Deep Recurrent Optimal Stopping: Supplementary Material

We provide an outline of the supplement that complements our paper.
Appendix A: provides proofs of all Theorems in the paper.

Appendix B: considers formulations of stopping problems specified in terms of costs instead of
rewards and shows how to transform these into a consistent reward formulation.

Appendix C: provides discussion and pseudo-code to implement the temporal loss used to learn
fitted Q-iteration policies for DNN-FQI and RNN-FQI

Appendix D: includes further details and discussion of the experiments, including model hyper-
parameter settings, numerical results with confidence intervals, details of compute environment,
model sizes, train and inference times, etc. In Appendix E.3, we also include a new experiment that
compares OSPG to state-of-the-art PDE benchmarks in the pricing of American options, which is a
continuous-time optimal stopping problem.

Appendix E: includes a treatment of baseline subtraction in the context of optimal stopping policy
gradients (OSPG).

A Appendix A: Proofs

A.1 Proof of Lemma 3.0.1

Proof. The Lemma follows from the Bayes net trajectory model of Figure 1a, and the special structure
of OS action trajectories: A, = 1 and A,, = 0,Vn < 7. For any OS state-action trajectory, we have:

T

P(Sj|sj—1) H P(An‘sn) = IP)(SH) H]P)(An|sn) (15)

j=1 n=0 n=0

M=

P(A-,Sy) =P(So)

P(Sw)

Therefore, conditioning on the state trajectory, we have P(A;|Sy) =[] _,P(A4,|S,). Note that
by the structure of finite-horizon OS trajectories A . is a sequence of continue actions terminated by
a stop action at 7. Thus there is a bijective mapping between stopping times and complete action
trajectories given by:

r:40,1,2,--, H} — {1,01,001,---00---01} (16)
H—1 Os

SoP(A;|Sy) = P(k(7)|SH) = P(7|Sg). Consider a trajectory stopping at 7 = j and recall that
our stochastic stopping policy is defined as ¢;(S;) : P(4, = 1|S;).

Thus, if 7 = 0:
P(r=0|Sy) =P(Ay|Sy) =P(4y = 1|Sp) = ¢0(So) (17)
f0<j< H:
P(r = j|Sy) = P(Ag=0,--,A;_1 =0,4; = 1Sy)
i1
— B(4, = 11Ss)] B(A. = 0ISs)
Jj—1 =
= ¢;(Sy) [T (1 = n(Sn) (18)
n=0

14

Finally, if j = H:

]P(T = H|SH) =]P)(AO = 07“' ,AH,1 = O,AH = 1|SH)
H-1
= P(Ag =1Sx) [] P(A. =0[Sk)
- n=0
= ¢u(Sn) H (1= n(Sn))
H-1 i
n=0

where we have used the fact that in the finite horizon setting ¢ (Sg) := 1 by definition.

We may verify Ef:o P(r = j|Sy) = 1 since:

H-1 H-1 j—1
1= Y P(r=jlSu) = 1-¢0(So)— > ¢;(S;) [[(1 - ¢n(Sn))
j=0 j=0 n=0

H-1 j—1
1= 2(S2) = > 6;(8;) [J (1 = 6n(Sn))
j=2 n=2
H—-1
= [=¢u(Sn) =P(r = HISk)
n=0

Further, since 7 is a stopping time random variable we have:
P(r = j[Su) = P(r = jIS;) :== 1;(S;) (20)
This is because stopping time random variables have the property that 1(7 = j) is a function of S .

So we can determine if 7 = j or not by only considering S; making the event {7 = j} conditionally
independent of S, Vk > 0 given S;[35]. This completes the proof.

A.2 Proof of Theorem 3.1

Proof. We apply Jensen’s inequality to the objective Jwmr (@) to obtain a lower bound:
N . H 0 } N H d@(sﬁ)ﬁj
JWML(G) = Z w; log Z wj (Sij)rij > Z
i=1 j=0 i=1j

6
w;q;5 log [1 =J(Q.6) (2D
0 qij
where Q = [g;;] is any row-stochastic matrix satisfying ¢;; > 0, V4, j and Z]H:o gi; = 1. Starting

with a given 6'*) the lower bound is maximized (Jensen’s inequality becomes an equality) when
Q=Q® .= [qg))} such that:
© -

o Y7 (si)Ti

ij — H © .

