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1 Model Variants

We provide more versions of HI-Diff to demonstrate the effectiveness of our proposed method. First,
we provide a variant of HI-Diff, called HI-Diff-2, with less Params and FLOPs than Restormer [19].
Second, we fined-tune our HI-Diff with perceptual loss and adversarial loss, and obtain the HI-Diff-
PE, with better performance in terms of perceptual quality.

GoPro [10] HIDE [12]Method Params (M) FLOPs (G) PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Restormer [19] 26.13 154.88 32.92 0.961 31.22 0.942
Stripformer [15] 19.71 155.03 33.08 0.962 31.03 0.940
HI-Diff-2 (ours) 23.99 125.47 33.28 0.964 31.36 0.945

Table 1: Quantitative comparisons on GoPro [10] and HIDE [12] (PSNR/SSIM). Best and second
best results are colored with red and blue. Image size is 3×256×256 to calculate FLOPs.

1.1 HI-Diff-2

Implementation details. We provide a variant of HI-Diff, called HI-Diff-2. For the 4-level encoder-
decoder Transformer, we set the number of Transformer blocks as [3,5,5,6], the number of channels
as [48,96,192,384], and the attention heads as [1,2,4,8]. The refinement stage contains 4 blocks.
These settings are consistent with HI-Diff. Meanwhile, we set the channel expansion factor as 2.
For the latent diffusion model, the token number N and the channel dimension C ′ are 16 and 256,
respectively. The number of residual blocks in the latent encoder is L=5. The total time-step T is set
as 4 with β1:T increasing linearly from β1=0.1 to βT=0.99. We train HI-Diff-2 on GoPro [10] and
test it on synthetic datasets: GoPro and HIDE [12]. The training settings are the same as for HI-Diff.

Quantitative Results. We compare the HI-Diff-2 with Restormer [19] and Stripformer [15]. The
results are shown in Table 1. FLOPs are measured when the image size is set to 3×256×256. As
we can see, our HI-Diff-2 still performs better than Restormer and Stripformer on two datasets.
Specifically, the HI-Diff-2 achieves 0.36 dB and 0.14 dB gains on GoPro and HIDE, compared
with Restormer. Meanwhile, the HI-Diff-2 obtains 0.2 dB improvement over Stripformer on GoPro.
Moreover, compared with Restormer, our HI-Diff-2 costs less Params and FLOPs by 2.14 M and
29.41 G. While compared with Stripformer, the HI-Diff-2 also costs less FLOPs. All these results
further indicate the effectiveness of our proposed method.
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Method LPIPS ↓ DISTS ↓ NIQE ↓ PSNR ↑ SSIM ↑

MIMO-UNet+ [1] 0.091 0.072 4.03 32.45 0.957
MPRNet [20] 0.089 0.075 4.09 32.66 0.959
Restormer [19] 0.084 0.072 4.11 32.92 0.961
Stripformer [15] 0.077 0.068 4.00 33.08 0.962
DvSR [17] 0.059 - 3.39 31.66 0.948
HI-Diff-PE-1 (ours) 0.051 0.031 3.53 33.27 0.963
HI-Diff-PE-2 (ours) 0.044 0.029 3.30 32.84 0.959

Table 2: Quantitative comparisons on GoPro [10]. Except for the distortion-based metrics: PSNR
and SSIM, we evaluate methods on perceptual metrics: LPIPS [22], DISTS [2], and NIQE [9]. Best
and second best results are colored with red and blue. HI-Diff-PE-1 and HI-Diff-PE-2 are obtained
by fine-tuning HI-Diff. Our method obtains a better trade-off between perception and distortion.

1.2 HI-Diff-PE

Implementation details. In order to further improve the performance of HI-Diff on perceptual
quality, we use perceptual loss and adversarial loss to fine-tune HI-Diff. For the perceptual loss,
following previous work [16, 7, 8], we apply the VGG loss [5]:

LVGG = ∥Φi,j(IGT )− Φi,j(G(IBlur))∥1, (1)
where IBlur is the input blurry image, and IGT represents its corresponding ground truth image;
G represents a generator network, which is the HI-Diff; Φi,j is the feature map obtained by the
j-th convolutional layer before the i-th maxpooling layer within the VGG-19 network [13]. For the
adversarial loss, we adopt the vanilla GAN objective [3, 7]:

min
G

max
D

EIGT∼ptrain (IGT )[logD(IGT )] + EIBlur∼pG(IBlur)[log(1−D(G(IBlur)))], (2)
where G represents a discriminator. We denote the discriminator loss and generator loss as LD and
LG, respectively. Moreover, we still apply the L1 loss during the fine-tuning, where L1=∥G(IBlur)−
IGT ∥1. Therefore, the total loss for the generator (HI-Diff) is:

Ltotal = L1 + λLVGG + ηLG, (3)
where λ and η are the coefficients to balance difference loss terms.

