
Under review as a conference paper at ICLR 2023

A BACKGROUND

A.1 DIFFERENTIAL PRIVACY

We formally introduce the differential privacy (DP).
Definition A.1 (Dwork et al. (2006)). A randomized algorithm M is (ε, δ)-differentially private
(DP) if for any two neighboring5 datasets S, S′, and for any event E,

P[M(S) ∈ E] ⩽ eεP [M (S′) ∈ E] + δ. (3)

Clearly, stronger DP (smaller ϵ, δ) indicates the higher difficulty for privacy attackers to extract
information from the training data.

DP can be achieved by adding Gaussian noise to a bounded-sensitivity function (Dwork et al., 2014,
Theorem A.1). In deep learning, this function is the sum of per-sample gradients

∑
gi and the

bounded sensitivity is R (that is guaranteed through the gradient clipping after which the per-sample
gradient norm is at most R). Note that the Gaussian noise magnitude is proportional to the sensitiv-
ity: σDP = σR in Equation (1), and ϵ(δ) only depends on σ, not on R. The derivation from (σ, T, p)
in Algorithm 1 to ϵ can be done through various methods in Section 1.3.

A.2 COMPUTATION GRAPH

We elaborate on the computation graph presented in Figure 1. For DP and the standard training, the
forward pass is the same: we pass through the layers

a(1) → s(1) → a(2) → s(2) → · · ·a(L) → s(L)

For the backward propagation, there are two sub-processes:

1. the computation of output gradient for all layers,

∂L
∂s(1)

← · · · ← ∂L
∂s(l)

=
∂L

∂s(l+1)
W(l+1) ◦ ReLU′(s(l))← · · · ←

∂L
∂s(L)

,

i.e. the output gradient meets with the weight W;
2. the computation of parameter gradient only for trainable parameters,

∂L
∂W(l)

=
∂L
∂s(l)

⊤ ∂s(l)

∂W(l)
=

∂L
∂s(l)

⊤
a(l),

i.e. the output gradient meets with the activation tensor a.

Note that foward pass, output gradient, and parameter gradient have the same time complexity of
2BTM (B being the batch size, T being the feature dimension, e.g. the sequence length in texts,
and M being the model size).

For example, GhostClip Li et al. (2021) and MixGhostClip Bu et al. (2022a), which use one for-
ward pass and double backward propagation, have a time complexity of 10BTM +O(BT 2), while
the standard training which uses one forward pass and a single backward propagation has a time
complexity of 6BTM .

B COMPLEXITY ANALYSIS FOR ONE LAYER

Let us consider a layer without bias term for simplicity:

s = aW (4)

where s ∈ RB×T×p is the output or the pre-activation, a ∈ RB×T×d is the input or the post-
activation of previous layer, and W ∈ Rd×p is the weight matrix. In a linear layer, d is the input

5S′ is a neighbor of S if one can obtain S′ by adding or removing one data point from S.

13

Under review as a conference paper at ICLR 2023

dimension of the hidden feature, p is the output dimension of the hidden feature, and T is the
sequence length (or 1 if the data are non-sequential). In a convolution layer, d is the product of the
input channels and kernel sizes, p is the output channels, T is the height times width of the hidden
representation.

We now break down the time and space complexities for each operation in the training. Notice that
we focus on major complexities, e.g. ignoring cubic terms like BTp when higher order terms like
BTpd or BT 2p exist.

B.1 FORWARD PASS

The complexity of forward pass is incurred by the standard matrix multiplication s = aW. Since
a ∈ RB×T×d and W ∈ Rd×p, the time complexity is 2BTpd and the space complexity is BTp+pd.

B.2 BACK-PROPAGATION: OUTPUT GRADIENT

The complexity to compute the output gradient is incurred by the chain rule: for a single sample,

∂L
∂s(l−1),i

=
∂L

∂s(l),i︸ ︷︷ ︸
RT×p

W⊤
(l)︸ ︷︷ ︸

Rp×d

◦ϕ′(s(l−1),i)︸ ︷︷ ︸
RT×d

where ϕ is the non-linear activation function. We compute the matrix multiplication ∂L
∂s(l),i

W(l)

first, with time complexity 2BTpd and space complexity pd+BTd+BTp. Then the elementwise
product uses time complexity 2BTd and space complexity BTd.

B.3 BACK-PROPAGATION: PARAMETER GRADIENT

This module could represent different operations in different DP implementations. In the first back-
propagation of GhostClip and the only back-propagation of Opacus, it computes ∂L

∂W =
∂
∑

i Li

∂W ; in
the second back-propagation of Ghost/FastGradClip/BK, it computes the clipped gradient ∂

∑
i CiLi

∂W .
Regardless of the cases, the operation always takes the same format as

∂L
∂W

= a︸︷︷︸
RB×T×d

⊤ ∂L
∂s︸︷︷︸

RB×T×p

.

In contrast to the per-sample gradient instantiation, this operation is a tensor multiplication instead
of many matrix multiplication, and the output is a single pair of gradient Rd×p instead of many
per-sample gradients.

This tensor multiplication has time complexity 2BTpd and space complexity pd unless all per-
sample gradients are stored.

B.4 GHOST NORM

Ghost norm is the operation taking ai and ∂L
∂si

as the input and outputs the per-sample gradient norm.
According to Equation (2) and (Bu et al., 2022b, Appendix C.3), this operation computes aia

⊤
i and

∂L
∂si

∂L
∂si

⊤
, taking the time complexity 2BT 2d and 2BT 2p respectively, and the space complexity

BT 2 for each variable. Hence total time complexity is 2BT 2(p + d) and total space complexity is
2BT 2.

