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Abstract

Research on the theoretical expressiveness of Graph Neural Networks (GNNs)1

has developed rapidly, and many methods have been proposed to enhance the2

expressiveness. However, most methods do not have a uniform expressiveness3

measure except for a few that strictly follow the k-dimensional Weisfeiler-Lehman4

(k-WL) test hierarchy. Their theoretical analyses are often limited to distinguishing5

certain families of non-isomorphic graphs, leading to difficulties in quantitatively6

comparing their expressiveness. In contrast to theoretical analysis, another way to7

measure expressiveness is by evaluating model performance on certain datasets8

containing 1-WL-indistinguishable graphs. Previous datasets specifically designed9

for this purpose, however, face problems with difficulty (any model surpassing 1-10

WL has nearly 100% accuracy), granularity (models tend to be either 100% correct11

or near random guess), and scale (only a few essentially different graphs in each12

dataset). To address these limitations, we propose a new expressiveness dataset,13

BREC, which includes 400 pairs of non-isomorphic graphs carefully selected from14

four primary categories (Basic, Regular, Extension, and CFI). These graphs have15

higher difficulty (up to 4-WL-indistinguishable), finer granularity (able to compare16

models between 1-WL and 3-WL), and a larger scale (400 pairs). Further, we17

synthetically test 23 models with higher-than-1-WL expressiveness on our BREC18

dataset. Our experiment gives the first thorough comparison of the expressiveness19

of those state-of-the-art beyond-1-WL GNN models. We expect this dataset to20

serve as a benchmark for testing the expressiveness of future GNNs. Our dataset21

and evaluation code are released at: https://github.com/GraphPKU/BREC.22

1 Introduction23

GNNs have been extensively utilized in bioinformatics, recommender systems, social networks, and24

others, yielding remarkable outcomes [1–6]. Despite impressive empirical achievements, related25

investigations have revealed that GNNs exhibit limited abilities to distinguish non-isomorphic graphs,26

such as regular graphs. In a practical scenario, the inability to recognize structure may cause issues,27

such as confused representation of a benzene ring (a six-cycle that cannot be recognized). Xu et al.28

[7], Morris et al. [8] established a connection between the expressiveness of message-passing neural29

networks (MPNNs) and the WL test for graph isomorphism testing, demonstrating that MPNN’s30

upper bound is 1-WL. Numerous subsequent studies have proposed GNN variants with enhanced31

expressiveness [9–13].32

Given the multitude of models employing different approaches, such as feature injection, adherence33

to the WL hierarchy, equivariance maintenance, and subgraph extraction, a unified framework that34

can theoretically compare the expressive power among various variants is highly desirable. In35

this regard, Maron et al. [14] propose the concept of k-order invariant/equivariant graph networks,36

which unify linear layers while preserving permutation invariance/equivariance. Additionally, Frasca37
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et al. [15] unify recent subgraph GNNs and establish that their expressiveness upper bound is 3-38

WL. Zhang et al. [16] construct a comprehensive expressiveness hierarchy for subgraph GNNs,39

providing counterexamples for each pairwise distinction. Nonetheless, the magnitude of the gaps40

remains unknown. Furthermore, there exist methods that are difficult to categorize within the k-WL41

hierarchy. For instance, Papp and Wattenhofer [17] propose four extensions of GNNs, each of which42

cannot strictly compare with the other. Similarly, Feng et al. [18] propose a GNN that is partially43

stronger than 3-WL yet fails to distinguish many graphs that are distinguishable by 3-WL. In a44

different approach, Huang et al. [19] propose evaluating expressiveness by enumerating specific45

significant substructures, such as 6-cycles. Zhang et al. [20] introduces graph biconnectivity to test46

expressiveness.47

Without a unified theoretical characterization of expressiveness, employing expressiveness datasets48

for testing proves valuable. Notably, three expressiveness datasets, EXP, CSL, and SR25, have been49

introduced by Abboud et al. [21], Murphy et al. [22], Balcilar et al. [9] and have found widespread50

usage in recent studies. However, these datasets exhibit notable limitations. Firstly, they lack sufficient51

difficulty. The EXP and CSL datasets solely consist of examples where 1-WL fails, and most recent52

GNN variants have achieved perfect accuracy on these datasets. Secondly, the granularity of these53

datasets is too coarse, which means that graphs in these datasets are generated using a single method,54

resulting in a uniform level of discrimination difficulty. Consequently, the performance of GNN55

variants often falls either at random guessing (completely indistinguishable) or 100% (completely56

distinguishable), thereby hindering the provision of a nuanced measure of expressiveness. Lastly,57

these datasets suffer from small sizes, typically comprising only a few substantially different graphs,58

raising concerns of incomplete measurement.59

To overcome the limitations of current expressiveness datasets, we propose a new dataset, BREC,60

including 400 pairs of non-isomorphic graphs in 4 major categories: Basic graphs, Regular graphs,61

Extension graphs, and CFI graphs. Compared to previous ones, BREC has a greater difficulty (up to62

4-WL-indistinguishable), finer granularity (able to compare models between 1-WL and 3-WL), and63

larger scale (800 non-isomorphic graphs organized as 400 pairs), addressing the shortcomings.64

Due to the increased size and diversity of the dataset, the traditional classification task may not be65

suitable for training-based evaluation methods which rely on generalization ability. Thus, we propose66

a novel evaluation procedure based on directly comparing the discrepancies between model outputs to67

test pure practical expressiveness. Acknowledging the impact of numerical precision owning to tiny68

differences between graph pairs, we propose reliable paired comparisons building upon a statistical69

method [23, 24], which offers a precise error bound. Experiments verify that the evaluation procedure70

aligns well with known theoretical results.71

Finally, we comprehensively compared 23 representative beyond-1-WL models on BREC. Our72

experiments first give a reliable empirical comparison of state-of-the-art GNNs’ expressiveness.73

The currently most thorough investigation is a good start for gaining deeper insights into various74

schemes to enhance GNNs’ expressiveness. On BREC, GNN accuracies range from 41.5% to75

70.2%, with I2-GNN [19] performing the best. The 70.2% highest accuracy also implies that the76

dataset is far from saturation. We expect BREC can serve as a benchmark for testing future GNNs’77

expressiveness. We also welcome contributions and suggestions to improve BREC. Our dataset and78

evaluation code are included in https://github.com/GraphPKU/BREC.79

2 Limitations of Existing Datasets80

Preliminary. We utilize the notation {} to represent sets and {{}} to represent multisets. The81

cardinality of a (multi)set S is denoted as |S|. The index set is denoted as [n] = 1, . . . , n. A graph82

is denoted as G = (V(G),E(G)), where V(G) represents the set of nodes or vertices and E(G)83

represents the set of edges. Without loss of generality, we assume |V(G)| = n and V(G) = [n].84

The permutation or reindexing of G is denoted as Gπ = (V(Gπ),E(Gπ)) with the permutation85

function π : [n]→ [n], s.t. (u, v) ∈ E(G) ⇐⇒ (π(u), π(v)) ∈ E(Gπ). Node and edge features are86

excluded from the definitions for simplicity. Additional discussions about features can be found in87

Appendix B.88

Graph Isomorphism (GI) Problem. Two graphs G and H are considered isomorphic (denoted as89

G ' H) if ∃ φ(a bijection mapping) :V(G) → V(H) s.t. (u, v) ∈ E(G) iff. (φ(u), φ(v)) ∈ E(H).90
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(a) EXP dataset core pair sample (b) CSL graphs (m = 10, r = 2) (c) SR25 dataset sample
Figure 1: Sample graphs in previous datasets

Table 1: Dataset statistics
Dataset # Graphs # Core graphsa # Nodes Hardness Metrics

EXP 1200 6 33-73 1-WL-indistinguishable 2-way classification
CSL 150 10 41 1-WL-indistinguishable 10-way classification
SR25 15 15 25 3-WL-indistinguishable 15-way classification
BREC 800 800 10-198 1-WL to 4-WL-indistinguishable Reliable Paired Comparisons

a Core graphs represent graphs that actually serve to measure expressiveness.

