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Abstract

We propose two Thompson Sampling-like, model-
based learning algorithms for episodic Markov de-
cision processes (MDPs) with a finite time hori-
zon. Our proposed algorithms are inspired by Op-
timistic Thompson Sampling (O-TS), empirically
studied in Chapelle and Li [2011], May et al.
[2012] for stochastic multi-armed bandits. The key
idea for the original O-TS is to clip the posterior
distribution in an optimistic way to ensure that
the sampled models are always better than the em-
pirical models. Both of our proposed algorithms
are easy to implement and only need one pos-
terior sample to construct an episode-dependent
model. Our first algorithm, Optimistic Thomp-
son Sampling for MDPs (O-TS-MDP), achieves
a Õ

(√
AS2H4T

)
regret bound, where S is the

size of the state space, A is the size of the action
space, H is the number of time-steps per episode
and T is the number of episodes. Our second al-
gorithm, Optimistic Thompson Sampling plus for
MDPs (O-TS-MDP+), achieves the (near)-optimal
Õ
(√

ASH3T
)

regret bound by taking a more ag-
gressive clipping strategy. Since O-TS was only
empirically studied previously, we derive regret
bounds of O-TS for stochastic bandits. In addition,
we propose, O-TS-Bandit+, a randomized version
of UCB1 [Auer et al., 2002], for stochastic bandits.
Both O-TS and O-TS-Bandit+ achieve the opti-
mal O

(
A ln(T )

∆

)
problem-dependent regret bound,

where ∆ denotes the sub-optimality gap.

1 INTRODUCTION

Reinforcement learning (RL) algorithms have been widely
implemented in real-world applications such as autonomous

driving, image processing, natural language processing, fi-
nancial modeling, gaming, etc. Typically, an RL task can
be formulated as a Markov decision process (MDP) with a
state space, an action space, and a state transition function.
In each time-step, the learning agent visits a state, plays an
action, and transitions to the next state. In this paper, we
consider the learning problem of episodic, non-stationary
MDPs with S states, A actions, and a finite time horizon
H . In each round t = 1, 2, . . . ,H belonging to episode
k = 1, 2, . . . , T , the learning agent visits a state and plays
an action according to an action-sampling strategy. Then,
the learning agent receives a random reward drawn from
a fixed but unknown reward distribution and transitions to
the next state sampled from a fixed but unknown transition
probability distribution associated with the played action.
The goal of the learning agent is to take actions wisely to
maximize the cumulative reward over T episodes. The learn-
ing agent faces an exploitation-vs-exploration dilemma. In
a single round, the learning agent can only choose an action
that empirically performs the best so far to maximize the
cumulative reward (exploitation) or choose an action that
has not been played too often to learn the parameters of the
associated unknown distributions (exploration).

Upper Confidence Bound (UCB)-based algorithms, inspired
by the philosophy of optimism in the face of uncertainty
(OFU), can achieve a balance between exploitation and ex-
ploration. The high-level idea behind this class of algorithms
is to construct upper confidence bounds by adding an extra
term to the empirical estimates. The additive term encour-
ages the learning agent to play actions that have not been
played too often. Many existing episodic MDP learning
algorithms [Azar et al., 2017, Dann et al., 2017, Zanette
and Brunskill, 2019, Dann et al., 2019, Zhang et al., 2020,
Tiapkin et al., 2022b] are UCB-based. Notably, two model-
based algorithms, UCBVI [Azar et al., 2017] and Bayes-
UCBVI [Tiapkin et al., 2022b], enjoy the (near)-optimal
Õ
(√

ASH3T
)

regret bound.1 UCB-based algorithms usu-

1The Õ(·) notation only hides poly log(ASHT ) factors.
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ally do not randomize the obtained data, and the exploration
is driven by the additive terms.