B.4.1 PER-SAMPLE GRADIENT INSTANTIATION

Alternatively, one can instantiate the per-sample gradients and then compute their norms. This is
different than the computation of parameter gradient in the back-propagation: that computation is

14

Under review as a conference paper at ICLR 2023

an efficient tensor multiplication while this operation consists of B matrix multiplication.

∂Li

∂W
= ai︸︷︷︸

RT×d

∂L
∂si

⊤

︸ ︷︷ ︸
RT×p

for i ∈ [B].

This operation has time complexity 2BTpd and space complexity Bpd to store all per-sample gra-
dients. Computing the norms is cheap enough to be neglected.

B.5 WEIGHTED SUM OF PER-SAMPLE GRADIENT

This operation simply takes per-sample clipping factor Ci ∈ R and ∂Li

∂W ∈ RB×d×p as the input,
and outputs the clipped gradient Rd×p as a weighted sum

∑
i Ci

∂Li

∂W . The time complexity is 2Bpd
and the space complexity is 0 since the summation happens in place.

In contrast to double back-propagation, which indirectly derives the clipped gradient by differentiat-
ing the reweighted loss

∑
i CiLi at a cost of O(BTpd), this operation directly computes the clipped

gradient under almost no time complexity. Noticeably, this is only possible if per-sample gradients
are readily instantiated and stored.

C LINE-BY-LINE COMPARISON BETWEEN DIFFERENT IMPLEMENTATIONS

C.1 BK V.S. GHOSTCLIP

Algorithm 2 DP optimizer with BK or GhostClip

Parameters: l-th layer weights W(l), number of layers L, noise level σ.
1: # forward pass
2: for layer l ∈ 1, 2, · · · , L do
3: Get {a(l),i}
4: # backward propagation with loss L =

∑
i Li

5: for layer l ∈ L,L− 1, · · · , 1 do
6: Get output gradient { ∂L

∂s(l),i
}

7: Compute per-sample gradient norm: ∥ ∂Li

∂W(l)
∥2F = vec(∂L

∂s(l),i

⊤ ∂L
∂s(l),i

) · vec(a⊤
(l),ia(l),i)

8: Compute non-private gradient: ∂L
∂W(l)

= a⊤
(l)

∂L
∂s(l)

9: Aggregate gradient norm across all layers: ∥ ∂Li

∂W∥
2
F =

∑
l ∥

∂Li

∂W(l)
∥2F

10: Compute clipping factor: Ci = C(∥ ∂Li

∂W∥F ;R)
11: for layer l ∈ L,L− 1, · · · , 1 do
12: Compute sum of clipped gradients Gl = a⊤

(l)diag(C) ∂L
∂s(l)

13: # 2nd backward propagation with loss L =
∑

i CiLi

14: Get output gradient {∂
∑

CiLi

∂s(l),i
}

15: Compute sum of clipped gradients Gl = a⊤
(l)

∂
∑

CiLi

∂s(l)

16: Delete {a(l),i}, { ∂L
∂s(l),i

} , {∂
∑

CiLi

∂s(l),i
}

17: Add Gaussian noise Ĝ = G+ σR · N (0, I)

18: Apply SGD/Adam/LAMB with the private gradient Ĝ on W

15

Under review as a conference paper at ICLR 2023

C.2 BK V.S. OPACUS

Algorithm 3 DP optimizer with BK or Opacus

Parameters: l-th layer’s weights W(l),t, number of layers L, noise scale σ.
1: for layer l ∈ 1, 2, · · · , L do
2: Get {a(l),i}
3: for layer l ∈ L,L− 1, · · · , 1 do
4: Get output gradient { ∂L

∂s(l),i
}

5: Compute per-sample gradient norm: ∥ ∂Li

∂W(l)
∥2F = vec(∂L

∂s(l),i

⊤ ∂L
∂s(l),i

) · vec(a⊤
(l),ia(l),i)

6: Compute non-private gradient: ∂L
∂W(l)

= a⊤
(l)

∂L
∂s(l)

7: Compute per-sample gradients: ∂Li

∂W(l)
= a⊤

(l),i
∂L

∂s(l),i
and gradient norms ∥ ∂Li

∂W(l)
∥2F

8: Delete {a(l),i}, { ∂L
∂s(l),i

}

9: Aggregate gradient norm across all layers: ∥ ∂Li

∂W∥
2
F =

∑
l ∥

∂Li

∂W(l)
∥2F

10: Compute clipping factor: Ci = C(∥ ∂Li

∂W∥F ;R)
11: for layer l ∈ L,L− 1, · · · , 1 do
12: Compute sum of clipped gradients Gl = a⊤

(l)diag(C) ∂L
∂s(l)

13: Compute sum of clipped gradients Gl =
∑

Ci
∂Li

∂W(l)

14: Delete {a(l),i}, { ∂L
∂s(l),i

} , { ∂L
∂W(l)

}

15: Add Gaussian noise Ĝ = G+ σR · N (0, I)

16: Apply SGD/Adam/LAMB with the private gradient Ĝ on W

C.3 BK V.S. STANDARD (NON-DP)

Algorithm 4 DP optimizer with BK or Standard optimizer
Parameters: l-th layer’s weights W(l),t, number of layers L, noise scale σ.