GI is essential in expressiveness. Only if GNN successfully distinguishes two non-isomorphic graphs91

can they be assigned different labels. Some researchers [25, 26] indicate the equivalence between GI92

and function approximation, underscoring the importance of GI. However, we currently do not have93

polynomial-time algorithms for solving the GI problem. A naive solution involves iterating all n!94

permutations to test whether such a bijection exists.95

Weisfeiler-Lehman algorithm (WL). WL is a well-known isomorphism test relying on color refine-96

ment [27]. In each iteration, WL assigns a state (or color) to each node by aggregating information97

from its neighboring nodes’ states. This process continues until convergence, resulting in a multiset98

of node states representing the final graph representation. While WL effectively identifies most99

non-isomorphic graphs, it may fail in certain simple graphs, leading to the development of extended100

versions. One such extension is k-WL, which treats each k-tuple of nodes as a unit for aggregating101

information. Another slightly different method [28] is also referred to as k-WL. To avoid confusion,102

we follow Morris et al. [8] to call the former k-WL and the latter k-FWL. Further information can be103

found in Appendix C.104

Given the significance of GI and WL, several expressiveness datasets have been introduced, with the105

following three being the most frequently utilized. We selected a pair of graphs from each dataset,106

which are illustrated in Figure 1. Detailed statistics for these datasets are presented in Table 1.107

EXP Dataset. This dataset comprises 600 pairs of non-isomorphic graphs where the 1-WL test fails.108

Graphs are generated pair-wised, and each graph comprises two disconnected components. The first109

component, the "core component," is designed to be non-isomorphic with the other graph’s "core110

component," each satisfying distinct SAT conditions in the two graphs. The second component,111

referred to as the "planar component," is identical in both graphs and introduces noise into the dataset.112

However, it is important to note that there are only three substantially different core pairs, which113

can truly evaluate the expressiveness of the models.114

Each graph in EXP is labeled 0/1 based on whether its core component satisfies the SAT condition for115

a binary classification problem. Although EXP addresses the issue of semantic labeling by introducing116

SAT problem and enhances the dataset’s size and complexity by including planar components, the117

simplicity of core c generation and the insufficient number of different core pairs result in most recent118

GNNs achieving nearly 100% accuracy on EXP, making it difficult for detailed comparisons.119

CSL Dataset. This dataset consists of 150 Circulant Skip Links (CSL) graphs, where the 1-WL test120

fails. A CSL graph is defined as follows: Let r and m be co-prime natural numbers with r < m− 1.121

G(m, r) = (V,E) is an undirected 4-regular graph with V = [m], where the edges form a cycle and122

include skip links. Specifically, for the cycle, (j, j+1) ∈ E for j ∈ [m− 1], and (m, 1) ∈ E. For the123

skip links, the sequence is recursively defined as s1 = 1, si+1 = (si+r) modm+1, and (si, si+1) ∈124

E for any i ∈ N. In CSL, we consider CSL graphs withm = 41 and r = 2, 3, 4, 5, 6, 9, 11, 12, 13, 16,125

resulting in 10 distinct CSL graphs. For each distinct CSL graph, we generate 14 corresponding126

graphs by randomly reindexing the nodes. As a result, the dataset contains a total of 150 graphs.127

In CSL, each of the 10 distinct CSL graphs is treated as a separate class, and the task is to train a128

10-way classification model. While the dataset allows for the generation of 4-regular graphs with129

any number of nodes, the final dataset contains only ten essentially different regular graphs with the130
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(a) Basic (b) Regular (c) Strongly regular (d) Extension (e) CFI
Figure 2: BREC dataset samples

same number of nodes and degree. Due to the nature of regular graphs and their fixed structure,131

many recent expressive GNN models perform well on this dataset, achieving close to 100% accuracy.132

SR25 Dataset. It consists of 15 strongly regular graphs (SR) where the 3-WL test fails. Each graph is133

an SR with 25 nodes and a degree of 12. In these graphs, connected nodes have 5 common neighbors,134

while non-connected nodes have 6. In practice, SR25 is transformed into a 15-way classification135

problem for mapping each graph into a different class where the training and test graphs overlap.136

Indeed, 3-WL serves as an upper bound for most recent expressive GNNs. Thus most methods137

only obtain 6.67% (1/15) accuracy. While some models partially surpassing 3-WL easily achieve138

completely distinguishable (100%) performance [18], since each graph is an SR with the same139

parameters. This binary outcome can hardly provide a fine-grained expressiveness measure.140

Summary. These three datasets have limitations regarding difficulty, granularity, and scale. In terms141

of difficulty, these datasets are all bounded by 3-WL, failing to evaluate models (partly) beyond142

3-WL [18, 19]. In terms of granularity, the graphs are generated in one way, and the parameters of143

the graphs are repetitive, which easily leads to a 0/1 step function of model performance and cannot144

measure subtle differences between models. In terms of scale, the number of substantially different145

graphs in the datasets is small, and the test results may be incomplete to reflect expressiveness146

measurement.147

3 BREC: A New Dataset for Expressiveness148

We propose a new expressiveness dataset, BREC, to address the limitations regarding difficulty,149

granularity, and scale. It consists of four major categories of graphs: Basic, Regular, Extension,150

and CFI. Basic graphs include relatively simple 1-WL-indistinguishable graphs. Regular graphs151

include four types of subcategorized regular graphs. Extension graphs include special graphs that152

arise when comparing four kinds of GNN extensions [17]. CFI graphs include graphs generated by153

CFI methods1 [28] with high difficulty. Some samples are shown in Fig 2.154

3.1 Dataset Composition155

BREC includes 800 non-isomorphic graphs arranged in a pairwise manner to construct 400 pairs, with156

detailed composition as follows: (For a more detailed generation process, please refer to AppendixK)157

Basic Graphs. Basic graphs consist of 60 pairs of 10-node graphs. These graphs are collected158

from an exhaustive search and intentionally designed to be non-regular. Although they are 1-159

WL-indistinguishable, most can be distinguished by expressive GNN variants. Basic graphs can160

also be regarded as an augmentation of the EXP dataset, as they both employ non-regular 1-WL-161

indistinguishable graphs. Nevertheless, Basic graphs offer a greater abundance of instances and more162

intricate graph patterns. The relatively small size also facilitates visualization and analysis.163

Regular Graphs. Regular graphs consist of 140 pairs of regular graphs, including 50 pairs of simple164

regular graphs, 50 pairs of strongly regular graphs, 20 pairs of 4-vertex condition graphs, and 20 pairs165

1CFI is short for Cai-Furer-Immerman algorithm, which can generate counterexample graphs for any k-WL.
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of distance regular graphs. Each pair of graphs shares identical parameters. A regular graph refers166

to a graph where all nodes possess the same degree. Regular graphs are 1-WL-indistinguishable,167

and some studies delve into the analysis of GNN expressiveness from this perspective [29, 13]. We168

denote regular graphs without any special properties as simple regular graphs. When exploring169

more intricate regular graphs, the concept of strongly regular graphs (where 3-WL fails) is often170

introduced. Strongly regular graphs further require that the number of neighboring nodes shared by171

any two nodes depends solely on their connectivity. Notable examples of strongly regular graphs172

include the 4× 4-Rook’s graph and the Shrikhande graph (Fig 2(c)). Additionally, the 4× 4-Rook’s173

graph satisfies the 4-vertex condition property, which signifies that the number of connected edges174

between the common neighbors of any two nodes is solely determined by their connectivity [30]. It175

is worth mentioning that the diameter of a connected strongly regular graph is always 2 [31]. A more176

challenging type of graph known as the distance regular graphs [32] is proposed aiming for extending177

the diameter. Please refer to Appendix A for a more comprehensive exploration of their relationship.178