Another class of algorithms perturb the obtained data in a
certain way to encourage the learning agent to visit states
and actions that have been less explored. The extra random-
ness can be achieved by injecting noise into the data. As
shown in Osband et al. [2019], learning algorithms with
random noise efficiently drive exploration. Many prominent
state-of-the-art algorithms [Russo, 2019, Pacchiano et al.,
2021, Xiong et al., 2022, Agrawal et al., 2021] for episodic
MDPs are developed by adding calibrated Gaussian noise to
the empirical estimates of the rewards. Although the transi-
tion probability distribution is unknown, the aforementioned
learning algorithms do not add any noise to the empirical
estimates of the transition probability distributions. Among
them, a model-based algorithm, NARL-UCBVI [Pacchi-
ano et al., 2021], and a model-free algorithm, C-RLSVI
[Agrawal et al., 2021], achieve the same Õ

(√
AS2H4T

)
regret bound. Very recently, SSR-Bernstein [Xiong et al.,
2022], also a model-free learning algorithm, tightens the
regret bound to Õ

(√
ASH3T

)
.

Different from adding noise directly to the data, extra ran-
domness can also be achieved by drawing random samples
from well-constructed data-dependent distributions. Inter-
estingly, if the data-dependent distribution is designed to be
the posterior distribution that models an unknown parame-
ter, it coincides with the description of Thompson Sampling
[Thompson, 1933, Chapelle and Li, 2011], one of the oldest
randomized algorithms. For example, Gaussian distributions
can be used to model the means of the reward distributions
and Dirichlet distributions can be used to model the transi-
tion probability distributions in MDPs.

Thompson Sampling was originally invented for stochastic
bandits, which can be viewed as a simple MDP with only
one state, A actions, and one round per episode. Since there
are no transitions between states, the only unknown parame-
ters in a stochastic bandit problem are the means of the re-
ward distributions. Conceptually, Thompson Sampling plays
an action according to the posterior probability distribution
of the optimal action. Empirically, it is not required to com-
pute the exact posterior probability distribution of the opti-
mal action. Instead, Thompson Sampling can draw a random
sample from the posterior distribution associated with each
action and then play the action with the highest posterior
sample. The practical performance of Thompson Sampling
has been studied extensively by Chapelle and Li [2011]. The
theoretical performance of Thompson Sampling relies on
the choice of the prior distributions. Thompson Sampling
with Beta priors is asymptotically optimal [Agrawal and
Goyal, 2017, Kaufmann et al., 2012], while Thompson Sam-
pling with Gaussian priors is problem-dependent optimal
[Agrawal and Goyal, 2017].

In reality, it is not necessary to restrict the data-dependent

distribution to the exact posterior distribution. If the data-
dependent distribution is designed to be the posterior distri-
bution with some parameters modified, we term this type of
algorithm as Thompson Sampling-like algorithms with poste-
rior distribution reshaping. Optimistic Thompson Sampling
(O-TS), a Thompson Sampling-like algorithm with posterior
distribution reshaping, was first introduced and empirically
evaluated by Chapelle and Li [2011], May et al. [2012].2 The
key idea of O-TS is to boost the random posterior sample
to the mean of the posterior distribution (Gaussian distri-
bution) if the random sample is smaller than the mean. In
other words, O-TS reshapes the posterior distribution from
a Gaussian distribution to a one-sided Gaussian distribution
with the left side being clipped. There are other Thompson
Sampling-like algorithms with reshaped posterior distribu-
tions. For stochastic bandits, Jin et al. [2021] devise MOTS,
the first Thompson Sampling-like algorithm achieving mini-
max optimality. MOTS reshapes the posterior distribution
by both clipping the upper tail and boosting the variance of
the posterior distribution.

Different from stochastic bandits where the learning agent
only needs to learn the means of the reward distributions,
in episodic MDPs, the transition probability distributions
are also unknown. Two Thompson Sampling-like, model-
based algorithms, SOS-OPS-RL [Agrawal and Jia, 2020]
and OPSRL [Tiapkin et al., 2022a], use Dirichlet distribu-
tions to model the transition probability distributions. To
drive exploration, they also boost the variance of the Dirich-
let distributions. SOS-OPS-RL achieves a Õ

(√
AS2H4T

)
regret bound while SPSRL achieves the (near)-optimal
Õ
(√

ASH3T
)

regret bound.

Now, we list our key contributions in this paper.

