads to the question, does it still have value? We say yes, but
it cannot be the sole evidence for proving that algorithmic
ideas were correct, i.e., led to higher performance. Instead,
after building up knowledge of how an algorithm works
through scientific testing, benchmarks can serve as sanity
or scaling checks to show that the same ideas work outside
carefully controlled experiments. These check experiments
can be more relaxed because their claims would be much
weaker. However, it is still important to show both when an
algorithm performs well and when it fails. This way, others
understand the scope of the algorithm’s applicability.

Scientific testing is one way to improve our standards and
should make the researcher’s life easier, in that they no
longer will have to wait and hope their algorithm outper-
forms others. In the end, conducting better experiments
mean we will all learn more and be able to push the bound-
aries of knowledge quicker.

6. Conclusion
In this work, we provided evidence for two central claims.
The first is that benchmarking can require hundreds to thou-
sands of seeds for each algorithm-environment pair to iden-
tify the top-performing algorithm in a reliable way, making
it a burdensome and potentially computationally infeasible
task that does not have shortcuts. Towards improving the
community’s experimental practices, we show that scientific
testing can be an alternative experimental paradigm and
provide insights into an algorithm’s behavior. We hope this
work stimulates others to think about how they can create
more informative experiments.
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A. Survey of RL Papers
We surveyed RL papers from the NeurIPS 2022 conference to assess the frequency of scientific testing. We searched for
papers with reinforcement learning as a keyword or in the title. Our search produced 188 papers. Since theory papers
contribute knowledge in the form of theorems and proofs, they should not be evaluated in the same way as empirical works.
So we remove papers from the survey whose main objective is theoretical contributions. After this removal, there were 144
papers in our survey.

We looked for the presence of four types of experiments found in the paper: 1) benchmarking, experiments comparing
the performance of at least two methods on one or more environments, 2) ablation studies, experiments investigating how
hyperparameter choices, e.g., step sizes, network structures, algorithmic components, impact performance, 3) qualitative
illustrations or examples, 4) scientific testing, experiments designed to further understanding of how an algorithm works.
Table 1 shows the number of papers containing each type of experiment from this survey.

Experiment Survey from NeurIPS 2022
Benchmarking Ablation Qualitative Scientific Total

131 73 49 51 144

Table 1. This table show the number of non-theory focused RL papers containing each experiment type.

B. Algorithm and Environment Sets
We use the eight algorithms and their full specifications defined by (Jordan et al., 2020). They are two versions of Actor-Critic
with eligibility traces (AC) (Sutton & Barto, 2018), Q(λ), and Sarsa(λ), (Sutton & Barto, 1998), along with NAC-TD
(Morimura et al., 2005; Degris et al., 2012; Thomas, 2014), and proximal policy optimization (PPO) (Schulman et al., 2017).
For the two variants of each Actor-Critic, Sarsa(λ), and Q(λ), one use the adaptive step size Parl2 (Dabney, 2014) and the
other uses a random step size scaled by the number of features in the basis function.

The first subset of algorithms contains Sarsa-Parl2 and AC-Parl2, which rank first and third with performance percentiles
and rank second and third with performance ratio normalization (both rankings were determined with the adversarial
normalization and environment weightings). The second subset is a well-separated set of algorithms Sarsa-Parl2, AC-Scaled,
and NAC-TD. AC-Scaled and NAC-TD rank fifth and seventh with performance percentiles and rank first and fourth with
performance ratios. The third set contains similar algorithms: Sarsa-Parl2, Q-Parl2, and AC-Parl2. Q-Parl2 ranks second
and eighth with performance percentiles and performance ratios, respectively.

The 14 environments consider in the performance evaluation environment are a mixture of six continuous and eight discrete
state environments. The continuous state environments are Cart-Pole (Florian, 2007), Mountain Car (Sutton & Barto, 1998),
Acrobot (Sutton, 1995), and three variations of the pinball environment (Konidaris & Barto, 2009; Geramifard et al., 2015).
The discrete state environments are made of two chain MDPs with ten and 50 states and deterministic transition dynamics,
two Gridworlds with 5 and 10 states per side and deterministic transition dynamics. These four environments are duplicated
with stochastic transition dynamics.