1: for layer l ∈ 1, 2, · · · , L do
2: Get {a(l),i}
3: for layer l ∈ L,L− 1, · · · , 1 do
4: Get output gradient { ∂L

∂s(l),i
}

5: Compute per-sample gradient norm: ∥ ∂Li

∂W(l)
∥2F = vec(∂L

∂s(l),i

⊤ ∂L
∂s(l),i

) · vec(a⊤
(l),ia(l),i)

6: Compute non-private gradient: ∂L
∂W(l)

= a⊤
(l)

∂L
∂s(l)

7: Delete {a(l),i}, { ∂L
∂s(l),i

}

8: Aggregate gradient norm across all layers: ∥ ∂Li

∂W∥
2
F =

∑
l ∥

∂Li

∂W(l)
∥2F

9: Compute clipping factor: Ci = C(∥ ∂Li

∂W∥F ;R)

10: for layer l ∈ L,L− 1, · · · , 1 do
11: Compute sum of clipped gradients Gl = a⊤

(l)diag(C) ∂L
∂s(l)

12: Delete {a(l),i}, { ∂L
∂s(l),i

}

13: Add Gaussian noise Ĝ = G+ σR · N (0, I)

14: Apply SGD/Adam/LAMB with Ĝ or G on W

16

Under review as a conference paper at ICLR 2023

C.4 BK (BASE) V.S. HYBRID BK

Algorithm 5 DP optimizer with BK, BK- MixGhostClip or BK- MixOpt

Parameters: l-th layer’s weights W(l), number of layers L, noise scale σ.
1: # forward pass
2: for layer l ∈ 1, 2, · · · , L do
3: Get {a(l),i}
4: # backward propagation with loss L =

∑
i Li

5: for layer l ∈ L,L− 1, · · · , 1 do
6: Get output gradient { ∂L

∂s(l),i
}

7: if (MixGhostClip or MixOpt) and 2T 2
(l) > p(l)d(l) then

8: Compute per-sample gradients: ∂Li

∂W(l)
= a⊤

(l),i
∂L

∂s(l),i
and gradient norms ∥ ∂Li

∂W(l)
∥2F

9: else
10: Compute per-sample gradient norm: ∥ ∂Li

∂W(l)
∥2F = vec(∂L

∂s(l),i

⊤ ∂L
∂s(l),i

) · vec(a⊤
(l),ia(l),i)

11: Aggregate gradient norm across all layers: ∥ ∂Li

∂W∥
2
F =

∑
l ∥

∂Li

∂W(l)
∥2F

12: Compute clipping factor: Ci = C(∥ ∂Li

∂W∥F ;R)
13: for layer l ∈ L,L− 1, · · · , 1 do
14: if MixOpt and 2T 2

(l) > p(l)d(l) then
15: Compute weighted gradients Gl =

∑
Ci

∂Li

∂W(l)

16: else
17: Compute sum of clipped gradients Gl = a⊤

(l)diag(C) ∂L
∂s(l)

18: Delete {a(l),i}, { ∂L
∂s(l),i

}, { ∂Li

∂W(l)
}

19: Add Gaussian noise Ĝ = G+ σR · N (0, I)

20: Apply SGD/Adam/LAMB with the private gradient Ĝ on W

D CODEBASE README

Here we describe some designs in our codebase for BK algorithms.

D.1 SUPPORTED LAYERS

• Linear: Ghost norm or per-sample gradient instantiation

• Embedding: Ghost norm

• Conv1d&Conv2d: Ghost or per-sample gradient instantiation

• GroupNorm&LayerNorm: per-sample gradient instantiation

D.2 INSTRUCTION OF IMPLEMENTATION

In this section, we will discuss the specific designs and tricks for our book-keeping technique. We
illustrate through Pytorch automatic differentiation package, known as torch.autograd or sim-
ply autograd6. It has two high-level operators, autograd.backward (which is the major
component of the commonly used loss.backward()) and autograd.grad. We denote the
model parameters as param.

On all trainable layers, i.e. layers with at least one trainable parameter such that
param.requires grad=True, the operator autograd.backward does three things, 1.
compute the output gradient ∂L

∂s for this layer; 2. compute the parameter gradient ∂L
∂W or ∂L

∂b ; 3.
store the parameter gradient to param.grad attribute.

6See https://pytorch.org/docs/stable/autograd.html for an official introduction.

17

https://pytorch.org/docs/stable/autograd.html

Under review as a conference paper at ICLR 2023

In contrast, autograd.grad returns but does not store the parameter gradient in step 3, thus
saving some memory cost. However, autograd.grad still computes the parameter gradient in
step 2 (or 2b) unnecessarily.

Therefore the key idea is to only compute the output gradient without computing the parameter
gradient. This goal can be achieved by

1. registering the Pytorch backward hooks, which have free access to the output gradient ∂L
∂s , to

store this output gradient for 2a (Line 9 of Algorithm 1);

2. setting all parameters to not require gradients, through requires grad=False.

D.3 WORK-AROUND: ORIGIN PARAMETERS

Unfortunately, the back-propagation will not be executed if all parameters are set to not require
gradients, since the computation graph needs to be created at least on some trainable parameters.
Therefore, while the above methodology is certainly implementable through mild modification on
the low level (like CUDA kernel), we provide a lightweight work-around in Pytorch.

To make sure that the back-propagation indeed propagates through all trainable parameters, we set
param.requires grad=True on and only on the ancestor parameter nodes of all output nodes,
termed as the origin parameters. Specifically, we define the origin parameters as the subset of
parameter nodes, whose descendant nodes cover all the output nodes. This is visualized in Figure 7
for a 3-layer MLP, using the same symbols as Figure 1.

loss

loss

Figure 7: Forward pass (upper panel) and back-propagation (lower panel) of a 3-layer MLP.