Regular graphs can also as an enriching addition to the CSL and SR25 datasets. By expanding upon179

the existing subdivisions of regular graphs, this section widens the range of difficulty and raises the180

upper bound of complexity. Moreover, unlike the previous datasets, regular graphs are not limited to181

sharing identical parameters for all graphs within each category, greatly enhancing diversity.182

Extension Graphs. Extension graphs include 100 pairs of graphs inspired by Papp and Wattenhofer183

[17]. They proposed 4 types of theoretical GNN extensions: k-WL hierarchy-based, substructure-184

counting-based, k-hop-subgraph-based, and marking-based methods. The authors reveal that most of185

them are not strictly comparable. Leveraging the insights from theoretical analysis and some empiri-186

cally derived findings, we generated 100 pairs of 1-WL-indistinguishable and 3-WL-distinguishable187

graphs to improve the granularity. Noting that it was not considered in any of the previous datasets.188

CFI Graphs. CFI graphs consist of 100 pairs of graphs inspired by Cai et al. [28]. They developed a189

method to generate graphs distinguishable by k-WL but not by (k − 1)-WL for any k. We utilized190

this method to create 100 pairs of graphs spanning up to 4-WL-indistinguishable, even surpassing the191

current research’s upper bounds. Specifically, 60 pairs are solely distinguishable by 3-WL, 20 are192

solely distinguishable by 4-WL, and 20 are even 4-WL-indistinguishable. Similar to the previously193

mentioned parts, CFI graphs were not considered in the previous datasets. As the most challenging194

part, it pushes the upper limit of difficulty even higher. Furthermore, the graph sizes in this section195

are larger than other parts (up to 198 nodes). This aspect intensifies the challenge of the dataset,196

demanding a model’s ability to process graphs with heterogeneous sizes effectively.197

3.2 Advantages198

Difficulty. By utilizing the CFI method, we specifically provide graphs being 4-WL-indistinguishable.199

Additionally, we include 4-vertex condition graphs and distance regular graphs, which are variants of200

strongly regular graphs (3-WL-indistinguishable) but pose greater challenges in terms of complexity.201

Granularity. The different classes of graphs in BREC exhibit varying difficulty levels, each con-202

tributing to the dataset in distinct ways. Basic graphs contain fundamental 1-WL-indistinguishable203

graphs, similar to the EXP dataset, as a starting point for comparison. Regular graphs extend the CSL204

and SR25 datasets. The major components of regular graphs are simple regular graphs and strongly205

regular graphs, where 1-WL and 3-WL fail, respectively. Including 4-vertex condition graphs and206

distance regular graphs further elevates the complexity. Extension graphs bridge the gap between207

1-WL and 3-WL, offering a finer-grained comparison for evaluating models beyond 1-WL. CFI208

graphs span the spectrum of difficulty from 1-WL to 4-WL-indistinguishable. By comprehensive209

graph composition, BREC explores the boundaries of graph pattern distinguishability.210

Scale. While previous datasets relied on only tens of different graphs to generate the dataset, BREC211

utilizes a collection of 800 different graphs. This significant increase in the number of graphs greatly212

enhances the diversity. The larger graph set in BREC also contributes to a more varied distribution of213

graph statistics. In contrast, previous datasets such as CSL and SR25 only have the same number of214

nodes and degrees across all graphs. For detailed statistics of BREC, please refer to Appendix D.215
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4 RPC: A New Evaluation Method216

This section introduces a novel training framework and evaluation method for BREC. Unlike previous217

datasets, BREC departs from the conventional classification setting, where each graph is assigned218

a label, a classification model is trained, and the accuracy on test graphs serves as the measure219

of expressiveness. The labeling schemes used in previous datasets like semantic labels based on220

SAT conditions in EXP, or distinct labels for essentially different graphs in CSL and SR25, do not221

apply to BREC. There are two primary reasons. First, BREC aims to enrich the diversity of graphs,222

which precludes using a semantic label tied to SAT conditions, as it would significantly limit the223

range of possible graphs. Second, assigning a distinct label to each graph in BREC would result in224

an 800-class classification problem, where performance could be influenced by factors other than225

expressiveness. Our core idea is to measure models’ "separating power" directly. Thus BREC is226

organized in pairs, where each pair is individually tested to determine whether a GNN can distinguish227

them. By adopting a pairwise evaluation method, BREC provides a more focused measure of models’228

expressiveness, aligning to assess distinguishing ability.229

Nevertheless, how can we say a pair of graphs is successfully distinguished? Previous researchers230

tend to set a small threshold (like 1E-4) manually. If the embedding distance between them is231

larger than the threshold, the GNN is considered can distinguish them. However, this method232

lacks reliability due to numerical precision, especially when graphs vary in size. In order to yield233

dependable outcomes, we propose an evaluation method measuring both external difference and234

internal fluctuations. Furthermore, we introduce a training framework for pairwise data, employing235

the siamese network design [33] and contrastive loss [34, 35]. The pipeline is depicted in Fig 3(a).236

4.1 Training Framework237

We adhere to the siamese network design [33] to train a model to distinguish each pair of graphs. The238

central component consists of two identical models that maintain identical parameters. When a pair239

of graphs is inputted, it produces a corresponding pair of embeddings. Subsequently, the difference240

between them is assessed using cosine similarity. The loss function is formulated as follows:241

L(f,G,H) = Max(0,
f(G) · f(H)
||f(G)|| ||f(H)||

− γ), (1)

where the GNN model f : {G} → Rd, G andH are two non-isomorphic graphs, and γ is a margin242

hyperparameter (set to 0 in our experiments). The loss function aims to promote the cosine similarity243

value lower than γ, thereby encouraging a greater separation between the two graph embeddings.244

The training process yields several benefits for the models. Firstly, it enables the GNN to achieve245

its theoretical expressiveness. The theoretical analysis of GNN expressiveness focuses primarily246

on the network’s structure without imposing any constraints on its parameters, which means we247

are exploring the expressiveness of a group of functions. If a model with particular parameters248

can distinguish a pair of graphs, the model’s design and structure possess sufficient expressiveness.249

However, it is impractical to iterate all possible parameter combinations to test the real upper bound.250

Hence, training can realize searching in the function space, enabling models to achieve better251

practical expressiveness. Furthermore, training aids components to possess specific properties, such252

as injectivity and universal approximation, which are vital for attaining theoretical expressiveness.253

These properties require specific parameter configurations, and randomly initialized parameters may254

not satisfy these requirements. Moreover, through training, model-distinguishable pairs are more255

easily discriminated from model-indistinguishable pairs, which helps reduce the false negative rate256
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caused by numerical precision. The difference between their embeddings is further magnified in257

the pairwise contrastive training process if the model distinguishes them. However, the difference258

remains unaffected mainly and is only influenced by numerical errors for model-indistinguishable259

pairs. The training framework is illustrated in Fig 3(a).260

4.2 Evaluation Method261

Recall that our approach involves comparing the outputs on a pair of non-isomorphic graphs. If262

there exists a notable disparity between them, we consider the GNN to be able to distinguish them.263

However, determining an appropriate threshold poses a challenge. A large threshold may yield264

false negatives where the model is expressive enough, but the observed difference falls short of265

the threshold. Conversely, a small threshold may result in false positives, where the model fails to266

distinguish the graphs. However, the fluctuating or numerical errors cause the difference to exceed267

the small threshold.268

To address the issue of fluctuating errors, we draw inspiration from Paired Comparisons [23]. It269

involves comparing two groups of results instead of a single pair. The influence of random errors is270

mitigated by repeatedly generating results and comparing the two groups of results. Building upon it,271

we introduce a method called Reliable Paired Comparison (RPC) to verify whether a GNN genuinely272

produces distinct outputs for a pair of graphs. The pipeline is depicted in Fig 3(b).273