The first environment subset contains Acrobot, Cart-Pole, Mountain Car, Pin Ball Medium, and Pin Ball Single. The second
subset includes the first plus the fifty state chain MDP, and the 10 state grid world MDPs. The third subset only has two
environments, Acrobot and Pin Ball Single.

C. Benchmarking Configurations
In this section, we investigate other configurations of the benchmarking process. Specifically, we look at two relative
normalization techniques: performance ratios and performance percentiles and four choices for the weights q. We also The
performance ratio, Uniform, and Adversarial choices were discussed in the main body of the paper. This section adds results
for the performance percentile normalization method and two other choices for weights q.

Performance percentiles (Jordan et al., 2020), automatically scales the performance relative to the difficulty that k had in
achieving that level of performance by using the cumulative distribution function of an algorithm k’s performance, i.e.,
gj(x, k) = FXk,j

(x), where FX(x) = Pr(X ≤ x). It also has the convenient property that E[FXk,j
(Xi,j)] = Pr(Xi,j >

Xk,j), which is the normalization technique proposed by Whiteson et al. (2011).
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Along with the choice of normalization function, the experiments will investigate four variants (Adversarial-Both,
Adversarial-Norm, Adversarial-Env, and Uniform-Both) of the evaluation procedure spanning the permutations of using
adversarial and uniform weightings for the normalization and environment weights. Adversarial-Both uses the game-based
weighting for both the environments and normalization weights whereas Adversarial-Norm uses the game-based weighting
for the normalization weights and uniform weighting for the environments. In Figures 6, 7, and 8, we show the same plots
as those in Section 3, but with the performance percentile, Adversarial-Env and Adversarial-Norm results added.
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Figure 6. This plot shows the average width, over all algorithms, of the bootstrapped 95% confidence intervals versus the number of
samples of each Xi,j . Different colors indicate a different aggregate weighting method. The shaded regions represent standard deviations
of average confidence interval width. A total of 1,000 independent trials of the evaluation procedure were executed for each sample size.
The results in the left plot use the performance ratio normalization function, while the right plot uses the performance percentile.
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Figure 7. This plot shows the coverage probability of the bootstrapped 95% confidence intervals at each sample size. The shaded region
represents 95% confidence intervals of the coverage probability using the Clopper–Pearson method (Clopper & Pearson, 1934). The
dotted line indicates the target failure rate of 0.05.

D. Alternative Confidence Intervals Techniques
This section repeats the experiments in Section 3 but replaces the bootstrapped confidence intervals with confidence intervals
that leverage the t-distribution. Specifically, we employ the PBP technique developed by Jordan et al. (2020) to compute
confidence intervals on the aggregate performance. The PBP method works by first computing upper and lower confidence
intervals on the mean normalized performance for triple of algorithm i, environment j, and baseline algorithm k, i.e.,
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Figure 8. This plot shows the average number of algorithms that have overlapping confidence intervals with the best algorithm. The
error bars represent the standard deviations. The solid lines correspond to using adversarial weightings and the dashed lines for uniform
weightings. (Top) Each line color corresponds to a different group of environments denoted by the number of environments. (Bottom)
Each line color corresponds to a different group of algorithms denoted by the number of algorithms. 3 (Sep) and 3 (Sim) correspond to
the algorithm sets that are well separated and similar in performance, respectively.

confidence intervals for µi,j,k = E [gj(Xi,j , k)]. Then the minimum and maximum aggregate performance over all possible
weightings that agree with these confidence intervals are computed for each algorithm i.