Here, s(i) are the output nodes (in squares) from the trainable layers. The ancestor pa-
rameter nodes (in circles) of s(3) are {b(3),b(2),b(1),W(3),W(2),W(1)}, those of s(2) are
{b(2),b(1),W(2),W(1)}, and those of s(1) are {b(1),W(1)}. Therefore, subsets including but
not limited to {b(3),b(2),b(1),W(3),W(2),W(1)}, {b(1),W(1)}, and {b(1)} are qualified as the
origin parameters, since their descendants cover all output nodes. In fact, the smallest subsets are
{b(1)} or {W(1)}, and either can serve as the optimal origin parameters.

Remark D.1. The origin parameters are usually within the embedding layer in language models and
transformers, or within the first convolution layer in vision models. Since the origin parameters only
constitute a small fraction of all trainable parameters (fewer than the parameters in the first layer) in
deep neural networks (with hundreds of layers), the computational overhead wasted on the regular
gradient of origin parameters is negligible.

Remark D.2. Since we will waste the computation of regular gradient ∂L
∂origin parameters , it

is preferred to use the bias over the weight for minimum waste whenever possible. We note
that sometimes the first layer contains no bias term. For example, the embedding layer by
torch.nn.Embedding has no bias by design, and so do all convolution layers in ResNets from

18

Under review as a conference paper at ICLR 2023

torchvision Marcel & Rodriguez (2010), with reasons discussed at (Ioffe & Szegedy, 2015, Sec-
tion 3.2), which generalizes to all batch-normalized CNN if the normalization is applied before the
activation function.

In summary, we use torch.autograd.grad(loss, origin parameters) to drive
the back-propagation without computing the regular parameter gradient ∂

∑
i Li

∂W (by setting
param.requires grad=False), and use Pytorch backward hooks to access and store the out-
put gradient ∂L

∂s .

non-DP training DP training (Book-Keeping)
trainable non-trainable trainable param trainable param non-trainable

param param (origin param) (not origin param) param
register hook ✗ ✗ ✓ ✓ ✗

param.requires grad ✓ ✗ ✓ ✗ ✗

Table 6: Origin parameter trick and implementation details.

D.4 HOW TO USE BK CODEBASE

With a few lines of code, it is easy to use our BK codebase to change the standard training to the DP
training. Note that we do not call loss.backward() as the back-propagation is implicitly called
inside the optimizer.step(loss=loss) .

from BK import PrivacyEngine
from transformers import AutoModel
import torch.nn.functional as F

model = AutoModel.from_pretrained(’roberta-base’)

optimizer = torch.optim.Adam(params=model.parameters())
privacy_engine = PrivacyEngine(

model,batch_size=256,sample_size=50000,max_grad_norm=0.1,
epochs=3,target_epsilon=3,MixGhostClip=True,MixOpt=True)

privacy_engine.attach(optimizer)

Same training procedure, e.g. data loading, forward pass, logits...
loss = F.cross_entropy(logits, labels)
optimizer.step(loss=loss)

Notice that if MixGhostClip==False and MixOpt==False, then BK (base) is implemented;
if MixGhostClip==True and MixOpt==False, then BK-MixGhostClip is implemented; if
MixOpt==True, then BK-MixOpt is implemented.

We also allows the gradient accumulation through optimizer.virtual step(loss=loss),
similar to Opacus v0.15.0.

E APPLICABILITY OF BK ALGORITHM

E.1 APPLYING BK TO FULL FINE-TUNING

We experiment with numerous vision and language models to show the strong applicability of BK.
Notice that the ghost norm trick only applies on weight parameters and in the generalized linear
layers, i.e. embedding/convolutional/linear. The vision models are imported from Pytorch Image
Models library Wightman (2019) and the language models are imported from Hugging Face Trans-
formers library Wolf et al. (2020)7.

7In Transformers library, layers with class name ‘Conv1D’ is actually a linear layer, different from 1D
convolution torch.nn.Conv1d.

19

https://github.com/pytorch/opacus/blob/v0.15.0/docs/faq.md
https://huggingface.co/transformers/v3.1.0/internal/modeling_utils.html#transformers.modeling_utils.Conv1D

Under review as a conference paper at ICLR 2023

Model
param in

generalized linear layers # param in other layers % applicable to BK
weight bias weight+bias

ResNet18 11.7M 1000 9600 99.9%
ResNet34 21.8M 1000 17024 99.9%
ResNet50 25.5M 1000 53120 99.8%

ResNet101 44.4M 1000 105344 99.8%
ResNet152 60.2M 1000 151424 99.7%

DenseNet121 7.9M 1000 83648 98.9%
DenseNet161 28.5M 1000 219936 99.2%
DenseNet201 19.8M 1000 229056 98.9%

Wide ResNet50 68.8M 1000 68224 99.9%
Wide ResNet101 126.7M 1000 137856 99.9%

vit tiny patch16 224 5.6M 21928 9600 99.4%
vit small patch16 224 21.9M 42856 19200 99.7%
vit base patch16 224 86.3M 84712 38400 99.9%
vit large patch16 224 303.8M 223208 100352 99.9%

crossvit tiny 240 6.9M 30800 16128 99.3%
crossvit small 240 26.6M 59600 32256 99.7%
crossvit base 240 104.5M 117200 64512 99.8%
convnext small 50.1M 83656 30144 99.8%
convnext base 88.4M 111208 40192 99.8%
convnext large 197.5M 166312 60288 99.9%

deit tiny patch16 224 5.6M 21928 9600 99.4%
deit small patch16 224 21.9M 42856 19200 99.7%
deit base patch16 224 86.3M 84712 38400 99.9%
beit base patch16 224 86.3M 57064 38400 99.9%
beit large patch16 224 303.8M 149480 100352 99.9%