(1) We propose O-TS-MDP, a computationally efficient
and theoretically elegant model-based learning algorithm
with randomized value functions, for episodic MDPs. O-
TS-MDP only draws one random sample and enjoys a
Õ
(√

AS2H4T
)

regret bound. There are two key ingredi-
ents in O-TS-MDP. The first one is the usage of the boosted
variance of the posterior distribution (a Gaussian distribu-
tion) to drive exploration. The second one is the usage of
O-TS to clip the left side of the posterior distribution to
simplify the theoretical analysis. Although the regret bound
of O-TS-MDP is not as tight as OPSRL [Tiapkin et al.,
2022a] and SSR-Bernstein [Xiong et al., 2022], OPSRL
needs to draw Õ(1) random samples while SSR-Bernstein
is a model-free algorithm. For our regret analysis of O-TS-
MDP, we can avoid upper bounding the absolute value of
the estimation error, thus simplifying the theoretical analy-
sis as compared to the analysis of RLSVI-based algorithms
[Russo, 2019, Agrawal et al., 2021, Xiong et al., 2022].

2Originally, this learning algorithm was called Optimistic
Bayesian Sampling (OBS) [May et al., 2012].



(2) We propose O-TS-MDP+, a model-based, OFU-inspired
optimistic algorithm with randomized value functions.3

O-TS-MDP+ achieves the (near)-optimal Õ
(√

ASH3T
)

regret bound. The key idea in O-TS-MDP+ is a more ag-
gressive clipping strategy of the posterior distribution. O-
TS-MDP+ boosts the value of the random sample to the
upper confidence bound if the random sample is smaller
than the upper confidence bound. The aggressive clipping
contributes to reducing the variance of the reshaped poste-
rior distribution as compared to O-TS-MDP. Consequently,
the regret bound is tightened to be (near)-optimal. O-TS-
MDP+ can be viewed as a randomized version of UCB-VI
[Azar et al., 2017].

(3) Although Chapelle and Li [2011], May et al. [2012]
have demonstrated the empirical performance of O-TS for
stochastic bandits, there is no theoretical analysis for it.
We derive regret bounds for O-TS for bandits. In addi-
tion, we propose O-TS-Bandit+, an OFU-inspired learning
algorithm, for stochastic bandits. Both O-TS and O-TS-
Bandit+ achieve the (order)-optimal O

(
A ln(T )

∆

)
problem-

dependent regret bound, where ∆ is the sub-optimality gap.

2 LEARNING PROBLEM

We consider an episodic non-stationary MDP problem
which can be specified by M = {S,A, H,P ,µ, p0}, where
S is a finite state-space with size S,A is a finite action-space
with size A, H is the finite number of rounds in each episode
and p0 is the deterministic initial state distribution. Let P
and µ denote the transition function and reward function, re-
spectively. The learning agent interacts with the environment
in an episodic way with the following learning protocol. In
each round t ∈ [H] belonging to episode k, the learning
agent observes a state skt and plays an action akt . Then, the
learning agent receives a random reward Xk

skt ,a
k
t ,t
∈ [0, 1]

that is drawn from a fixed reward distribution with mean
µskt ,a

k
t ,t

= µ(skt , a
k
t , t) and transitions to the next state skt+1

that is sampled from a fixed transition probability distribu-
tion Pskt ,a

k
t ,t

= P (skt , a
k
t , t). The initial state sk1 is sampled

from p0. The goal of the learning agent is to accumulate as
much reward as possible over a finite number of T episodes,
i.e., HT rounds in total.

A deterministic policy π = (π(·, 1), π(·, 2), . . . , π(·, H)) is
a sequence of functions, where each π(·, t) : S → A takes
a state as input and outputs an action that will be played if
the learning agent visits that state. Let Π collect all such
policies. The value function V π

t (s) for state s of policy π in
round t is defined as V π

t (s) := µs,π(s,t),t + P ⊺
s,π(s,t),tV

π
t+1.

If we knew P and µ, we could use backwards induction

3We say a learning algorithm is OFU-inspired and optimistic
if the Optimism Decomposition [Pacchiano et al., 2021] can be
used to decompose the regret.

to compute the optimal policy π∗. Define V π∗
H+1 = 0⃗. Then,

for each round t = H,H − 1, . . . , 1, for each state s ∈ S,
we compute

π∗(s, t) = argmax
a∈A

{
µs,a,t + P ⊺

s,a,tV
π∗
t+1

}
,

V π∗
t (s) = µs,π∗(s,t),t + P ⊺

s,π∗(s,t),t
V π∗
t+1 .