RPC consists of two main components: Major procedure and Reliability check. The Major procedure274

is conducted on a pair of non-isomorphic graphs to measure their dissimilarity. In comparison,275

the Reliability check is conducted on graph automorphisms to capture internal fluctuations with276

numerical precision.277

Major procedure. For two non-isomorphic graphs G andH, we create q copies of each by randomly278

reindexing (operate permutation on node indexes, thus generating an isomorphic graph but with279

different node orders) them. It results in two groups of graphs, where each copy is represented as:280

Gi, Hi, i ∈ [q]. (2)

Supposing the GNN f : {G} → Rd, we first calculate q differences utilizing Paired Comparisons.281

di = f(Gi)− f(Hi), i ∈ [q]. (3)

Assumption 4.1. di are independent N (µ,Σ) random vectors.282

The above assumption is based on a more basic assumption that f(Gi), f(Hi) follow Gaussian283

distributions, which presumes that random reindexing only introduces Gaussian noise to the result.284

The mean difference between two graph embeddingsµ = 0 implies the GNN cannot distinguish them.285

Therefore, we can obtain the distinguishing result by conducting an α-level Hotelling’s T-square test,286

comparing the hypotheses H0 : µ = 0 against H1 : µ 6= 0. We calculate the T 2-statistic for µ as:287

T 2 = q(d− µ)TS−1(d− µ), (4)

where288

d =
1

q

q∑
i=1

di, S =
1

q − 1

q∑
i=1

(di − d)(di − d)T . (5)

Hotelling’s T-square test proves that T 2 is distributed as an (q−1)d
q−d Fd,q−d random variable, whatever289

the true µ and Σ [36]. The theorem establishes a connection between the unknown parameter µ and a290

definite probability distribution Fd,q−d, allowing us to confirm the confidence interval of µ by testing291

the distribution fit. In order to test the hypothesis H0 : µ = 0, we substitute µ = 0 into Equation (4)292

to obtain T 2
test = qd

T
S−1d. Then, for a specific α, an α-level test of H0 : µ = 0 versus H1 : µ 6= 0293

for a population following N (µ,Σ) distribution accepts H0 (the GNN cannot distinguish the pair) if:294

295

T 2
test = qd

T
S−1d <

(q − 1)d

(q − d)
Fd,q−d(α), (6)
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where Fd,q−d(α) is the upper (100α)th percentile of the F -distribution Fd,q−d [37] with d and q − d296

degrees of freedom. Similarly, we reject H0 (the GNN can distinguish the pair) if297

T 2
test = qd

T
S−1d >

(q − 1)d

(q − d)
Fd,q−d(α). (7)

Reliability check. Although the above test is theoretically valid for evaluating the expressiveness298

of GNNs, in practice, it is susceptible to computational precision limitations. These limitations can299

manifest in various scenarios, such as comparing numbers close to zero or inverting a matrix close to300

zero, making it difficult to rely on the test constantly. We incorporate the Reliability check to monitor301

abnormal results to address this concern. This step effectively bridges the external difference between302

two graphs and the internal fluctuations within a single graph.303

WLOG, we replace H by reindexing of G, i.e., Gπ. Thus, we can obtain the internal fluctuations304

within G by comparing it with Gπ , and the external difference between G andH by comparing G and305

H. We utilize the same step as Major procedure on G and Gπ , calculating the T 2-statistics as follows:306

T 2
reliability = qd

T
S−1d, (8)

where d =
1

q

q∑
i=1

di, di = f(Gi)− f(Gπi ), i ∈ [q], S =
1

q − 1

q∑
i=1

(di − d)(di − d)T . (9)

Recalling that G and Gπ are isomorphic, the GNN should not distinguish between them, implying307

that µ = 0. Therefore, the test result is considered reliable only if T 2
reliability <

(q−1)d
(q−d) Fd,q−d(α).308

Combining the reliability and distinguishability results, we get the complete RPC (Fig 3) as follows:309

For each pair of graphs G and H, we first calculate the threshold value, denoted as Threshold =310
(q−1)d
(q−d) Fd,q−d(α). Next, we conduct the Major procedure on G and H for distinguishability and311

perform the Reliability check on G and Gπ for Reliability. Only when the T 2-statistic from the Major312

procedure, denoted as T 2
test, and the T 2-statistic from the Reliability check, denoted as T 2

reliability,313

satisfying T 2
reliability < Threshold < T 2

test, do we conclude that the GNN can distinguishing G andH.314

We further propose Reliable Adaptive Pairwise Comparison (RAPC), aiming to adaptively adjust the315

threshold and provide an upper bound for false positive rates. In practice, we use RPC due to its less316

computational time and satisfactory performance. For more about RAPC, please refer to Appendix E.317

5 Experiment318

In this section, we evaluate the expressiveness of 23 representative models using our BREC dataset.319

Model selection. We evaluate six categories of methods: non-GNN methods, subgraph-based GNNs,320

k-WL-hierarchy-based GNNs, substructure-based GNNs, transformer-based GNNs, and random321

GNNs. Our primary focus will be on the first three categories. We implement four types of non-322

GNN baselines based on Papp and Wattenhofer [17], Ying et al. [38], including WL test (3-WL and323

SPD-WL), counting substructures (S3 and S4), neighborhood up to a certain radius (N1 and N2),324

and marking (M1). We implemented them by adding additional features during the WL test update325

or using heterogeneous message passing. It is important to note that they are more theoretically326

significant than practical since they may require exhaustive enumeration or exact isomorphism327

encoding of various substructures. We additionally included 16 state-of-the-art GNNs, including328

NGNN [13], DE+NGNN [29], DS/DSS-GNN [10], SUN [15], SSWL_P [16], GNN-AK [39], KP-329

GNN [18], I2-GNN [19], PPGN [40], δ-k-LGNN [41], KC-SetGNN [42], GSN [43], DropGNN [44],330

OSAN [45], and Graphormer [38].331

Table 2 presents the primary results. N2 achieves the highest accuracy among non-GNNs, and I2-GNN332

achieves the highest among GNNs. We detail each method’s accuracy on different graphs, showing333

that it matches theoretical results well. Detailed experiment settings are included in Appendix J.334

Non-GNN baselines. 3-WL successfully distinguishes all Basic graphs, Extension graphs, simple335

regular graphs and 60 CFI graphs as expected. S3, S4,N1, andN2 demonstrate excellent performance336

on small-radius graphs such as Basic, Regular, and Extension graphs. However, due to their limited337

receptive fields, they struggle to distinguish large-radius graphs like CFI graphs. Noting that the338
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Table 2: Pair distinguishing accuracies on BREC
Basic Graphs (60) Regular Graphs (140) Extension Graphs (100) CFI Graphs (100) Total (400)

Model Number Accuracy Number Accuracy Number Accuracy Number Accuracy Number Accuracy

3-WL 60 100% 50 35.7% 100 100% 60 60.0% 270 67.5%
SPD-WL 16 26.7% 14 11.7% 41 41% 12 12% 83 20.8%
S3 52 86.7% 48 34.3% 5 5% 0 0% 105 26.2%
S4 60 100% 99 70.7% 84 84% 0 0% 243 60.8%
N1 60 100% 99 85% 93 93% 0 0% 252 63%
N2 60 100% 138 98.6% 100 100% 0 0% 298 74.5%
M1 60 100% 50 35.7% 100 100% 41 41% 251 62.8%