T e v (siy)
This is the E-step in Theorem 3.1. Note that the E-step does not change the objective, so
JwmL(0) = J(Q©,6). By ignoring terms that do not depend on 8, maximizing J(Q©, 6)
w.r.t. @ can be seen as equivalent to maximizing

N H

Jn(8) = Z Z W;q;5 log 1/1?(51;]') (23)

i=1 j=0

(22)

15

This is the M-step. By the lower bound established in equation and since the M-step maximizes
J(Q©, 0) to obtain 8V, we have Jyy (01) > J(Q©@,0W) > J(Q©®,09) = Jyp (6.
Therefore a round of E-M results in either an increase or no change in the objective. Since the WML

objective is upper-bounded by /N log H, the monotone increasing sequence JWML(O(k)) converges to
a local maximum of the objective.

A.3 Proof of Corollary 3.1.1
Proof. Tt suffices to show that the W-step also increases the objective Jwmr (W, 0).

We maximize Jwwm (W, 0) w.r.t. W, subject to the constraint Zf\il w; = 1, resulting the following
Lagrangian.

Zwl logzwe (8ij)7i5 — Zwl log j +A (1 - ZW) (24)

Taking partial derivative w.r.t. w; and A and setting to zero, we have:

OL(W,) u
—5g - = log > 9?(sij)is; + log i — (1+log ;) — A =0 (25)
K2 j:O
- N
OL(W,) _
= = [|1- | =0 26
el Z) o
Nofine that 7 e imori oo
oting that 7; := =y~ =g—— and 7;; := 72— and simplifying, we have:
i=1 22j=0"j i= 07’7
0
i—0 Wj (8ij)Tij
1+ \=log [W] (27)
Tw;
where r = Zfi1 Zf:o r;;. Exponentiation of both sides and cross-multiplication results in:
[rexp (1 + N)] Zz/) Sij)T (28)
Summing over ¢, we have:
N H
T exXp (1 +)\) = Z wa(sij)rij 29)
i=1 j=0
Substituting back in equation (28)), we finally have:
H 0
. S)T
N;k _ Z]_O 1/)](]) J (30)

N H
>im1 ijo w?(sij)rij
Thus the maximizing w* is exactly the W-step. Therefore, the form of the W-step ensures
Jwm (WF 0 > o (wED 00 > g (WD 9% =Y) - Thus we have a mono-

tone increasing and bounded sequence Jy (W) o)) converging to a local maximum of
JWML(W 0) D

A.4 Proof of Theorem 4.1

Proof. We use the log-derivative trick [42]). Vo9 (s;) = 49 (s;) Ve log ¢ (s;). So:

H H
VoJos(0) = Eg, ~psy) ZTJ‘VG%Q(SH = Es i nB(sy) wa(sj)velogwﬁ(sﬁ (€25)

=0 =0

O

16

A.5 Proof of Proposition 4.1
. . (k) e (k)
Proof. First, for a given 6"/, substituting for ¢, -

;; from Theorem 3.1 and @Ek) from the W-step
yields: '

~(k k
a®g® =

S 08" (sim)rim] [Z $0" (si))74] 32)

m 1 Zn 0 7/)‘9(k) (Smn)rmn n=0 W’m (Sin)fin

9<k> _ 1
" (sig)7is 33
) J S 7)TJ [Eg_l Zf:owﬁ(“ (Smn)r'mn‘| (33)

) 1
= |:'(/)_70 (Sij)rij:| [Zgl 25:0 wg(k) (Smn)’l“mn‘| (34)

Vij z(k)

I
/—\'—'
uMu:

Therefore, we may write the M-step objective as :

Ty (0) = “”ZZU”“’ log ¥ (si;) (35)
i=1 j=0
1 N H
k 7(k
< 7 v log v (si5) = J3; (6) (36)
=1]:0

Dropping the iteration index (k), by defining constants v;; := w?(sij)r,-j calculated with the most
recent value of 6, the M-step objective is equivalent to the following objective:

B 1 N H
Tn(0) = 55 DD vijlog] (sij) (37)

i=1 j=0

where v;; = we(s”)r” is calculated with the most recent value of @ and held constant. Taking the
gradient w.r.t 8 we have

N H
VoJu (0 ZZ vi; Vo logyf (sij) (38)
i=1 j=0
Now, substituting for v;;, we have:
1 N H
Vo (0 NZZO rijib?(sij) Ve log 9 (si) (39)