The expected regretR(T ) over T episodes is defined as

R(T ) =
T∑

k=1

E
[(
V π∗
1 (sk1)− V πk

1 (sk1)
)]

, (1)

where πk is random and the initial state sk1 ∼ p0. If there
exists (s, t) such that πk(s, t) ̸= π∗(s, t), then regret may
occur. Define Fk =

{
sqt , a

q
t , X

q
sqt , a

q
t ,t
, t ∈ [H], q ∈ [k]

}
as

the history trajectory by the end of episode k following poli-
cies π1, . . . , πq, . . . , πk with the initial state in each episode
independently drawn from p0. Define F0 = {}.

3 O-TS-MDP AND O-TS-MDP+

Algorithm 1 O-TS-MDP

1: Input: MDP instance M , number of episodes T
2: Initialization:

Set Ôs,a,t ← 0, P̂s,a,t ← 0⃗, µ̂s,a,t ← 0,∀(s, a, t)
3: for episode k = 1, 2, . . . , T do
4: Set Ṽ ′πk

H+1 = 0⃗
5: for t = H,H − 1, . . . , 1 do
6: for s ∈ S do
7: for a ∈ A do
8: Draw µ̃s,a,t ∼ N

(
µ̂s,a,t,

(√
SHσk

s,a,t

)2)
Set µ̃′

s,a,t ← max {µ̃s,a,t, µ̂s,a,t}
Set Q̃s,a,t ← µ̃′

s,a,t + P̂ ⊺
s,a,tṼ

′πk

t+1

9: end for
10: Set πk(s, t)← argmaxa∈A Q̃s,a,t

Set Ṽ ′πk

t (s)← Q̃s,πk(s,t),t

11: end for
12: end for
13: Sample sk1 ∼ p0, run πk, and update µ̂skt ,πk(skt ,t),t

,

Ôskt ,πk(skt ,t),t
, and P̂skt ,πk(skt ,t),t

for all t ∈ [H].
14: end for

We first present some notations used by our proposed
algorithms O-TS-MDP and O-TS-MDP+. Let Ôk

s,a,t =∑k
q=1 1 {(s

q
t , a

q
t ) = (s, a)} denote the number of times that

(s, a) has been visited in round t by the end of episode k. Let
µ̂k
s,a,t = 1

Ôk
s,a,t

∑k
q=1 1 {(s

q
t , a

q
t ) = (s, a)}Xq

s,a,t denote

the empirical mean of (s, a, t) by the end of episode k. Let
P̂ k
s,a,t(s

′) = 1

Ôk
s,a,t

∑k
q=1 1

{
(sqt , a

q
t ) = (s, a), sqt+1 = s′

}
denote the empirical transition probability distribution. Let

σk
s,a,t := 5

√
H2 log2

(
H
δ

)
/Ôk−1

s,a,t, where δ = 1
ASH2T 2 .



For the case when (s, a, t) has not been visited yet by the
end of episode k − 1, i.e., Ôk−1

s,a,t = 0, our algorithms set
σk
s,a,t to a large constant.

3.1 O-TS-MDP

O-TS-MDP is presented in Algorithm 1. The key ingredients
in O-TS-MDP are the boosted variance of the posterior
distribution (a Gaussian distribution) to drive exploration
and the usage of O-TS [May et al., 2012, Chapelle and
Li, 2011] to clip a Gaussian distribution to a one-sided
Gaussian distribution with the left side being truncated. The
reshaping of the posterior distribution plays a crucial role in
simplifying the algorithm and the theoretical analysis.

The same as other model-based algorithms, in episode k,
O-TS-MDP constructs an episode-dependent model M̃ ′

k to
simulate the true model. To construct M̃ ′

k with random-
ized value functions, O-TS-MDP draws a random sam-
ple µ̃k

s,a,t ∼ N
(
µ̂k−1
s,a,t, SH

(
σk
s,a,t

)2)
for each (s, a, t).