NGNN 59 98.3% 48 34.3% 59 59% 0 0% 166 41.5%
DE+NGNN 60 100% 50 35.7% 100 100% 21 21% 231 57.8%
DS-GNN 58 96.7% 48 34.3% 100 100% 16 16% 222 55.5%
DSS-GNN 58 96.7% 48 34.3% 100 100% 15 15% 221 55.2%
SUN 60 100% 50 35.7% 100 100% 13 13% 223 55.8%
SSWL_P 60 100% 50 35.7% 100 100% 38 38% 248 62%
GNN-AK 60 100% 50 35.7% 97 97% 15 15% 222 55.5%
KP-GNN 60 100% 106 75.7% 98 98% 11 11% 275 68.8%
I2-GNN 60 100% 100 71.4% 100 100% 21 21% 281 70.2%
PPGN 60 100% 50 35.7% 100 100% 23 23% 233 58.2%
δ-k-LGNN 60 100% 50 35.7% 100 100% 6 6% 216 54%
KC-SetGNN 60 100% 50 35.7% 100 100% 1 1% 211 52.8%
GSN 60 100% 99 70.7% 95 95% 0 0% 254 63.5%
DropGNN 52 86.7% 41 29.3% 82 82% 2 2% 177 44.2%
OSAN 56 93.3% 8 5.7% 79 79% 5 5% 148 37%
Graphormer 16 26.7% 12 10% 41 41% 10 10% 79 19.8%

expressiveness of S3 and S4 is bounded by N1 and N2, respectively, as analyzed by Papp and339

Wattenhofer [17]. Conversely, M1 is implemented by heterogeneous message passing, which makes340

it unaffected by large graph diameters, thus maintaining its performance across different graphs.341

SPD-WL is another 1-WL extension operated on a complete graph with shortest path distances as342

edge features. It may degrade to 1-WL on low-radius graphs, causing its relatively poor performance.343

Subgraph-based GNNs. Regarding subgraph-based models, they can generally distinguish almost344

all Basic graphs, simple regular graphs and Extension graphs. However, an exception lies with345

NGNN, which performs poorly in Extension graphs due to its simplicial node selection policy and346

lack of node labeling. Two other exceptions are KP-GNN and I2-GNN, both exhibiting exceptional347

performance in Regular graphs. KP-GNN can differentiate a substantial number of strongly regular348

graphs and 4-vertex condition graphs, surpassing the 3-WL partially. And I2-GNN surpasses the349

limitations of 3-WL partially through its enhanced cycle-counting power. An influential aspect that350

impacts the performance is the subgraph radius. Approaches incorporating appropriate encoding351

functions are expected to yield superior performance as the subgraph radius increases. However, in352

practice, enlarging the radius may result in the smoothness of information, wherein the receptive field353

expands, encompassing some irrelevant or noisy information. Hence, we treat the subgraph radius as354

a hyperparameter, fine-tuning it for each model, and present the best results in Table 2. Please refer355

to Appendix F for further details regarding the radius selection.356

When comparing various subgraph GNNs, KP-GNN can discriminate part of the strongly regular357

graphs by peripheral subgraphs. Additionally, distance encoding in DE+NGNN and I2-GNN enables358

better discrimination among different hops within a given subgraph radius, enhancing the discrimina-359

tive ability, particularly in larger subgraph radii. As for DS-GNN, DSS-GNN, GNN-AK, SUN and360

SSWL_P, they employ similar aggregation schemes with slight variations in their operations. These361

models exhibit comparable performance, with SSWL_P outperforming others, which aligns with362

expectations since SSWL_P is more expressive but with the least components.363

k-WL hierarchy-based GNNs. For the k-WL-hierarchy-based models, we adopt two implemented364

approaches: high-order simulation and local-WL simulation. PPGN serves as the representative work365

for the former, while δ-k-LGNN and KCSet-GNN embody the latter. PPGN aligns its performance366

with 3-WL across all graphs except for CFI graphs. For CFI graphs with large radii, more WL367

iterations (layers of GNNs) are required. However, employing many layers may lead to over-368

smoothing, resulting in a gap between theoretical expectations and actual performance. Nonetheless,369

PPGN still surpasses most GNNs in CFI graphs due to global k-WL’s global receptive field. For370

δ-k-LGNN, we set k = 2, while for KCSet-GNN, we set k = 3, c = 2 to simulate local 3-WL,371

adhering to the original configuration. By comparing the output results with relatively small diameters,372

we observed that local WL matches the performance of general k-WL. However, local WL exhibits373

lower performance for CFI graphs with larger radii due to insufficient receptive fields.374
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Substructure-based GNNs For substructure-based GNNs, we select GSN, which incorporate sub-375

structure isomorphism counting as features. The best result obtained for GSN-e is reported when376

setting k = 4. For further exploration of policy and size, please refer to Appendix H.377

Random GNNs Random GNNs are unsuitable for GI problems since even identical graphs can yield378

different outcomes due to inherent randomness. However, the RPC can quantify fluctuations in the379

randomization process, thereby enabling the testing of random GNNs. We test DropGNN and OSAN.380

For more information regarding the crucial factor of random samples, please refer to Appendix I.381

Transformer-based GNNs For transformer-based GNNs, we select graphormer, which is anticipated382

to possess a level of expressiveness comparable to SPD-WL. The experimental results verify that.383

6 Conclusion and Future Work384

This paper proposes a new dataset, BREC, for GNN expressiveness comparison. BREC addresses385

the limitations of previous datasets, including difficulty, granularity, and scale, by incorporating386

400 pairs of diverse graphs in four categories. A new evaluation method is proposed for principled387

expressiveness evaluation. Finally, a thorough comparison of 23 baselines on BREC is conducted.388

Apart from the expressiveness comparison based on GI, there are various other metrics for GNN389

expressiveness evaluation, such as substructure counting, diameter counting, and biconnectivity390

checking. However, it’s worth noting that these tests are often conducted on datasets not specifically391

designed for expressiveness [19, 39, 46], which can lead to biased results caused by spurious392

correlations. In other words, certain methods may struggle to identify a particular substructure,393

but they can capture another property that correlates with substructures, resulting in false high394

performance. This problem can be alleviated in BREC because of the difficulty. We reveal the395

data generation process of BREC in Appendix K, hoping that researchers can utilize them in more396

tasks. We also hope the test of practical expressiveness will aid researchers in exploring its effects on397

performance in real datasets and other domains.398
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(a) If your work uses existing assets, did you cite the creators? [Yes]571

(b) Did you mention the license of the assets? [Yes] All assets were openly accessible, and572

the licenses for each asset were retained in the corresponding repositories. For more573

details, please refer to https://github.com/GraphPKU/BREC.574

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]575

Please refer to https://github.com/GraphPKU/BREC576

(d) Did you discuss whether and how consent was obtained from people whose data you’re577

using/curating? [N/A] All assets were openly accessible.578

(e) Did you discuss whether the data you are using/curating contains personally identifiable579

information or offensive content? [N/A] All data points are synthetic.580

5. If you used crowdsourcing or conducted research with human subjects...581

(a) Did you include the full text of instructions given to participants and screenshots, if582

applicable? [N/A] No utilization of crowdsourcing or engagement in research with583

human subjects took place.584

(b) Did you describe any potential participant risks, with links to Institutional Review Board585

(IRB) approvals, if applicable? [N/A] No utilization of crowdsourcing or engagement586

in research with human subjects took place.587

(c) Did you include the estimated hourly wage paid to participants and the total amount588

spent on participant compensation? [N/A] No utilization of crowdsourcing or engage-589

ment in research with human subjects took place.590
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A Details on Regular Graphs591