This can be expressed as an expectation over sample trajectories as:

H

Vo u(0) =By opsy | D700 (s))Velogv?(s;) | = VaJos(6)
§=0

Thus the gradient of the transformed M-step objective is identical to the optimal stopping policy
gradient (OSPG). Therefore, if we perform the E-step, W-step and a single gradient update, the
sequence of policy parameters 8,, will exactly correspond to the updated OSPG policy parameters.
We may therefore appeal to literature on incremental partial M-step E-M algorithms [27] and gradient
descent [21]] to conclude that for small enough step-size, that increases Jj(8), the policy updates
converge to a local maximum of both Jy sz (W, @) and Jos(0).

O

17

A.6 Proof of Corollary 4.1.1

Proof. From the proof of Proposition 4.1, the M-step objective is equivalent to the following objective:

1 N H
=N DD vy logvd(sy) (40)

i=1 j=0

Now, substituting for wf (si;) in terms of the stopping policy using the trajectory reparameterization
lemma (Lemma 3.0.1):

Ju(0) < Ja(0) = —szologa:o (si0) +va log 09 (si;) +Zlog1— 9 (sin))

=1 n=0

+vig Z log(1 — Sm))

n=0
1 N |H-1
= 23| wbslen)
i=1 | j=0

+v;1 log(1 — ¢ (si0))

+0iz [log(1 — 6§ (sio)) + log(1 — ¢ (si1))]
+v;3 [log(1 — ¢§ (si0)) +log(1 — ¢F(si1)) + log(1 — ¢9(si2))] - - -
H—1
+uim Z log(1 — #8 (sin))
n=0
XN [H
= Z Z Vi 10g¢ Szg Z IOg 1_ S’Lj)) Z Vin
z:l 7=0 n=j+1
| N oHA H
= N Z Vij 10g¢ S’LJ + IOg(l - (;5 (Slj)) Z Vin
i=1 j=0 n=j+1

Since by Proposition 4.1, we have V. Jos5(8) = Vo.Jyr(0). Setting kij == {Zf:jﬂ vm} in the

above expression for .J5/(0) and taking the gradient, we have:

vij (1= ¢9(siz)) — kij 09 (si) 0
VeoJos(0 ;jzo ¢9)(1 — ¢9(Sz]))] Voo, (sij) (41)

This completes the proof of Corollary 4.1.1

B Dealing with costs instead of rewards

Although one could have used the negative of cost as a reward, this is inconsistent with our Bayesian
net model since we require positive rewards to define the reward augmented trajectory model. The
following result addresses this issue by transforming a problem with costs to one with a suitable
reward specification.

Proposition B.1. Given costs ¢;; > 0 the following two problems are equivalent:

argmln—zz%w Sij) _argmax—zz (Z Czn> < —X:HCU> ;Z;f(sij)

i=1 j=0 1=1 j=0 n=0 Cin

’

Tij

18

Proof. Starting with the cost minimization problem, we may write:

N H N H
1 .1 -
arg min Z Z cq;jq//?(sq;j) = argmin — Z c; Z c,-ﬂ/;?(sij) (42)
6 i=1 j=0 o i=1 =0
where ¢; = Zf:o ¢ij and ¢;; = Ccz’ Since Eﬁio w;)(sij) = 1, we may subtract the constant

LS e Z;I:O 99 (s;;) from the objective yielding:

N H H
1 0 . - 0
arg;mn N E E cij; (sij) = argmin N E ¢ g (€ij — 1) 95 (sij)

i=1 j=0 i

where we have expanded c; and ¢;;. This completes the proof. [

C Neural Fitted Q-iteration approaches: DNN-FQI and RNN-FQI

Fitted Q-iteration methods [39} 40] use the Wald-Bellman equation (WBE) as follows: First, given
parameterized function approximations Kf(S i), a single Wald-Bellman step is bootstrapped, for
a batch of trajectories yielding Vj(s;;) = max{mj,Kf(sij)},Vj < H,1 <4 < N. Next the
parameters of the continuation function are fit: ° = argmin}_,; >, (K;9 (sij) — Vis1(sij31))%
and the process is iterated. To provide competent DNN/RNN baselines for fitted Q-iteration (FQI)
methods that are missing in the literature, we introduce a temporal FQI loss (Algorithm 2)).