If µ̃k
s,a,t < µ̂k−1

s,a,t, O-TS-MDP boosts it to µ̂k−1
s,a,t. Let

µ̃′k
s,a,t := max

{
µ̂k−1
s,a,t, µ̃

k
s,a,t

}
. Note that µ̃′k

s,a,t can be
viewed as a random variable drawn from distributionN ′k

s,a,t

with the probability density function (PDF) f ′(x) ={
0, x < µ̂k−1

s,a,t,

ϕ
(
x; µ̂k−1

s,a,t, SH
(
σk
s,a,t

)2)
+

δ(x−µ̂k−1
s,a,t)

2 , x ≥ µ̂k−1
s,a,t,

where ϕ(x;µ, σ2) denotes the PDF of N
(
µ, σ2

)
and δ(·)

denotes the Dirac delta function.4 With µ̃′k
s,a,t for all (s, a, t)

in hand, we construct M̃ ′
k =

{
S,A, H, P̂ k−1, µ̃′k, p0

}
,

where P̂ k−1 =
{
P̂ k−1
s,a,t

}
collects all the empirical transi-

tion probability distributions by the end of episode k − 1

and µ̃′k =
{
µ̃′k

s,a,t

}
collects all the random samples af-

ter the boosting. After constructing M̃ ′
k, O-TS-MDP uses

backwards induction to find the optimal policy πk for M̃ ′
k

(shown in Line 4 to Line 12 in Algorithm 1). Let Ṽ ′π
t denote

the value functions of a fixed policy π for M̃ ′
k in round t.

Now, we present a regret bound for Algorithm 1.

Theorem 1. The regret of Algorithm 1 is Õ
(√

AS2H4T
)

.

O-TS-MDP is a computationally efficient and space effi-
cient algorithm which only needs one random sample for
each (s, a, t) to construct the episode-dependent model. Per
episode, the time complexity is O(AS2H) and the space

4Note that from Algorithm 1 we can see that to implement
O-TS-MDP, it is not required to compute f ′(x). We simply draw
a random sample from a Gaussian distribution and then compare
the sample value with the mean of the Gaussian distribution.

complexity is O(AS2H). In contrast, OPSRL [Tiapkin
et al., 2022a] and SOS-OPS-RL [Agrawal and Jia, 2020]
need multiple posterior samples to construct a model. The
improvement of O-TS-MDP comes from the usage of P̂ k−1

to construct the model. Instead, OPSRL and SOS-OPS-
RL use Dirichlet random variables to construct the model.
Although O-TS-MDP, OPSRL, and SOS-OPS-RL are all
model-based algorithms with randomized value functions,
O-TS-MDP is not an optimistic learning algorithm while
OPSRL and SOS-OPS-RL are both optimistic algorithms.
In other words, in O-TS-MDP, the value functions Ṽ ′π∗

1 (s)
are not guaranteed to be greater than V π∗

1 (s) with high prob-
ability. As shown in the regret analysis, O-TS-MDP only
achieves weak optimism. That is, each Ṽ ′π∗

1 (s) are only
guaranteed to be greater than V π∗

1 (s) with a small constant
probability. However, the strong optimism guarantee in OP-
SRL and SOS-OPS-RL is at the cost of drawing multiple
posterior samples. We believe that the regret bound of O-TS-
MDP can also be tightened to Õ

(√
ASH3T

)
if drawing

Õ(1) random samples.

The key idea behind SSR-Bernstein [Xiong et al., 2022] to
achieve the optimal Õ

(√
ASH3T

)
regret bound is to limit

the amount of randomness within the learning algorithm.
More specifically, in SSR-Bernstein, in each episode, all
tuples (s, a, t) use the same random seed, which is a Gaus-
sian random variable. In other words, for the entire learning
algorithm across T episodes, the number of independent
Gaussian random variables in SSR-Bernstein is exactly T .
In contrast, in O-TS-MDP, each tuple (s, a, t) has its own
random seed meaning that the total amount of independent
Gaussian random variables is O(ASHT ). As compared to
O-TS-MDP, SSR-Bernstein does not fully randomize its
obtained data.