roberta-base 124.5M 83712 38400 99.9%
roberta-large 355.0M 222208 100352 99.9%

distilroberta-base 82.1M 42240 19968 99.9%
bert-base-uncased 109.4M 83712 38400 99.9%
bert-large-uncased 334.8M 222208 100352 99.9%

bert-base-cased 108.2M 83712 38400 99.9%
bert-large-cased 333.3M 222208 100352 99.9%

longformer-base-4096 148.5M 111360 38400 99.9%
longformer-large-4096 434.2M 295936 100352 99.9%

t5-small 60.5M 0 16384 99.9%
t5-base 222.9M 0 47616 99.98%
t5-large 737.5M 0 124928 99.98%

long-t5-local-base 222.9M 0 47616 99.98%
long-t5-local-large 750.1M 0 124928 99.98%

long-t5-tglobal-base 222.9M 0 56832 99.97%
long-t5-tglobal-large 750.1M 0 149504 99.98%

gpt2 124.3M 82944 38400 99.9%
gpt2-medium 354.5M 221184 100352 99.9%

gpt2-large 773.4M 414720 186880 99.9%

Table 7: Models and the percentage of trainable parameters in generalized linear layers.

E.2 APPLYING BK TO PARAMETER EFFICIENT FINE-TUNING

We demonstrate that BK (base and hybrid) can be applied to DP LoRA and DP Adapter, where
the rank r is usually 16-1024. For the ease of presentation, we describe the BK base, similarly to
Algorithm 1.

Adapter An adapter module is injected after a linear layer:

A(x) = τ(xD)U + x

20

Under review as a conference paper at ICLR 2023

where x ∈ RB×T×p, D ∈ Rp×r, U ∈ Rr×p. We decompose the module A into two sub-modules:

• x→ xD := u, activation x, output grad ∂L
∂u

• τ(u)→ τU := v, activation τ(xD), output grad ∂L
∂v

Hence BK can be implemented as follows.

1. Get activation tensors x and τ(xD) by Pytorch forward hook

2. Get output gradients { ∂L
∂xD} and { ∂L

∂τU } by Pytorch backward hook

3. Compute per-example gradient norm ∥∂Li

∂D ∥
2
F and ∥∂Li

∂U ∥
2
F by ghost norm trick

4. Aggregate gradient norm across all layers: ∥∂Li

∂D ∥
2
F + ∥∂Li

∂U ∥
2
F

5. Compute clipping factor Ci

6. Compute sum of clipped gradients GD = x⊤diag(C1, C2, · · ·) ∂L
∂xD and GU =

τ⊤diag(C1, C2, · · ·) ∂L
∂τU

7. Add Gaussian noise ĜD = GD + σR · N (0, I) and ĜU = GU + σR · N (0, I)

8. Apply SGD/Adam/LAMB with the private gradient ĜD on D and ĜU on U

Existing implementation of DP Adapter 8 uses the per-sample gradient instantiation as in Opacus. It
is not hard to see that the layerwise space overhead (in addition to forward pass and output gradient)
is 2Bpr and the time overhead is 4BTpr (c.f. Table 3 4). With the BK implementation, the space

overhead is 4BT 2 and the time overhead is 4BT 2(p+ r) (c.f. Table 3 3).

LoRA LoRA modifies
A(x) = x(W + LR) = xW + xLR

where x ∈ RB×T×d,W ∈ Rd×p, L ∈ Rd×r, R ∈ Rr×p. We decompose the module A into two
sub-modules:

• x→ xL := u, activation x, output grad ∂L
∂u

• u→ uR := v, activation xL, output grad ∂L
∂v

Hence BK can be implemented on each sub-module, similar to the DP Adapter.

Existing implementation of DP LoRA 9 uses the per-sample gradient instantiation as in Opacus. It is
not hard to see that the layerwise space overhead (in addition to forward pass and output gradient) is
Br(p+ d) and the time overhead is 2BTr(p+ d) (c.f. Table 3 4). With the BK implementation,

the space overhead is 4BT 2 and the time overhead is 2BT 2(p+ d+ 2r) (c.f. Table 3 3).

8https://github.com/huseyinatahaninan/Differentially-Private-Fine-tuning-of-Language-Models/
tree/main/Language-Understanding-RoBERTa/bert_adapter

9https://github.com/huseyinatahaninan/Differentially-Private-Fine-tuning-of-Language-Models/
tree/main/Language-Understanding-RoBERTa/bert_lora

21

https://github.com/huseyinatahaninan/Differentially-Private-Fine-tuning-of-Language-Models/tree/main/Language-Understanding-RoBERTa/bert_adapter
https://github.com/huseyinatahaninan/Differentially-Private-Fine-tuning-of-Language-Models/tree/main/Language-Understanding-RoBERTa/bert_adapter
https://github.com/huseyinatahaninan/Differentially-Private-Fine-tuning-of-Language-Models/tree/main/Language-Understanding-RoBERTa/bert_lora
https://github.com/huseyinatahaninan/Differentially-Private-Fine-tuning-of-Language-Models/tree/main/Language-Understanding-RoBERTa/bert_lora

Under review as a conference paper at ICLR 2023

F ADDITIONAL PLOTS AND TABLES

1000 1500 2000 2500 3000 3500 4000 4500 5000
Width of hidden layers

6000

8000

10000

12000

14000

16000

18000

20000

Th
ro

ug
hp

ut

1000 1500 2000 2500 3000 3500 4000 4500 5000
Width of hidden layers

100

101

M
em

or
y

co
st

 (l
og

, G
B)

25 50 75 100 125 150 175 200
Depth of hidden layers

2500

5000

7500

10000

12500

15000

17500

20000

Th
ro

ug
hp

ut

non-DP
BK (ours)
GhostClip
FastGradClip
Opacus

25 50 75 100 125 150 175 200
Width of hidden layers

100

101

M
em

or
y

co
st

 (l
og

, G
B)

0 250 500 750 1000 1250 1500 1750 2000
Batch size

2500

5000

7500

10000

12500

15000

17500

20000

Th
ro

ug
hp

ut

0 250 500 750 1000 1250 1500 1750 2000
Batch size

100

101

M
em

or
y

co
st

 (l
og

, G
B)

Figure 8: Ablation study of MLP on CIFAR10/CIFAR100 (images are flattened into vectors). De-
fault model: 10 layers, width 1000, batch size 256.