Algorithm 2 Pseudo-code for mini-batch computation of the FQI loss

Imput: R := [r;;], K := [Kf(sw)} {1 <i< Ny, 0<j<H,Nyisbatch size}

V. 0.1 = stop-gradient(max{R. 0. —1, K. 0.z—1}) {bootstrap WBE to get value targets}
V. y = R. g {final target is reward for last step}

J=MSE(V. 1.7, Ko,0.7—-1) {next step value is target for current continuation function}

D Further details of the experiments

All experiments were performed on a shared server configured with 2 x Intel Xeon Silver 12-
core, 2.10 GHz CPUs with 256GB RAM and equipped with 6 NVIDIA 2080Ti GPUs. However,
experiments were run on a single GPU at a time and no computation was distributed across GPUs.

D.1 Model hyper-parameter settings

Table 2 shows general hyper-parameter settings used for all experiments. We apply Batch normal-
ization to the input and outputs of layer activation functions at all hidden layers. Due to the dense
correlation structure between assets at each time step of the American option pricing experiment, we
choose the hidden units to be greater than the input dimension d.

As with RL policy gradients, we may subtract a baseline value[29] to reduce variance. The OSPG
algorithm uses baseline b that does not depend on time-index j, sufficient to guarantee an unbiased
OSPG estimator (see Appendix [E). In our experiments, we use:

1 N H
- g L2 @

i=1 j=0

19

Table 2: model hyper-parameter settings

method hyper-parameter tuned range value
DOS, DNN-FQI, DNN-OSPG num hidden layers n/a 2
RRLSM, RNN-FQI, RNN-OSPG num hidden layers n/a 1

All models hidden layer units n/a 20

All models (Am. Option pricing) hidden layer units n/a 20+d
All models batch size n/a 64

All models (Am. Option pricing) batch size n/a 128
All models learning rate {0.01,0.001,0.0001} 0.001
All models epochs early stopping 100
All models batches/epoch n/a 200
All models optimizer n/a Adam
RRLSM Kernel noise std n/a 0.0001
RRLSM Recurrent noise std n/a 0.3

D.2 Pricing Bermudan options

Table [3 shows model sizes (in trainable parameters), training, and inference times (per time-step).
Model sizes grow with input dimension except for RRLSM, which uses an RNN with random,
non-trainable weights to extract features from the input. The parameter size of DOS is about an
order of magnitude higher than DNN-FQI and DNN-OSPG since parameters in backward induction
methods like DOS grow linearly with the number of time steps (parameters are not shareable across
time steps). Training and inference times are also high since individual models must be fit and
inferred at each time step.

Table 3: model sizes and compute times for Bermudan max-call experiment

method assets model-size mean training time mean time/prediction
(params) (seconds) (u-seconds)

DOS 20 9,225 271 3
DNN-FQI 20 1,047 23 5
DNN-OSPG 20 1,047 29 7
RRLSM 20 198 2 14
RNN-FQI 20 2,807 32 8
RNN-OSPG 20 2,807 37 8
DOS 50 15,165 289 3
DNN-FQI 50 1,707 28 6
DNN-OSPG 50 1,707 29 7
RRLSM 50 198 2 14
RNN-FQI 50 4,667 32 8
RNN-OSPG 50 4,667 32 8
DOS 100 25,065 326 3
DNN-FQI 100 2,807 30 6
DNN-OSPG 100 2,807 28 6
RRLSM 100 198 2 14
RNN-FQI 100 7,767 33 8
RNN-OSPG 100 7,767 30 8
DOS 200 44,865 317 3
DNN-FQI 200 5,007 30 6
DNN-OSPG 200 5,007 27 6
RRLSM 200 198 2 15
RNN-FQI 200 13,967 35 8
RNN-OSPG 200 13,967 30 8