The confidence interval technique depends on the normalization method used. For the performance ratio normalization we
use the t-distribution to compute confidence intervals [X−

i,j , X
+
i,j ] such that

Pr
(
E [Xi,j ] ∈

[
X̄−

i,j , X̄
+
i,j

])
≥ 1− δ

|U||M| . (4)

Then lower and upper confidence intervals [µ−
i,j,k, µ

+
i,j,k] on the mean normalized performance are:

µ−
i,j,k =

X̄−
i,j − aj

X̄+
i,j − aj

µ+
i,j,k =

X̄+
i,j − aj

X̄−
i,j − aj

. (5)

For performance percentiles, since µi,j,k = Pr(Xi,j > Xk,j), we use Zhang-Halperin with T confidence interval (Kawasaki
& Miyaoka, 2010). However, due to numerical issues, this interval is not always computable, so in these cases, we resort to
the DeLong z-interval with logit correction (DeLong et al., 1988; Perme & Manevski, 2019).

The primary thing to pay attention to in these results is that the confidence intervals are significantly wider than the bootstrap
confidence intervals. This increase in width is because the uncertainty of each mean normalized performance needs to be
estimated, which even increases the confidence interval width of the Uniform-Both weighting scheme. Additionally, for
the methods with adversarial weightings, the optimization process to minimize (maximize) the intervals over all possible
weightings creates very loose intervals. The optimization process might be improvable, but it is unlikely to produce tighter
results than the bootstrap.
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Figure 9. This plot shows the average width, over all algorithms, of the t-distribution-based 95% confidence intervals versus the number of
samples of each Xi,j . Different colors indicate a different aggregate weighting method. The shaded regions represent standard deviations
of average confidence interval width. A total of 1,000 independent trials of the evaluation procedure were executed for each sample size.
The results in the left plot use the performance ratio normalization function, while the right plot uses the performance percentile.
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Figure 10. This plot shows the coverage probability of the t-distribution-based 95% confidence intervals at each sample size. The shaded
region represents 95% confidence intervals of the coverage probability using the Clopper–Pearson method (Clopper & Pearson, 1934).
The dotted line indicates the target failure rate of 0.05.
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Figure 11. This plot shows the average number of algorithms that have overlapping confidence intervals with the best algorithm. The
error bars represent the standard deviations. The solid lines correspond to using adversarial weightings and the dashed lines for uniform
weightings. (Top) Each line color corresponds to a different group of environments denoted by the number of environments. (Bottom)
Each line color corresponds to a different group of algorithms denoted by the number of algorithms. 3 (Sep) and 3 (Sim) correspond to
the algorithm sets that are well separated and similar in performance, respectively.
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Figure 12. This plot shows the coverage probability of the bootstrapped 95% confidence intervals using the confidence level δ/|U| for
each algorithm’s confidence interval. Solid lines show the average failure rate of the confidence intervals from 1,000 samples. Shaded
regions correspond to point-wise 95% confidence intervals.

E. Correcting for Multiple Comparison in Aggregate Performance
In the benchmarking procedure, we need to be able to compare the performances of all algorithms to determine a ranking of
algorithms. Thus in (3), we specified that the confidence intervals for all algorithms need to have a total failure probability
of at most δ, i.e.,

∑|U|
i=1 δi ≤ δ, where δi is the failure probability of the confidence intervals for algorithm i. There are

many ways to choose δi, but a common one is to scale δi inversely by the number of confidence intervals being compared,
i.e., δi = δ/|U|. However, following the work of Jordan et al. (2020), we noticed that only scaling by |U| led to higher
failure rates of the confidence intervals, particularly at low sample sizes. So in our experiments, we used a scaling of
δi = δ/ (|U||M|). In Figure 12, we show the confidence interval failure using the |U| scaling.

F. Scientific Experiment Details
We had to make several design decisions when using the algorithms to run the scientific testing experiments. One of the
most important is the step size. We set the step size to be η = p/4, where p is the probability of random transition occurring.
Intuitively, this step size allows the algorithm to average the results over a period of time that, in expectation, one random
transition will occur. The division by 4 helps account for the number of actions. We found that this step size scheme made
it so we did not need to tune the step size for each change in p. The other hyperparameters we chose were ϵ = 0.02 and
λ = 0.9. Changing these hyperparameters will impact the experiment results, particularly ϵ, which controls how much
randomness the policy has. However, the primary effects we are trying to access are independent of these parameters.