BK Non-DP GhostClip Opacus

Time complexity
6B

∑
l T(l)p(l)d(l)

6B
∑

l T(l)p(l)d(l)
10B

∑
l T(l)p(l)d(l)

+2B
∑

l T
2
(l)(p(l) + d(l))

8B
∑

l T(l)p(l)d(l)+
∑

l

(
I{2T 2

(l) < p(l)d(l)}

·2B
∑

l T
2
(l)(p(l) + d(l))

)
RoBERTa-base 15.3 ∗ 1012 13.1 ∗ 1012(0.86×) 24.1 ∗ 1012(1.57×) 17.5 ∗ 1012(1.14×)
RoBERTa-large 52.3 ∗ 1012 46.5 ∗ 1012(0.89×) 83.3 ∗ 1012(1.59×) 62.0 ∗ 1012(1.18×)

ViT-base 11.2 ∗ 1012 10.1 ∗ 1012(0.90×) 18.0 ∗ 1012(1.60×) 13.5 ∗ 1012(1.20×)
ViT-large 38.8 ∗ 1012 35.8 ∗ 1012(0.92×) 62.7 ∗ 1012(1.61×) 47.7 ∗ 1012(1.23×)

BEiT-large 29.1 ∗ 1012 26.9 ∗ 1012(0.92×) 47.1 ∗ 1012(1.61×) 35.8 ∗ 1012(1.23×)

Space complexity
B
∑

l min{2T 2
(l), p(l)d(l)}

+B
∑

l T(l)(3d(l) + p(l))

∑
l p(l)d(l)

+B
∑

l T(l)(3d(l) + p(l))

2B
∑

l T
2
(l)

+B
∑

l T(l)(3d(l) + p(l))

B
∑

l p(l)d(l)
+B

∑
l T(l)(3d(l) + p(l))

RoBERTa-base 5.3 ∗ 109 4.5 ∗ 109(0.84×) 5.3 ∗ 109(1.00×) 16.7 ∗ 109(3.17×)
RoBERTa-large 13.3 ∗ 109 11.8 ∗ 109(0.88×) 13.3 ∗ 109(1.00×) 46.9 ∗ 109(3.52×)

ViT-base 3.3 ∗ 109 3.0 ∗ 109(0.91×) 3.3 ∗ 109(1.00×) 11.5 ∗ 109(3.47×)
ViT-large 8.5 ∗ 109 8.1 ∗ 109(0.95×) 8.5 ∗ 109(1.00×) 38.1 ∗ 109(4.46×)

BEiT-large 6.4 ∗ 109 6.1 ∗ 109(0.95×) 6.4 ∗ 109(1.00×) 28.6 ∗ 109(4.46×)

Table 8: Time (upper half) and space (lower half) complexity of implementations (B = 100). For
RoBERTa and GLUE datasets, T = 256; we use BK base (≡ BK-MixOpt). For vision transformers
and ImageNet, T = 224× 224; we use BK-MixOpt. We mark the ratio of complexity to BK in ().

22

Under review as a conference paper at ICLR 2023

Model Algorithm Maximum batch size Time/Epoch Maximum throughput Speedup by BK

RoBERTa-large
SST-2

BK (ours) 41 13:33 83 —
Non-private 51 9:50 114 0.73×
GhostClip 48 17:34 64 1.30×

Opacus 16 22:30 50 1.66×

RoBERTa-large
QNLI

BK (ours) 41 20:14 86 —
Non-private 51 15:33 112 0.77×
GhostClip 48 27:45 63 1.37×

Opacus 16 35:03 50 1.73×

RoBERTa-large
QQP

BK (ours) 41 70:04 87 —
Non-private 51 53:42 113 0.77×
GhostClip 48 95:09 64 1.36×

Opacus 16 137:00 44 1.96×

RoBERTa-large
MNLI

BK (ours) 41 77:07 85 —
Non-private 51 58:02 113 0.75×
GhostClip 48 103:30 63 1.34×

Opacus 16 134:30 49 1.75×

GPT2

BK (ours) 149 2:22 296 —
Non-private 157 1:47 393 0.75×
GhostClip 156 2:54 242 1.22×

Opacus 43 5:03 139 2.13×

GPT2-medium

BK (ours) 69 5:25 129 —
Non-private 70 4:05 172 0.75×
GhostClip 70 6:46 104 1.24×

Opacus 15 14:22 49 2.63×

GPT2-large

BK (ours) 29 11:20 62 —
Non-private 29 8:16 85 0.73×
GhostClip 29 13:56 50 1.24×

Opacus 5 44:05 16 3.88×

BEiT-large

BK (ours) 96 6:35 127 —
Non-private 98 4:55 169 0.76×
GhostClip 95 8:53 93 1.33×

Opacus 5 4:12:00 3 38.3×

Table 9: Extension of Table 1. Note that CIFAR means both CIFAR10 and CIFAR100. Performance
of GPT2 on E2E dataset (same setting as Li et al. (2021); Bu et al. (2022b)).