20

Table 4: American geometric-call option pricing: Results

average return (error %)

d s p* LS [23] PDE-DGM [37] PDE-BSDE [[7] DNN-FQI [34] DNN-OSPG

7 90 59021 5.8440 (0.98%) NA 5.8822(0.34%) 5.7977 (1.77%) 5.8704 (0.54%)
7 100 10.2591 10.1736 (0.83%) NA 10.2286 (0.30%) 10.1022 (1.53%) 10.2518 (0.07%)
7 110 15.9878 15.8991 (0.55%) NA 15.9738 (0.09%) 15.0487 (5.87%) 15.9699 (0.11%)
13 90 57684 5.5962 (3.00%) NA 57719 (0.06%) 5.7411 (047%) 5.7436 (0.43%)
13 100 10.0984 9.9336 (1.60%) NA 10.1148 (0.16%) 9.9673 (1.30%) 10.0691 (0.29%)
13 110 15.8200 15.6070 (1.40%) NA 15.8259 (0.04%) 14.7759 (6.60%) 15.8107 (0.06%)
20 90 57137 5.2023 (9.00%) NA 57105 (0.06%) 5.6607 (0.93%) 5.6983 (0.27%)
20 100 10.0326 9.5964 (4.40%) 10.0296 (0.03%) 10.0180 (0.15%) 9.6372 (3.94%) 10.0100 (0.23%)
20 110 157513 15.2622 (3.10%) NA 15.7425 (0.06%) 14.9345 (5.19%) 15.7553 (0.03%)
100 90 5.6322 OOM NA 5.6154 (0.30%) 5.3858 (4.38%) 5.6211 (0.20%)
100 100 9.9345 OOM 9.9236 (0.11%) 9.9187 (0.16%) 9.3954 (5.43%) 9.8954 (0.40%)
100 110 15.6491 OOM NA 15.6219 (0.17%) 14.6335 (6.49%) 15.6301 (0.12%)
200 100 9.9222 OOM 9.9004 (0.22%) 9.9088 (0.14%) 9.3772 (5.49%) 9.8991 (0.23%)

D.3 Pricing American options

The scope of the paper is solving discrete-time, finite-horizon, model-free optimal stopping problems.
Bermudan options that have discrete exercise opportunities are one example application. American
options, which are more popular, are based on continuous-time asset price evolution and have a
continuum of possible exercise times. One way to convert this to our discrete-time setting is to solve
related Bermudan options. These options limit exercise opportunities to a fine discrete time grid.

State-of-the-art algorithms for pricing American options are based on Partial differential equation
(PDE) methods. These methods are model-based since they start with a PDE (such as the multi-
dimensional Black-Scholes Model) defining process evolution. For example, PDE methods often
assume Markovian Black-Scholes Dynamics, and the PDEs to be solved require the Black-Scholes
model parameters, such as covariance of the Brownian motion, volatility, risk-free interest rate, and
dividend yield. In contrast, model-free methods, such as FQI and OSPG algorithms, do not use prior
information on the evolution dynamics of the underlying stochastic process.

Nevertheless, we compare our model-free OSPG method against state-of-the-art PDE methods such
as the Deep Galerkin Method (DGM) [37]] and Backward Stochastic Differential Equations method
(BSDE)[7] by suitable discretization of the original continuous time-problem. Note that the PDE
methods also require discretization of the original PDE (ex, using the Euler-Maruyama scheme) or
random sampling (as used in DGM) but do not end up directly solving a Bermudan option.

We consider multi-dimensional continuous-time American geometric-average call options with Black-
Scholes dynamics considered in [[37]] and [7]. The payoff of these options depends on the price of
d underlying assets with multi-dimensional Black-Scholes dynamics and the strike price K. The
dynamics are Markovian, with payoff (reward) given by:

1
d

S = st exp([r — 6 — 02, /2]t + oW/, Ry = - K (44)

ey

form =1,2,---d. r € Ris the risk-free rate, s{j* € (0, o) represents the initial price, d,, € [0, 00)
is the dividend yield, o, € (0, c0) the volatility and W is a d-dimensional Brownian motion, with
instantaneous correlation between its d components given by E[W;W/| = p;;t. The reward for
exercise at time ¢ is given by R;. We discretize ¢ into H + 1 = 100 possible exercise opportunities,
using times t; = jT'/H for j = 0,1,--- H. T is the option expiration duration in years. This yields
the stopping problem: supy«, <y E[R;].