G. Scientific Testing Experiments
This section details the first two scientific testing experiments not discussed in the main paper.

G.1. Intrinsic Motivation Experiments

In the first set of experiments, we test the hypothesis that increasing β, the magnitude of the reward bonus, increases the
amount of entropy in the visited state-action distribution. To test this hypothesis, we run both the intrinsic motivation
and the combination of restart-based and intrinsic motivation exploration methods on the four rooms domain, with
β ∈ {0, 0.3, 0.5, 1.0, 1.5, 5.0}. We measure the entropy of the visited state-action pairs using an exponential moving average
of the per-episode state-action counts with a weighting of 1/1,000. Figure 13 shows the returns and entropies for each β,
and the correlation of β to entropy over time.

The results show that for both exploration methods, β positively influences the state-action entropy, which is initially large
and weakens over time. This result makes intuitive sense because the magnitude of intrinsic rewards decays over time, and
the agent’s behavior should converge toward an optimal policy, which is deterministic for this environment. Additionally,
when β is sufficiently high (β = 5.0), the agent practically ignores all extrinsic rewards until the intrinsic reward has been
sufficiently decayed. Similarly, when β is too low, the agent becomes “trapped” and is unlikely to explore new areas over
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Figure 13. (Left, Middle) These plots show, respectively, the return and entropy of the visited state action distribution averaged over 100
trials. Each color represents a value of β and the shaded regions represent the standard deviation. (Right) This plot shows the correlation
coefficient between β and the entropy of the visited state-action distribution. The colors and lines styles correspond to the algorithms
Intrinsic Motivation (IM) and restart distribution with intrinsic motivation (µ+ IM). The shaded regions correspond to pointwise 95%
confidence intervals using the Fisher transformation of the correlation coefficient (Fisher, 1921).

going to the nearby goal state. This observation makes it evident that for the intrinsic motivation strategy to be effective, the
β value needs to consider the various external rewards the agent will encounter during learning. With this experiment, there
is now a clear avenue for further research, e.g., discovering how to select β so that sufficient exploration happens regardless
of the value of rewards at both optimal and suboptimal policies. However, had we just benchmarked the algorithms, we
would only learn whether intrinsic motivation worked, and this would only pertain to one method of choosing β, or perhaps
to a single hand-tuned value of β.

G.2. Distance From Start State Experiments

One of the motivations for restart-based exploration methods is that they make it easier for the agent to explore states far
away from the start state (Ecoffet et al., 2021). This type of motivation is a prime candidate for scientific testing! So, in our
second experiment, we test the hypothesis that restart-based exploration will spend more time in states further away from
the start state than intrinsic motivation algorithms. To test this hypothesis, we group the states in the far room into a set
and compute the time the agent has spent in those states using an exponential moving average of state visits. To control
how likely it is for the agent to enter the states in the far room by chance, we alter the random transition probability of the
environment, where a higher random transition probability increases the chances that the agent will randomly enter the far
room. Additionally, we examine results using β = 1.5 and β = 5.0.

Figure 14 shows the returns and time the agent spent in the far room for each value of β. The results of this experiment
show that the restart-based exploration strategy spends more time in the fourth room regardless of β or random transition
probability. This result indicates that adapting the start state distribution is likely an effective component in exploring
environments where high rewarding states are far from the start state. Again, had we only considered the performance of
each algorithm, we may have concluded that one method was better than another depending only on how β was chosen and
would not have learned why.
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Figure 14. (Left) This plot shows the return for each algorithm for different random transition probabilities. (Right) This plot shows the
proportion of time the agent was in the “Far” group of states. For all plots, each color corresponds to the algorithm Intrinsic Motivation
(IM; blue lines) or restart distribution with intrinsic motivation (µ+ IM; red lines). Each line style corresponds to a different random
transition probability. Each line is the average of 100 trials, and the shaded areas represent standard deviations. For these plots, both
algorithms use the same β, with β = 1.5 for the top row and β = 5.0 for the bottom.
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