Considering the distortion and perceptual quality are at odds with each other, we apply different
fine-tuning settings to train two models, HI-DIff-PE-1 and HI-DIff-PE-2. We train two models on
the GoPro [10] datasets. We fine-tune two models on GoPro [10]. For HI-DIff-PE-1, we use Adam
optimizer [6] with β1=0.9 and β2=0.99 with learning rate as 1×10−4. The λ and η are set as 1×10−2

and 5×10−3. The total training iterations are 1K with batch size 8 and patch size 384×384. For
HI-DIff-PE-2, we apply Adam optimizer with a learning rate as 1×10−4. Both λ and η are set as 1.
The iterations are 50K, and the batch size and patch size are 8 and 384×384.

Quantitative Results. We compare the HI-Diff-PE-1 and HI-Diff-PE-2 with 5 state-of-the-art
methods: MIMO-UNet+ [1], MPRNet [20], Restormer [19], Stripformer [15], and DvSR [17]. We
test models on GoPro [10]. Except for the distortion-based metrics: PSNR and SSIM, we further
evaluate methods on three perceptual metrics: LPIPS [22], DISTS [2], and NIQE [9]. The results are
listed in Tab. 2. Note that, DvSR is the method that adopts the diffusion model.

For HI-Diff-PE-1, our method outperforms all other methods, except for the DISTS value compared
with DvSR. Compared with the second best method, Stripformer, our HI-Diff-PE-1 yields 0.19 dB
gain on PSNR, while reducing LPIPS by 0.026. Meanwhile, our HI-Diff-PE-1 achieves 0.35 dB gains
on PSNR over Restormer. Besides, compared with the diffusion model, DvSR, the HI-Diff-PE-1
obtains a 1.61 dB improvement in PSNR and a 0.008 reduction in LPIPS.

For HI-Diff-PE-2, the model achieves the best performance in terms of perceptual metrics. Compared
with HI-Diff-PE-1, HI-Diff-PE-2 adopts perceptual loss and adversarial loss with higher weight
for more iterations of fine-tuning. It makes HI-Diff-PE-2 pay more attention to perceptual quality,
while PSNR and SSIM decrease slightly. Compared to Restormer, HI-Diff-PE-2 reduces LPIPS by
47%, while reducing PSNR by only 0.08 dB. Moreover, compared with the diffusion model, DvSR,
HI-Diff-PE-2 yields 0.18 gains on PSNR with better perceptual scores.

All these results indicate that our method obtains a better trade-off regarding distortion and perception.
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Method Params FLOPs LPIPS ↓ DISTS ↓ NIQE ↓ PSNR ↑ SSIM ↑

DvSR (CVPR’22) 26.07M 170.31T 0.059 N/A 3.39 31.66 0.948
DvSR-SA (CVPR’22) 26.07M 3406.22G 0.078 N/A 4.07 33.23 0.963
DiffIR (ICCV’23) 26.94M 120.99G 0.081 0.071 4.13 33.20 0.963
HI-Diff (ours) 28.49M 142.62G 0.080 0.071 4.12 33.33 0.964
HI-Diff-PE-1 (ours) 28.49M 142.62G 0.051 0.031 3.53 33.27 0.963
HI-Diff-PE-2 (ours) 28.49M 142.62G 0.044 0.029 3.30 32.84 0.959

Table 3: Quantitative comparisons with diffusion models on GoPro [10]. We evaluate methods on
two distortion-based metrics: PSNR and SSIM, and three perceptual metrics: LPIPS [22], DISTS [2],
and NIQE [9]. The FLOPs are calculated when the input image size is set to 3×256×256. Best and
second best results are colored with red and blue.
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Figure 1: Visualization of the diffusion process. Notably, images in the rightmost column (z0) are
actually the final outputs of our HI-Diff.
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Figure 2: Failure case. Compared with other methods, Our HI-Diff can alleviate more artifacts.

2 More Quantitative Results

We compare our methods with some diffusion models: DvSR [17] and DiffIR [18] in Tab. 3. DvSR-
SA represents DvSR applying sample average for distortion accuracy. Our methods achieve better
performance on both distortion-based and perceptual metrics compared with other diffusion models.

3 More Visual Results

We show some visualization of the diffusion process in Fig. 1 and some failure cases in Fig. 2.
Meanwhile, we provide more visual comparisons in Figs. 3, 4, 5, 6, 7, and 8.
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3.1 Visualization of Diffusion Process

We provide some visualization in Fig. 1. The diffusion model generates the prior feature z0 starting
from a Gaussian Noise z8 (ϵ∼N (0, I)) through T=8 steps. We visualize some intermediate priors
zt (t∈[0, 8]) to show the process, i.e., z8, z4, z2, and z0. Since directly visualizing latent priors zt is
not intuitive, we separately visualize the output (deblurred) images of Transformer guided by these
priors. Notably, images in the rightmost column (z0) are actually the final outputs of our HI-Diff.