The specific option we consider is characterized by the following parameters: K = 100, r = 0.0,
om = 0.25, p;; = 0.75 Vi # j, 6y = 0.02, T' = 2. The exact price of this option, p*, can
be determined semi-analytically for comparison [7]. We generate 10,000 batches (with a batch
size of 128) for training and compute option prices on a 3,000-batch test sample. We compare vs.
published results from state-of-the-art model-based PDE baselines, including the Deep Galerkin
Method (PDE-DGM) [37]], the Backward Stochastic Differential Equation (PDE-BSDE) method [7].
We also include published results [7]] from the industry standard Longstaff-Schwartz (LS) option

21

Table 5: Stopping a fractional Brownian motion: Results

average return (standard deviation)
h DOS DNN-FQI DNN-OSPG DOS-ES RRLSM RNN-FQI RNN-OSPG

0.05 0.70(0.01) 0.87(0.06) 1.14(0.00) 1.18(0.01) 1.16(0.00) 1.24(0.04) 1.28(0.01)
0.10 0.54(0.01) 0.68(0.04) 0.92(0.01) 0.93(0.01) 0.94(0.00) 0.99(0.03) 1.03(0.02)
0.20 0.34(0.01) 0.42(0.08) 0.58(0.00) 0.55(0.01) 0.57(0.00) 0.59(0.04) 0.64 (0.01)
0.30 0.19(0.00) 0.14(0.07) 0.29(0.10) 0.28 (0.01) 0.29 (0.00) 0.27 (0.08) 0.36 (0.01)
040 0.10(0.01) 0.02(0.03) 0.13(0.00) 0.09 (0.01) 0.10 (0.00) 0.04 (0.04) 0.15 (0.00)
0.50 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
0.60 0.08(0.01) 0.03(0.03) 0.10(0.00) 0.08(0.01) 0.06(0.00) 0.03(0.03) 0.10(0.03)
0.70 0.16(0.01) 0.08(0.08) 0.17(0.02) 0.18(0.01) 0.19(0.00) 0.10(0.07) 0.20 (0.00)
0.80 0.23(0.01) 0.03(0.05 0.25(0.00) 0.26(0.01) 0.27(0.00) 0.18(0.09) 0.27 (0.01)
0.90 0.31(0.01) 0.14(0.12) 0.28(0.10) 0.32(0.01) 0.33(0.00) 0.21(0.12) 0.33(0.00)
0.95 0.35(0.01) 0.01(0.05 0.34(0.01) 0.36(0.00) 0.36(0.00) 0.25(0.08) 0.36 (0.00)

pricing algorithm [23]], which uses linear approximation with multi-dimensional basis functions,
suitable for low dimensional settings.

Table [# summarizes the experiment’s results. Published results [7] for LS, DGM, and BSDE are
included. NA denotes results not reported in the literature, while OOM indicates out of memory. Our
model-free DNN-OSPG algorithm compares favorably with state-of-the-art model-based PDE-based
option pricing methods that have prior knowledge of process evolution. Specifically, unlike LS, whose
accuracy degrades with the number of correlated assets, and DNN-FQI, whose accuracy degrades
up to 6.5%, DNN-OSPG retains excellent performance (< 0.55% error) closely approaching the
model-based PDE methods (< 0.35% error). Of course, a key advantage of DNN-OSPG is that it can
be used to price options for which no known PDE is available to describe process evolution.

D.4 Stopping a fractional Brownian motion

Table 5 provides numerical values corresponding to Figure[2, RNN-OSPG dominates competing
methods across all values the Hurst parameter in this non-Markovian setting.

Table 6: Stopping a fractional Brownian motion: Model sizes and compute times

method model-size mean training time mean time/prediction
(params) (seconds) (u-seconds)

DOS 62,900 2250 26.9
DNN-FQI 651 21 0.5
DNN-OSPG 651 29 0.5
DOS-ES 276,300 2228 25.9
RRLSM 2,200 9 5.0
RNN-FQI 1,691 14 1.1
RNN-OSPG 1,691 79 1.1

D.5 Early stopping a sequential multi-class classifier

We start with the 34 datasets, and corresponding values of « used in the [1]] and remove binary
classification datasets. This leaves 17 datasets. However, many of these have very few series or have
a large number of classes relative to series size, which might make them unsuitable for training RNN
classifiers. Nevertheless, we report results on all 17 datasets. Table[7]reports the experiment’s mean
and standard deviation (over ten random splits) results over 17 UCR time-series datasets. Figure
2 provides a graphical visualization of the same results. NV denotes the number of trajectories,
denotes the length of the series, and K denotes the number of classes. « trades-off classification
accuracy and earliness. RNN-OSPG achieves the best performance on 15 of the 17 datasets.