Model Mixed ghost norm (MGN) Per-sample grad instantiation Ghost norm∑
l min{2T 2

(l), p(l)d(l)} (
∑

l p(l)d(l); # param) Saving by MGN (
∑

l 2T
2
(l) = 2H2

outW
2
out) Saving by MGN

ResNet18 1.0M 11.5M 11.5× 399M 399×
ResNet34 2.3M 21.6M 9.4× 444M 194×
ResNet50 2.8M 22.7M 8.0× 528M 186×

ResNet101 6.8M 41.7M 6.2× 532M 79×
ResNet152 10.9 57.3M 5.3× 549M 51×

DenseNet121 4.1M 7.9M 1.9× 605M 147×
DenseNet161 9.0M 28.5M 3.2× 607M 67×
DenseNet201 7.0M 19.8M 2.8× 609M 87×

Wide ResNet50 5.6M 66.0M 11.7× 528M 93×
Wide ResNet101 9.6M 124.0M 13.0× 531M 56×

vit tiny patch16 224 3.3M 5.6M 1.7× 3.8M 1.1×
vit small patch16 224 3.8M 21.9M 5.8× 13.8M 1.0×
vit base patch16 224 3.8M 86.3M 22.7× 3.8M 1.0×
vit large patch16 224 7.5M 303.8M 40.4× 7.5M 1.0×

crossvit tiny 240 4.0M 6.9M 1.7× 10.4M 2.6×
crossvit small 240 5.9M 26.6M 4.5× 10.4M 1.8×
crossvit base 240 8.7M 104.5M 12.1× 10.4M 1.2×
convnext small 12.4M 50.1M 4.0× 214M 17×
convnext base 14.3M 88.4M 6.2× 214M 15×
convnext large 19.8M 197.5M 10.0× 214M 11×

deit tiny patch16 224 3.3M 5.6M 1.7× 3.8M 1.1×
deit small patch16 224 3.8M 21.9M 5.8× 3.8M 1.0×
deit base patch16 224 3.8M 86.3M 22.7× 3.8M 1.0×
beit base patch16 224 2.9M 86.3M 29.8× 2.9M 1.0×
beit large patch16 224 5.7M 303.8M 53.3× 5.7M 1.0×

Table 10: Space complexity of computing per-sample gradient norm, on ImageNet image (224 ×
224). The saving by the mixed ghost norm, adopted in BK-MixGhostClip and BK-MixOpt, is
substantial.

23

Under review as a conference paper at ICLR 2023

G EFFECT OF HYBRIDIZATION: LAYERWISE SPACE COMPLEXITY

We demonstrate the effect of hybridization (i.e. mixed ghost norm Bu et al. (2022a)) on the com-
putation of per-sample gradient norm. We consider the moderate feature dimension and the high
feature dimension, respectively. We conclude that ghost norm trick (adopted in GhostClip and BK)
is favored closer to the input layer, whereas the per-sample gradient instantiation (adopted in Opacus
and FastGradClip) is favored closer to the output layer.

G.1 EFFECT BY MODEL ACHITECTURE (T = 224× 224)

Generally speaking, CNN can benefit from hybridization, but vision transformers may not (unless
the feature dimension is high, see next section for BEiT).

0 5 10 15 20 25 30
Index of layer

101

103

105

107

Sp
ac

e
co

m
pl

ex
ity

Ghost norm
Per-sample grad instantiation
Hybrid

0 10 20 30 40 50
Index of layer

101

103

105

107

Sp
ac

e
co

m
pl

ex
ity

Ghost norm
Per-sample grad instantiation
Hybrid

0 20 40 60 80 100
Index of layer

101

103

105

107

Sp
ac

e
co

m
pl

ex
ity

Ghost norm
Per-sample grad instantiation
Hybrid

0 20 40 60 80 100 120 140
Index of layer

101

103

105

107

Sp
ac

e
co

m
pl

ex
ity

Ghost norm
Per-sample grad instantiation
Hybrid

Figure 9: Layerwise space complexity of computing the per-sample gradient norm. Left to right:
ResNet 34/50/101/152.

0 2 4 6 8 10
Index of layer

101

103

105

107

109

Sp
ac

e
co

m
pl

ex
ity

0 2 4 6 8 10 12
Index of layer

101

103

105

107

109

Sp
ac

e
co

m
pl

ex
ity

Ghost norm
Per-sample grad instantiation
Hybrid

0 2 4 6 8 10 12 14
Index of layer

101

103

105

107

109

Sp
ac

e
co

m
pl

ex
ity

Ghost norm
Per-sample grad instantiation
Hybrid

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Index of layer

101

103

105

107

109

Sp
ac

e
co

m
pl

ex
ity

Ghost norm
Per-sample grad instantiation
Hybrid

Figure 10: Layerwise space complexity of computing the per-sample gradient norm. Left to right:
VGG 11/13/16/19.

0 20 40 60 80 100 120
Index of layer

101

103

105

107

Sp
ac

e
co

m
pl

ex
ity

Ghost norm
Per-sample grad instantiation
Hybrid

0 20 40 60 80 100 120 140 160
Index of layer

101

103

105

107

Sp
ac

e
co

m
pl

ex
ity

0 25 50 75 100 125 150 175 200
Index of layer

101

103

105

107

Sp
ac

e
co

m
pl

ex
ity

Figure 11: Layerwise space complexity of computing the per-sample gradient norm. Left to right:
DenseNet 121/161/201.