Although O-TS-MDP and the RLSVI-based algorithms
[Russo, 2019, Agrawal et al., 2021, Xiong et al., 2022]
share in common an exploration mechanism, the introduce
of O-TS to clip the left side of the posterior distribution
simplifies the theoretical analysis in two ways. First, upper
bounding the absolute value of the estimation error is not
needed in the theoretical analysis of O-TS-MDP (Proof of
Lemma 2 in the appendix presents more details). All the
aforementioned RLSVI-based algorithms upper bound the
absolute value of the estimation error, which is more com-
plicated than upper bounding the one-sided error, as stated
in Xiong et al. [2022]. Second, as compared to C-RLSVI
of Agrawal et al. [2021] and SSR of Xiong et al. [2022],
O-TS-MDP does not clip the randomized value functions to
values in [0, H]. Consequently, the analysis of O-TS-MDP
can reuse the value difference lemma (Lemma 16) directly.

Recall that σk
s,a,t = 5

√
H2 log2(T/δ)/Ôk−1

s,a,t. To sketch
the regret analysis, we first construct the empirical MDP
M̂k =

{
S,A, H, P̂ k−1, µ̂k−1, p0

}
, where µ̂k−1 =



{
µ̂k−1
s,a,t

}
collects all the empirical means. Let V̂ π

t denote the
value functions of a fixed policy π for M̂k. To decompose
the regret, we define two high-probability events:

Ek =
{∣∣∣(P̂ k−1

s,a,t − Ps,a,t

)⊺
V πk
t+1

∣∣∣ ≤ σk
s,a,t,∣∣(µ̂k−1

s,a,t − µs,a,t

)∣∣ ≤ σk
s,a,t,∀(s, a, t)

}
,

Ekπ∗
=

{∣∣∣(Ps,a,t − P̂ k−1
s,a,t

)⊺
V π∗
t+1

∣∣∣ ≤ σk
s,a,t∣∣µ̂k−1

s,a,t − µs,a,t

∣∣ ≤ σk
s,a,t,∀(s, a, t)

}
.

(2)

We prepare three lemmas to prove Theorem 1. Recall
V π∗
1 (s) is the value function of the optimal policy π∗ for

the true MDP M and Ṽ ′πk

1 (s) is the value function of the
optimal policy πk for the episode-dependent MDP M̃ ′

k. Our
technical Lemma 2 upper bounds the expected performance
gap between the optimal policy π∗ over M and the optimal
policy πk over M̃ ′

k.

Lemma 2. (Optimism). In episode k, we have

E
[(

V π∗
1 (sk1)− Ṽ ′πk

1 (sk1)
)
1
{
Ekπ∗

}]
≤
√
SH

H∑
t=1

E
[
O
(
σk
skt ,πk(skt ,t),t

)]
.

(3)

Recall that V̂ πk
1 (s) is the value function of policy πk over

the empirical MDP M̂k. Lemma 3 upper bounds the ex-
pected performance gap for a single policy πk over MDPs
M̃ ′

k and M̂k and Lemma 4 upper bounds the expected per-
formance gap for policy πk over MDPs M̂k and M . Note
that MDPs M̃ ′

k and M̂k are constructed based on the same
P̂ k−1 which is determined by Fk−1.

Lemma 3. (Posterior deviation). In episode k, we have

E
[
Ṽ ′πk

1 (sk1)− V̂ πk
1 (sk1)

]
≤
√
SH

H∑
t=1

E
[
σk
skt ,πk(skt ,t),t

]
.

(4)

Lemma 4. (Empirical deviation). In episode k, we have

E
[(

V̂ πk
1 (sk1)− V πk

1 (sk1)
)
1
{
Ek
}]

≤ 2
H∑
t=1

E
[
σk
st,πk(st,t),t

]
.