In this section, we introduce the relationship between four types of regular graphs. The inclusion592

relations of them are shown in Figure 4, but their difficulty relations and inclusion relations are not593

consistent.594

Regular Graph

Distance Regular Graph

Strongly Regular Graph

4-Vertex Condition Graph 

Figure 4: Regular graphs relationship

A graph is deemed a regular graph when all of its vertices possess an identical degree. If a regular595

graph, with v vertices and degree k, satisfies the additional conditions wherein any two adjacent596

vertices share λ common neighbors, and any two non-adjacent vertices share µ common neighbors, it597

is categorized as a strongly regular graph. Hence, it can be represented as srg(v, k, λ, µ), denoting its598

four associated parameters.599

Regular graphs and strongly regular graphs find wide application in expressiveness analysis. The600

difficulty of strongly regular graphs surpasses that of general regular graphs due to the imposition601

of additional requirements. Notably, the simplest strongly regular graphs with identical parameters602

(srg(16, 6, 2, 2)) are exemplified by the Shrikhande graph and the 4× 4-Rook’s graph, as depicted in603

Figure 2(c).604

Both 4-vertex condition graphs and distance regular graphs introduce heightened complexities, albeit605

in opposing directions. A 4-vertex condition graph is a strongly regular graph with an additional606

property that mandates the determination of the number of edges between the common neighbors607

of two vertices based on their connectivity. Conversely, distance regular graphs expand upon the608

definition of strongly regular graphs by specifying that for any two vertices v and w, the count of609

vertices at a distance j from v and at a distance k from w relies solely on j, k, and the distance610

between v and w. Notably, a distance regular graph with a radius of 2 is equivalent to a strongly611

regular graph.612

The 4-vertex condition graph has yet to be explored in previous research endeavors. Similarly,613

instances of distance regular graphs are relatively scarce and analyzing them through examples proves614

to be challenging. To encourage further research in these domains, we have incorporated them into615

BREC.616

B Node Features617

In this section, we present the concept of node features and edge features in graphs.618

We commence by providing the definition of graphs using an adjacency matrix representation.619

Consider a graph where the node features are represented by a dn-dimensional vector, and the edge620

features are represented by a de-dimensional vector. This graph can be denoted as G = (V(G),E(G)),621

where V(G) ∈ Rn×dn represents the node features, and E(G) ∈ Rn×n×(de+1) represents the edge622

features, with n being the number of nodes in the graph. The adjacency matrix of the graph is denoted623

as A(G) ∈ Rn×n = E(G):,:,(de+1), where A(G)i,j = 1 if (i, j) ∈ E(G) (i.e., if nodes i and j are624

connected by an edge), otherwise A(G)i,j = 0. The feature of node i is represented by V (G)i,:, and625

the feature of edge (i, j) is represented by E(G)i,j,1:de . The permutation (or reindexing) of G is626

denoted as Gπ = (V(G),E(G)) with permutation π : [n]→ [n], such that V (G)i,: = V (G)π(i),: and627

E(G)i,j,: = E(G)π(i),π(j),:.628

Next, we explore the utilization of features. It is evident that incorporating node features during629

initialization and edge features during message passing can enhance the performance of GNNs, given630
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appropriate hyperparameters and training. However, we should consider whether features can truly631

represent graph structures or provide additional expressiveness. Let us categorize features into two632

types.633

The first type involves fully utilizing the original features, such as distances to other nodes or spectral634

embeddings. While using these features can aid GNNs in solving Graph Isomorphism (GI) problems,635

this type of feature requires a dedicated design to effectively utilize them. For instance, if we aim636

to recognize a 6-cycle in a graph, we can manually identify the cycle and assign distinct features to637

each node within the cycle. In this way, the GNN can recognize the cycle by aggregating the six638

distinctive features. However, the injecting strategy influences expressiveness and requires further639

analysis. Utilizing distance can also enhance expressiveness but also need a suitable design (like640

subgraph distance encoding and SPD-WL).641

The second type entails incorporating additional features, such as manually selected node identifiers.642

it is important to note that this improvement stems from reduced difficulty rather than increased643

expressiveness. For instance, given a pair of non-isomorphic graphs with high similarity, we can644

manually find the components causing the distinguishing difficulty and assign identifiers to help645

models overcome them. However, this process is generally unavailable in practice.646

In summary, we can conclude that features have the potential to introduce expressiveness, but this647

should be accomplished through model design rather than relying solely on the dataset. In the case648

of BREC, a dataset created specifically for testing expressiveness, we do not include additional649

meaningful features. Instead, we employ the same vector for all node features and edge features and650

adhere to specific model settings to incorporate graph-specific features, such as the distance between651

nodes in distance encoding based models.652

C WL Algorithm653

This section briefly introduces the WL algorithm and two high-order variants.654

The 1-WL algorithm, short for "1-Weisfeiler-Lehman," is an initial version of the WL algorithm. It655

serves as a graph isomorphism algorithm and can be employed to generate a distinctive label for each656

graph.657

In the 1-WL algorithm, every node in the graph maintains a state or color, which undergoes refinement658

during each iteration by incorporating information from the states of its neighboring nodes. As the659

algorithm progresses, the graph representation evolves into a multiset of node states, ultimately660

converging to a final representation.661

To circumvent these examples, researchers have devised a technique to augment each node in the 1-662

WL test, resulting in the development of the k-WL test [47? ]. The k-dimensional Weisfeiler-Lehman663

test expands the scope of the test to consider colorings of k-tuples of nodes instead of individual664

nodes. This extension allows for a more comprehensive analysis of graph structures and assists in665

overcoming the limitations posed by certain examples.666

In addition to the k-WL test, Cai et al. [28] proposed an alternative WL test algorithm that also667

extends to k-tuples. This variant is commonly referred to as the k-FWL (k-folklore-WL) test. The668

k-FWL test differs from the k-WL test in terms of how neighbors are defined and the order in which669

aggregation is performed on tuples and multisets.670

There are three notable results associated with these tests:671

1 1-WL = 2-WL672

2 k-WL > (k − 1)-WL, (k > 2)673

3 (k − 1)-FWL = k-WL674

More details can be found in Sato [48], Huang and Villar [49].675

D BREC Statistics676

Here we give some statistics of the BREC dataset, shown in Figure 5.677
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Figure 5: BREC Statistics
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Figure 6: RAPC pipeline.

E RAPC: a Reliable and Adaptive Evaluation Method678

In this section, we propose RAPC with an additional stage called adaptive confidence interval based679

on RPC. Though RPC performs excellently in experiments with a general theoretical guarantee in680

reliability, with manually setting α. We still want to make the procedure more automated. In addition,681

we found that the inner fluctuations of each pair, i.e. T 2
reliability, vary from pairs. This means some682

graph outputs are more stable than others, and their threshold can be larger than others. However, it683

is impossible to manually set the confidence interval (α) for all pairs, thus, we propose an adaptive684

confidence interval method to solve this problem. The key idea is to set the threshold according to685

minimum internal fluctuations.686

Given a pair of non-isomorphic graphs G andH to be tested. For simplicity, we rename G as G1,H687

as G2. For each graph (G1 and G2), we generate p groups of graphs, with each group containing 2q688

graphs, represented by:689

Gi,j,k, i ∈ [2], j ∈ [p], k ∈ [2q]. (10)
Similarly, we can calculate T 2-statistics for each group (2p groups in total):690

T 2
i,j = qd

T

i,jSi,jdi,j , i ∈ [2], j ∈ [p]. (11)

where691

di,j =
1

q

q∑
k=1

di,j,k, di,j,k = f(Gi,j,k)− f(Gi,j,k+q), i ∈ [2], j ∈ [p], k ∈ [q],

Si,j =
1

q − 1

q∑
j=1

(di,j,k − di,j)(di,j,k − di,j)T .
(12)

Similar to major procedure, we can conduct an α-level test of H0 : δ = 0 versus H1 : δ 6= 0, it692

should always accept H0(the GNN cannot distinguish them) since the 2q graphs in each group are693

essentially the same. And T 2-statistics should satisfy the:694

T 2
i,j = qd

T

i,jSi,jdi,j <
(q − 1)n

(q − n)
Fn,q−n(α). (13)
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Table 3: A general theoretical expressiveness upper bound of subgraph with radius k