0 10 20 30 40 50
Index of layer

101

102

103

104

105

106

Sp
ac

e
co

m
pl

ex
ity

Ghost norm
Per-sample grad instantiation
Hybrid

0 10 20 30 40 50
Index of layer

100

101

102

103

104

105

106

Sp
ac

e
co

m
pl

ex
ity

Ghost norm
Per-sample grad instantiation
Hybrid

0 20 40 60 80 100
Index of layer

100

101

102

103

104

105

106

Sp
ac

e
co

m
pl

ex
ity

Ghost norm
Per-sample grad instantiation
Hybrid

0 10 20 30 40 50 60 70
Index of layer

100

101

102

103

104

105

106

Sp
ac

e
co

m
pl

ex
ity

Ghost norm
Per-sample grad instantiation
Hybrid

Figure 12: Layerwise space complexity of computing the per-sample gradient norm. Left to right:
ViT small/base/large, and BEiT-large.

24

Under review as a conference paper at ICLR 2023

G.2 EFFECT BY FEATURE DIMENSION (T = 322/2242/5122)

Generally speaking, higher feature dimension requires a deeper threshold, after which the per-
sample gradient instantiation is not preferred. That is, high dimensional data does not prefer ghost
norm. This pattern even holds for vision transformers, on which MixGhostClip/BK-MixGhostClip
is equivalent to GhostClip/BK for low feature dimension.

0 2 4 6 8 10
Index of layer

101

103

105

107

Sp
ac

e
co

m
pl

ex
ity

Ghost norm
Per-sample grad instantiation
Hybrid

0 2 4 6 8 10
Index of layer

101

103

105

107

109

Sp
ac

e
co

m
pl

ex
ity

0 2 4 6 8 10
Index of layer

101

103

105

107

109

1011

Sp
ac

e
co

m
pl

ex
ity

Figure 13: Layerwise space complexity of computing the per-sample gradient norm in VGG11.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Index of layer

100

101

102

103

104

105

106

Sp
ac

e
co

m
pl

ex
ity

Ghost norm
Per-sample grad instantiation
Hybrid

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Index of layer

101

103

105

107

Sp
ac

e
co

m
pl

ex
ity

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Index of layer

101

103

105

107

109

Sp
ac

e
co

m
pl

ex
ity

Figure 14: Layerwise space complexity of computing the per-sample gradient norm in ResNet18.

0 20 40 60 80 100 120
Index of layer

101

102

103

104

105

106

Sp
ac

e
co

m
pl

ex
ity

Ghost norm
Per-sample grad instantiation
Hybrid

0 20 40 60 80 100 120
Index of layer

101

103

105

107

Sp
ac

e
co

m
pl

ex
ity

Ghost norm
Per-sample grad instantiation
Hybrid

0 20 40 60 80 100 120
Index of layer

101

103

105

107

109

Sp
ac

e
co

m
pl

ex
ity

Figure 15: Layerwise space complexity of computing the per-sample gradient norm in DenseNet121.

0 20 40 60 80 100
Index of layer

101

103

105

107

Sp
ac

e
co

m
pl

ex
ity

Ghost norm
Per-sample grad instantiation
Hybrid

0 20 40 60 80 100
Index of layer

101

103

105

107

Sp
ac

e
co

m
pl

ex
ity

Ghost norm
Per-sample grad instantiation
Hybrid

0 20 40 60 80 100
Index of layer

101

103

105

107

109

Sp
ac

e
co

m
pl

ex
ity

Figure 16: Layerwise space complexity of computing the per-sample gradient norm in ConvNeXT.

25

Under review as a conference paper at ICLR 2023

0 10 20 30 40 50
Index of layer

100

101

102

103

104

105

106

107

Sp
ac

e
co

m
pl

ex
ity

Ghost norm
Per-sample grad instantiation
Hybrid

0 10 20 30 40 50
Index of layer

101

103

105

107

Sp
ac

e
co

m
pl

ex
ity

Ghost norm
Per-sample grad instantiation
Hybrid

0 10 20 30 40 50
Index of layer

101

103

105

107

109

Sp
ac

e
co

m
pl

ex
ity

Figure 17: Layerwise space complexity of computing the per-sample gradient norm in Wide
ResNet50.

0 10 20 30 40 50 60 70
Index of layer

100

101

102

103

104

105

106

Sp
ac

e
co

m
pl

ex
ity

Ghost norm
Per-sample grad instantiation
Hybrid

0 10 20 30 40 50 60 70
Index of layer

100

101

102

103

104

105

106

Sp
ac

e
co

m
pl

ex
ity

0 10 20 30 40 50 60 70
Index of layer

100

101

102

103

104

105

106

Sp
ac

e
co

m
pl

ex
ity

Ghost norm
Per-sample grad instantiation
Hybrid

Figure 18: Layerwise space complexity of computing the per-sample gradient norm in BEiT-large.

26

	Background
	Differential privacy
	Computation graph

	Complexity analysis for one layer
	Forward pass
	Back-propagation: output gradient
	Back-propagation: parameter gradient
	Ghost norm
	Per-sample gradient instantiation

	Weighted sum of per-sample gradient

	Line-by-line comparison between different implementations
	BK v.s. GhostClip
	BK v.s. Opacus
	BK v.s. standard (non-DP)
	BK (base) v.s. hybrid BK

	Codebase README
	Supported layers
	Instruction of implementation
	Work-around: origin parameters
	How to use BK codebase

	Applicability of BK algorithm
	Applying BK to full fine-tuning
	Applying BK to parameter efficient fine-tuning

	Additional plots and tables
	Effect of hybridization: layerwise space complexity
	Effect by model achitecture (T=224224)
	Effect by feature dimension (T=322/2242/5122)