(5)

Proof of Theorem 1. We have

T∑
k=1

E
[(
V π∗
1 (sk1)− V πk

1 (sk1)
)]

≤
T∑

k=1

E

(V π∗
1 (sk1)− Ṽ ′πk

1 (sk1)
)
1
{
Ekπ∗

}
︸ ︷︷ ︸

Lemma 2


+

T∑
k=1

E

(Ṽ ′πk

1 (sk1)− V̂ πk
1 (sk1)

)
︸ ︷︷ ︸

Lemma 3


+

T∑
k=1

E

(V̂ πk
1 (sk1)− V πk

1 (sk1)
)
1
{
Ek
}

︸ ︷︷ ︸
Lemma 4


+ H

T∑
k=1

P
{
Ek
}
+ P

{
Ekπ∗

}
︸ ︷︷ ︸

Lemma 18

≤
√
SH · E

[
T∑

k=1

H∑
t=1

O
(
σk
skt ,πk(skt ,t),t

)]
+O(1)

≤ Õ
(√

AS2H4T
)

,

(6)

where the last inequality uses
T∑

k=1

H∑
t=1

O
(
σk
skt ,πk(skt ,t),t

)
≤

Õ
(√

ASH3T
)

, a well-known result in the MDP literature
[Russo, 2019, Agrawal et al., 2021].

3.2 O-TS-MDP+

Different from O-TS-MDP where only weak optimism is
guaranteed, O-TS-MDP+ is an OFU-inspired optimistic
algorithm with randomized value functions. O-TS-MDP+

takes a more aggressive clipping strategy to achieve strong
optimism. O-TS-MDP+ boosts the random sample to the
upper confidence bound if it is smaller than the upper confi-
dence bound. This aggressive clipping strategy contributes
to reducing the variance of the posterior distribution as com-
pared to O-TS-MDP, which, consequently, leads to tighten-
ing the regret bound to Õ

(√
ASH3T

)
.

Similar to Algorithm 1, in each episode, O-TS-MDP+

also constructs a model M̃ ′
k =

{
S,A, H, P̂ k−1, µ̃′k, p0

}
.

Now, we present how to construct µ̃′k. Let µk
s,a,t :=

µ̂k−1
s,a,t + 2σk

s,a,t be the upper confidence bound for (s, a, t)
which is determined by Fk−1. At the beginning of episode
k, for each (s, a, t), O-TS-MDP+ draws a random sam-
ple µ̃k

s,a,t ∼ N
(
µ̂k−1
s,a,t,

(
σk
s,a,t

)2)
. Then, O-TS-MDP+

boosts it to µk
s,a,t if µ̃k

s,a,t < µk
s,a,t. Let µ̃′k

s,a,t =

max
{
µ̃k
s,a,t, µ

k
s,a,t

}
denote the sample value after the boost-

ing. The PDF for the distribution of µ̃′k
s,a,t can be de-

fined as f ′(x) = 0 if x < µk
s,a,t. Otherwise, f ′(x) =



ϕ
(
x; µ̂k−1

s,a,t, (σs,a,t)
2
)
+Φ

(
µk
s,a,t; µ̂

k−1
s,a,t, (σs,a,t)

2
)
δ(x−

µk
s,a,t), where Φ(x;µ, σ2) denotes the cumulative distribu-

tion function (CDF) of N
(
µ, σ2

)
. Let µ̃′k =

{
µ̃′k

s,a,t

}
collect all the samples after the boosting. After constructing
M̃ ′

k, O-TS-MDP+ computes the optimal policy πk for M̃ ′
k

by using backwards induction. Algorithm 2 presents the
pseudo-code of O-TS-MDP+. The differences between O-
TS-MDP and O-TS-MDP+ are highlighted in Algorithm 1
and Algorithm 2, respectively.

Algorithm 2 O-TS-MDP+

1: Input: MDP instance M , number of episodes T
2: Initialization:

Set Ôs,a,t ← 0, P̂s,a,t ← 0⃗, µ̂s,a,t ← 0,∀(s, a, t)
3: for episode k = 1, 2, . . . , T do
4: Set Ṽ ′πk

H+1 = 0⃗
5: for t = H,H − 1, . . . , 1 do
6: for s ∈ S do
7: for a ∈ A do
8: Draw µ̃s,a,t ∼ N