22

Table 7: Early stopping a sequential multi-class classifier: Results

average cost (standard deviation)

Dataset N/H/K/ox RRLSM RNN-FQI RNN-OSPG
CBF 930/128/3/0.8 0.192 (0.017) 0.308 (0.138) 0.186 (0.011)
ChlorineConcentration 4,307/166/3/0.4 0.468 (0.011) 0.523 (0.073) 0.455 (0.003)
Crop 24,000/46/24/0.06 0.428 (0.005) 0.407 (0.010) 0.389 (0.008)
ECG5000 5000/140/5/0.5 0.110 (0.005) 0.217 (0.059) 0.099 (0.006)
ElectricDevices 16,637/96/7/0.1 0.257 (0.015) 0.260 (0.012) 0.228 (0.009)
FaceAll 2,250/131/14/0.01 0.108 (0.025) 0.100 (0.010) 0.092 (0.017)
FaceUCR 2,250/131/14/0.5 0.358 (0.035) 0.465 (0.049) 0.328 (0.028)
FiftyWords 905/270/50/0.5 0.667 (0.027) 0.812(0.041) 0.634 (0.029)
InsectWingbeatSound 2,200/256/11/1 0.666 (0.064) 0.897 (0.110) 0.646 (0.080)
Medicallmages 1,141/99/10/0.07 0.296 (0.033) 0.309 (0.031) 0.263 (0.038)
MelbournePedestrian 3,633/24/10/0.8 0.591 (0.065) 0.597 (0.068) 0.487 (0.044)
MixedShapesRegularTrain 2,925/1024/5/0.1 0.194 (0.024) 0.194 (0.008) 0.191 (0.037)
NonlnvasiveFetalECGThorax2 3,765/750/42/0.04 0.418 (0.094) 0.343 (0.008) 0.295 (0.064)
StarLightCurves 9,236/1024/3/0.3 0.120 (0.043) 0.315 (0.067) 0.165 (0.035)
Symbols 1,020/398/6/0.2 0.103 (0.013) 0.208 (0.030) 0.239 (0.070)
UWaveGestureLibraryX 4,478/315/8/0.5 0.523 (0.023) 0.658 (0.026) 0.498 (0.040)
WordSynonyms 905/270/25/0.6 0.760 (0.024) 0.913 (0.043) 0.727 (0.041)

E Baseline subtraction for variance reduction

As with RL policy gradients, we may subtract a baseline value[29] to reduce variance. However,
unlike the general RL case, due to the stopping-time-based formulation of the OSPG, the OSPG
baseline should not be time-varying.

Proposition E.1 (baseline subtraction for OSPG). The optimal stopping policy gradient (OSPG) of
Theorem 4.1 is invariant to the subtraction of a constant (w.r.t. trajectory) baseline from every reward
in the trajectory. Thus:

["
VoJos(0) = BEg,opsy) | D7l (s;)Velogyd(s;)
=0
["
Es, P(si) (rj — b)¥?(s;) Ve log v (s;)
_j:O

Proof. It suffices to show Eg,, p(s,) {Zf:o b@/)‘?(sj)Vg log 7721‘? (sj)} = 0. We proceed as follows:

H ‘]
Vo? (s;)
ESHNP(SH) Z b,(/)']e (57) J J

H
Egynptsm) | D005 (8))Vologdf(s;)| = 0(s))
i=0 7

= EsHNIP(sH) Vo Z b’(/J?(Sj)

H
= FEs,pisy) |Vob Z P9 (s;)
=0

= 0 (45)

23

	Introduction
	Discrete-time finite-horizon optimal stopping
	A Bayesian network view of optimal stopping
	Optimal Stopping Policy Gradients (OSPG)
	Experiments
	Conclusions
	Appendix A: Proofs
	Proof of Lemma 3.0.1
	Proof of Theorem 3.1
	Proof of Corollary 3.1.1
	Proof of Theorem 4.1
	Proof of Proposition 4.1
	Proof of Corollary 4.1.1

	Dealing with costs instead of rewards
	Neural Fitted Q-iteration approaches: DNN-FQI and RNN-FQI

	Further details of the experiments
	Model hyper-parameter settings
	Pricing Bermudan options
	Pricing American options
	Stopping a fractional Brownian motion
	Early stopping a sequential multi-class classifier

	Baseline subtraction for variance reduction