Radius 1 2 3 4 5 6 7 8 9 10

#Accurate on BREC 252 298 300 327 326 385 398 398 399 400

If the GNN can distinguish the pair, T 2
test in major procedure and T 2

i,j in adaptive confidence interval695

should satisfy the:696

T 2
test >

(q − 1)n

(q − n)
Fn,q−n(α) > T 2

i,j ,∀i ∈ [2], j ∈ [p]. (14)

Thus we set the adaptive confidence interval as Threshold = Maxi∈{1,2}, p∈{1,...,P}{T 2
i,p}. Then we697

conduct Major Procedure and Reliability Check based on Threshold similar to RPC. The pipeline is698

shown in Fig 6.699

In our analysis of the current evaluation method, we take into account the probabilities of false700

positives and false negatives. Typically, achieving extremely low levels of both probabilities simulta-701

neously is challenging, and there is often a trade-off between them. However, since false positives702

can undermine the reliability of the methods, we prioritize establishing stringent bounds for this type703

of error. On the other hand, false negatives are explained in a more intuitive manner, acknowledging704

their presence but placing greater emphasis on minimizing false positives.705

Regarding false positives, we give the following theorem.706

Theorem E.1. The false positive rate with adaptive confidence interval is 1
22P

.707

Proof. We first define false positives more formally. False positives mean the GNN f cannot708

distinguish G and H, but we reject H0 and accept H1. f cannot distinguish G and H means709

f(G) = f(H) = f(Gπ) ∼ N (µG ,ΣG). Since di in major procedure and di,j,k in adaptive710

confidence interval are derived from paired comparison by same function outputs, i.e., from f(G)711

and f(H), and from f(G) and f(Gπ), respectively. di and di,j,k should follow the same distribution,712

leading that T 2
test and T 2

i,j are independently random variables following the same distribution. Thus713

P (T 2
test > T 2

i,j) =
1
2 . Then we can calculate the probability of false positives as714

P (Rejecting H0) = P (T 2
test > Threshold = Maxi∈[2], j∈[p]{T 2

i,j}) =
1

22p
. (15)

Thus we proof theorem E.1.715

Regarding false negatives, we propose the following explanation. A small threshold can decrease716

the false negative rate. Thus without compromising the rest of the theoretical analysis, we give the717

minimum value of the threshold. Equation 13 introduces a minimum threshold restriction. We obtain718

the threshold strictly based on it by taking the maximum value, which is the theoretical minimum719

threshold that minimizes the false negative rate.720

F Subgraph GNNs721

In this section, we discuss settings for subgraph GNN models. The most important setting is the722

subgraph radius. As discussed before, a larger radius can capture more structural information,723

increasing the model’s expressiveness. However, it will include more invalid information, making724

reaching the theoretical upper bound harder. Thus we need to find a balance between the two.725

To achieve this, we first explore the maximum structural information that can be obtained under a726

given radius. Following Papp and Wattenhofer [17], we implement Nk method, which embeds the727

isomorphic type of k-hop subgraph when initializing. This method is only available in the theoretical728

analysis as one can not solve the GI problem by manually giving graph isomorphic type. We mainly729

use it as a general expressiveness upper bound of subgraph GNNs. The performance of Nk on BREC730

is shown in Table 3. Actually, N3 already successfully distinguishes all graphs except for CFI graphs.731

k = 6 is an important threshold as Nk outperforms 3-WL (expressiveness upper bound for most732

subgraph GNNs [15, 16]) in all types of graphs. An interesting discovery is that increasing the radius733

does not always lead to expressiveness increasing as expected. This is caused by the fact that we only734
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Table 4: The performance of 3-WL with different iteration times

Iterations 1 2 3 4 5

#Accurate on BREC 193 209 217 264 270

Table 5: Substructure-based model performance on BREC

Basic Graphs (60) Regular Graphs (140) Extension Graphs (100) CFI Graphs (100) Total (400)

Model Number Accuracy Number Accuracy Number Accuracy Number Accuracy Number Accuracy

S3 52 86.7% 48 34.3% 5 5% 0 0% 105 26.2%
S4 60 100% 99 70.7% 84 84% 0 0% 243 60.8%

GSN-v(k=3) 52 86.7% 48 34.3% 5 5% 0 0% 105 26.2%
GSN-v(k=4) 60 100% 99 70.7% 84 84% 0 0% 243 60.8%
GSN-e(k=3) 59 98.3% 48 34.3% 52 52% 0 0% 159 39.8%
GSN 60 100% 99 70.7% 95 95% 0 0% 254 63.5%

encode the exact k-hop subgraph instead of 1 to k-hop subgraphs. This phenomenon is similar to735

subgraph GNNs, revealing the advantages of using distance encoding.736

We then test the subgraph GNNs’ radii by increasing them until reaching the best performance, which737

is expected to be a perfect balance. For some methods, radius= 6 is the best selection, which is738

consistent with the theory. The exceptions are NGNN, NGNN+DE, KPGNN, I2-GNN and SSWL_P.739

NGNN directly uses an inner GNN to calculate subgraph representation, whose expressiveness740

is restricted by the inner GNN. As the subgraph radius increases, though the subgraph contains741

information, the simple inner GNN can hardly give a correct representation. That’s why radius= 1 is742

the best setting for NGNN. NGNN+DE and I2-GNN add distance encodings, making the subgraph743

with a large radius can always clearly extract a subgraph with a small radius. Therefore, a large744

radius= 8 is available. KPGNN utilizes a similar setting by incorporating distance to subgraph745

representation, and radius= 8 is also the best setting. KPGNN can also use graph diffusion to746

replace the shortest path distance. Though graph diffusion outperforms some graphs, the shortest747

path distance is generally a better solution. Previous findings reveal the advantages of using distance,748

which we hope can be more widely used in further research. SSWL_P achieves better expressiveness749

with theoretical minimum components, making more information available.750

G k-WL Hierarchy GNNs751

In this section, we discuss settings for k-WL hierarchy GNN models. k-WL algorithm requires a752

converged tuple embedding distribution for GI. However, k-WL hierarchy GNNs do not have the753

definition of converging. It will output the final embeddings after a specific number of layers, i.e.,754

the iteration times of k-WL. Thus we need to give a suitable number of layers where the k-WL755

converged after the number of iteration times. In theory, increasing the number of layers always leads756

to a non-decreasing expressiveness, since the converged distribution will not change furthermore.757

However, more layers may cause over-smoothing, leading to worse performance in practice.758

To keep a balance, we utilize similar methods for subgraph GNNs. We first analyze the iteration759

times of 3-WL, shown in Table 4. One can see 6 iteration times are enough for all types of graphs.760

Then we increase the layers of k-WL GNNs until reaching the best performance. We finally set 5761

layers for PPGN, 4 layers for KCSet-GNN and 6 layers for δ-k-LGNN.762

H Substructure-based GNNs763

In this section, we discuss the performance of substructure-based GNN models. Specifically, we764

focus on the GSN (Graph Substructure Network) model proposed by Bouritsas et al. [43], which765

offers a straightforward neural network implementation, denoted as GSN-v, of the Sk substructure.766

Additionally, we introduce GSN-e, a slightly stronger version of GSN-v that incorporates features on767

edges instead of just nodes.768

Experimental results presented in Table 5 demonstrate that GSN-v achieves a perfect match with the769

performance of Sk. Furthermore, GSN-e outperforms GSN-v, indicating superior performance when770

edge features are included.771
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Table 6: The performance of DropGNN with different sample numbers

#Samples 100 200 400 800 1200 1600

#Accurate on BREC 177 222 242 253 260 OOM

Table 7: Model Hyperparameters

Model Radius Layers Inner dim Learning rate Weight decay Batch size Epoch Early stop threshold