We find that the blurred image gradually becomes sharp as the reverse process proceeds. Meanwhile,
when the prior is noise (i.e., z8), the output of Transformer is not noise. This may be because
Transformer features actively ignore the invalid priors through cross-attention when fused with priors.

3.2 Failure case

Our method HI-Diff also generates unpleasing artifacts (see the first case) or fails to recover sharp
structures (see the second case) in some challenging cases. We provide some failure cases in Fig. 2.
However, since we hierarchically integrate the diffusion model and Transformer, compared with other
methods, our HI-Diff can alleviate more artifacts in the restoration results.

3.3 Synthetic Datasets

We show more visual comparisons on GoPro [10], HIDE [12], and RealBlur [11] in Figs. 3, 4, 5,
6 and 7. All models are trained only on GoPro. Most compared methods cannot recover accurate
details and suffer from blurring artifacts in some challenging cases. In contrast, our HI-Diff handles
several challenging cases better and recovers more realistic details. For instance, in the first GoPro
sample in Fig. 3, our HI-Diff recovers clearer red shoes, while compared methods suffer blurring
artifacts. In the second GoPro sample in Fig. 4, most compared methods fail to restore the white
border. However, our HI-Diff recovers it clearly. Similar observations are shown in other images.

3.4 Real-World Datasets

We show more visual comparisons on RealBlur [11] in Fig. 8. All models are trained on RealBlur. Our
HI-Diff handles several challenging cases better and recovers more details than compared methods.
For instance, in the first GoPro sample in Fig. 8, our HI-Diff restores more textures (white horizontal
lines) than other compared methods. These visual comparisons further demonstrate that our method
has the powerful capability for realistic image deblurring.

4 Explanations for Checklist

4.1 Source Code

We provide code and trained models at https://github.com/zhengchen1999/HI-Diff.

4.2 Limitations

In this work, we implement our models with two-stage training. Compared to one-stage training,
two-stage training is slightly tedious. Furthermore, we apply the vanilla diffusion model (DM) [4]
and focus on the integration between the DM and the regression-based model. For other advanced
DMs with better noise schedules and sampling strategies, we have not investigated yet.

4.3 Potential Negative Societal Impacts

We believe that our HI-Diff promotes the application of the DM in image deblurring. Our method
benefits both academia and industry. We think there have a few potential negative societal impacts.

References
[1] Sung-Jin Cho, Seo-Won Ji, Jun-Pyo Hong, Seung-Won Jung, and Sung-Jea Ko. Rethinking coarse-to-fine

approach in single image deblurring. In ICCV, 2021. 2, 6, 7, 8, 9

4

https://github.com/zhengchen1999/HI-Diff


[2] Keyan Ding, Kede Ma, Shiqi Wang, and Eero P Simoncelli. Image quality assessment: Unifying structure
and texture similarity. TPAMI, 2020. 2, 3

[3] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In NeurIPS, 2014. 2

[4] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS, 2020. 4

[5] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In ECCV, 2016. 2

[6] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015. 2

[7] Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych, Dmytro Mishkin, and Jiří Matas. Deblurgan:
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Figure 3: Visual comparison on the GoPro [10] dataset. Models are trained on the GoPro dataset.
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Figure 4: Visual comparison on the GoPro [10] dataset. Models are trained on the GoPro dataset.

HIDE

GT Blurry DBGAN [21] MIMO-UNet+ [1]

MPRNet [20] Restormer [19] Stripformer [15] HI-Diff (ours)

HIDE

GT Blurry DBGAN [21] MIMO-UNet+ [1]

MPRNet [20] Restormer [19] Stripformer [15] HI-Diff (ours)

HIDE

GT Blurry DBGAN [21] MIMO-UNet+ [1]

MPRNet [20] Restormer [19] Stripformer [15] HI-Diff (ours)

HIDE

GT Blurry DBGAN [21] MIMO-UNet+ [1]

MPRNet [20] Restormer [19] Stripformer [15] HI-Diff (ours)

Figure 5: Visual comparison on the HIDE [12] dataset. Models are trained on the GoPro dataset.
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Figure 6: Visual comparison on the RealBlur [11] dataset. Models are trained on the GoPro dataset.
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Figure 7: Visual comparison on the RealBlur [11] dataset. Models are trained on the GoPro dataset.
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Figure 8: Visual comparison on the RealBlur [11] dataset. Models are trained on RealBlur.
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