NGNN 1 6 16 1e− 4 1e− 5 32 20 0.01
DE+NGNN 8 6 128 1e− 4 1e− 5 32 30 0.01
DS-GNN 6 10 32 1e− 4 1e− 5 32 30 0
DSS-GNN 6 9 32 1e− 4 1e− 4 32 20 0.01
SUN 6 9 32 1e− 4 1e− 4 32 20 0.01
SSWL_P 8 8 64 1e− 5 1e− 5 8 20 0.1
GNN-AK 6 4 32 1e− 4 1e− 4 32 10 0.1
KP-GNN 8 8 32 1e− 4 1e− 4 32 20 0.3
I2GNN 8 5 32 1e− 5 1e− 4 16 20 0.2
PPGN / 5 32 1e− 4 1e− 4 32 20 0.2
δ-k-LGNN / 6 16 1e− 4 1e− 4 16 20 0.2
KC-SetGNN / 4 64 1e− 4 1e− 4 16 15 0.3
GSN / 4 64 1e− 4 1e− 5 16 20 0.1
DropGNN / 10 16 1e− 3 1e− 5 16 100 0
OSAN / 8 64 1e− 3 1e− 5 16 40 0
Graphormer / 12 80 2e− 5 0 16 100 0

I Random GNNs772

In this section, we delve into the settings for random GNNs. Random GNNs leverage samples from773

graphs using specific strategies, and both the number of samples and the sampling strategies have an774

impact on performance.775

For DropGNN, the sampling strategy revolves around a relatively straightforward approach of deleting776

nodes. As for the number of samples, it is recommended to set it to the average number of nodes777

in the dataset. In our reported results, we set the number of samples to 100, which aligns with the778

average number of nodes. The ablation study results on the number of samples can be found in779

Table 6.780

Another approach, OSAN, proposes a data-driven method that achieves similar performance with781

fewer samples. This is achieved by training the model to select diverse samples. However, it requires782

an additional training framework and may not necessarily lead to improved performance. In our case,783

we select the edge-deleting strategy and set the number of samples to 20.784

J Experiment Settings785

All experiments were performed on a machine equipped with an Intel Core i9-10980XE CPU, an786

NVIDIA RTX4090 graphics card, and 256GB of RAM.787

RPC settings. For non-GNN methods, the output results are uniquely determined, and as such, this788

part of the experiment does not require RPC. It is worth noting that most non-GNN baselines involve789

running graph isomorphism testing software on subgraphs, and they mainly serve as theoretical790

references in our evaluation.791

Regarding GNNs, we employ RPC with q = 32 and d = 16 to evaluate their performance. Consider-792

ing a confidence level of α = 0.95, which is a typical setting in statistics, the threshold should be set793

to (q−1)d
(q−d) Fd,q−d(α) = 31F16,16(0.95) = 72.34.794

To ensure robustness, we repeat all evaluation methods ten times using different seeds selected795

from the set {100, 200, . . . , 1000}. We consider the final results reliable only if the model passes796

the Reliability check for all graphs with any seed, meaning that the quantification of the output797

embedding distance between isomorphic pairs is always smaller than the threshold. The reported798

results are selected as the best results rather than the average, as we aim to explore the upper bound799

of expressiveness.800
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Training settings. We employ a Siamese network design and utilize the cosine similarity loss801

function. Another commonly used loss function is contrastive loss [34], which directly calculates the802

difference between two outputs. However, we opt for cosine similarity loss due to its advantage of803

measuring output difference under the same scale through normalization. This approach prevents804

model outputs from being excessively amplified, which could otherwise magnify minor precision805

errors and treat them as differentiated results of the model.806

We use the Adam optimizer with a learning rate searched from {1e − 3, 1e − 4, 1e − 5}, weight807

decay selected from {1e− 3, 1e− 4, 1e− 5}, and batch size chosen from {8, 16, 32}. Graphormer,808

on the other hand, follows the original training settings on ZINC.809

We incorporate an early stopping strategy, which halts training when the loss reaches a small value.810

While for random GNNs, we do not utilize early stopping. The maximum number of epochs is811

typically set to around 20 since the model can often distinguish a pair relatively quickly.812

Model hyperparameters. The most crucial hyperparameters related to expressiveness, such as813

the subgraph radius for subgraph GNNs and the number of layers for k-WL hierarchy GNNs, are814

determined through theoretical analysis, as outlined in Appendix F and G. These hyperparameters815

have a direct impact on the expressiveness of the models.816

Other hyperparameters also implicitly influence expressiveness. We generally adopt the same settings817

as previous expressiveness datasets, with two exceptions: inner embedding dimension and batch818

normalization.819

The inner embedding dimension reflects the model’s capacity. For smaller and simpler expressiveness820

datasets used in the past, a small embedding dimension has been sufficient. However, the appropriate821

embedding dimension for BREC is unknown, so we generally conduct a search within the range of822

16, 32, 64, 128.823

Additionally, we utilize batch normalization for all models, even though it may not have been used in824

all previous models. Batch normalization helps control the outputs within a suitable range, which can825

be beneficial for distinguishing graph pairs.826

The detailed hyperparameter settings for each method are provided in Table 7.827

K Graph Generation828

In this section, we provide an overview of how the graphs in the BREC dataset were generated.829

Basic graphs. This category consists of 60 pairs of graphs, each containing 10 nodes. To generate830

these graphs, the 1-WL algorithm was applied to all 11.7 million graphs with 10 nodes, resulting in a831

hash value for each graph. Among these graphs, 83,074 happened to have identical hash values as832

others. From this set, 60 pairs of graphs were randomly selected.833

Regular graphs. This category includes 140 pairs of regular graphs. For the 50 simple regular834

graphs, the search was conducted for regular graphs with 6 to 10 nodes, and 50 pairs of regular835

graphs with the same parameters were randomly selected. For the 50 strongly regular graphs,836

the number of nodes ranged from 16 to 35. The graphs were obtained from sources such as837

http://www.maths.gla.ac.uk/ es/srgraphs.php and http://users.cecs.anu.edu.au/ bdm/data/graphs.html.838

For the 20 4-vertex condition graphs, a search was conducted on http://math.ihringer.org/srgs.php,839

and the simplest 20 pairs of 4-vertex condition graphs with the same parameters were selected. For840

the 20 distance regular graphs, a search was performed on https://www.distanceregular.org/, and the841

simplest 20 pairs of distance regular graphs with the same parameters were chosen.842

Extension graphs. This category consists of 100 pairs of graphs based on comparing results between843

GNN extensions. The S3, S4, and N1 algorithms were applied to all 1-WL-indistinguishable graphs844

with 10 nodes. This yielded 4,612 S3-indistinguishable graphs, 1,132 N1-indistinguishable graphs,845

and 136 S4-indistinguishable graphs. From these sets, 60 pairs of S3-indistinguishable graphs, 20846

pairs of N1-indistinguishable graphs, and 10 pairs of S4-indistinguishable graphs were randomly847

selected. Care was taken to ensure that no graphs were repeated. Additionally, 10 pairs of graphs848

were added using a virtual node strategy, including 5 pairs obtained by adding a virtual node to a849

10-node regular graph and 5 pairs based on C2l and Cl,l as described in Papp and Wattenhofer [17].850
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CFI graphs. This category consists of 100 pairs of graphs generated based on the CFI methods851

proposed by Cai et al. [28]. All CFI graphs with backbones ranging from 3 to 7-node graphs852

were generated. From this set, 60 pairs of 1-WL-indistinguishable graphs, 20 pairs of 3-WL-853

indistinguishable graphs, and 20 pairs of 4-WL-indistinguishable graphs were randomly selected.854

These different categories of graphs provide a diverse range of graph structures and properties for855

evaluating the expressiveness of GNN models.856
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