(
µ̂s,a,t,

(
σk
s,a,t

)2)
Set µs,a,t ← µ̂s,a,t + 2σk

s,a,t

Set µ̃′
s,a,t ← max

{
µ̃s,a,t, µs,a,t

}
Set Q̃s,a,t ← µ̃′

s,a,t + P̂ ⊺
s,a,tṼ

′πk

t+1

9: end for
10: Set πk(s, t)← argmaxa∈A Q̃s,a,t

Set Ṽ ′πk

t (s)← Q̃s,πk(s,t),t

11: end for
12: end for
13: Sample sk1 ∼ p0, run πk, and update µ̂skt ,πk(skt ,t),t

,

Ôskt ,πk(skt ,t),t
and P̂skt ,πk(skt ,t),t

for all t ∈ [H].
14: end for

Now, we present a regret bound for Algorithm 2.

Theorem 5. The regret of Algorithm 2 is Õ
(√

ASH3T
)

.

O-TS-MDP+ achieves the same (near)-optimal regret bound
as OPSRL of Tiapkin et al. [2022a] and SSR-Bernstein
of Xiong et al. [2022]. O-TS-MDP+ can be viewed as a
randomized version of UCB-VI [Azar et al., 2017]. It is
important to note that the O-TS-MDP+ learning algorithm
itself does not need a Bernstein-type bonus. However, the
analysis of Theorem 5 relies on a concentration bound that
is derived based on Bernstein’s inequality (see Lemma 17
for more details).

Now, we sketch the regret analysis. Recall that µk
s,a,t =

µ̂k−1
s,a,t + 2σk

s,a,t. We first construct a new MDP M̄k ={
S,A, H, P̂ k−1, µk, p0

}
, where µk =

{
µk
s,a,t

}
collects

all the upper confidence bounds. Let V
π

t be the value func-
tions of a fixed policy π for M̄k. Note that conditioned on
history Fk−1, although the constructed M̄k is deterministic,

V
πk

1 (s) is still random as πk is random. Recall that πk is the
optimal policy for M̃ ′

k. We still use Ek and Ekπ∗
, the events

that have been defined in (2), to decompose the regret. We
prepare three lemmas for Theorem 5.

Lemma 6. (Optimism). In episode k, we have

E
[(

V π∗
1 (sk1)− Ṽ ′πk

1 (sk1)
)
1
{
Ekπ∗

}]
≤ 0. (7)

Lemma 7. (Posterior deviation). In episode k, we have

E
[(

Ṽ ′πk

1 (sk1)− V
πk

1 (sk1)
)]
≤

H∑
t=1

E
[
σk
skt ,πk(skt ,t),t

]
.

(8)

Lemma 8. (UCB-like). In episode k, we have

E
[(

V
πk

1 (sk1)− V πk
1 (sk1)

)
1
{
Ek
}]

≤ 2
H∑
t=1

E
[
σk
skt ,πk(skt ,t),t

]
.

(9)

Proof of Theorem 5. We have

T∑
k=1

E
[(
V π∗
1 (sk1)− V πk

1 (sk1)
)]

≤
T∑

k=1

E

(V π∗
1 (sk1)− Ṽ ′πk

1 (sk1)
)
1
{
Ekπ∗

}
︸ ︷︷ ︸

Optimism, Lemma 6


+

T∑
k=1

E

(Ṽ ′πk

1 (sk1)− V
πk

1 (sk1)
)

︸ ︷︷ ︸
Posterior deviation, Lemma 7


+

T∑
k=1

E

(V πk

1 (sk1)− V πk
1 (sk1)

)
1
{
Ek
}

︸ ︷︷ ︸
UCB-like, Lemma 8


+ H

T∑
k=1

P
{
Ek
}
+ P

{
Ekπ∗

}
︸ ︷︷ ︸

Lemma 18

≤ E
[

T∑
k=1

H∑
t=1

O
(
σk
skt ,πk(skt ,t),t

)]
+O(1)

≤ Õ
(√

ASH3T
)
.

(10)

4 O-TS AND O-TS-BANDIT+

Since a stochastic bandit problem can be viewed as a special
MDP with S = 1, H = 1 and Chapelle and Li [2011] have
already demonstrated the empirical performance of O-TS for
stochastic bandits, to fill a gap in the stochastic bandit litera-
ture we present regret bounds of O-TS for stochastic bandits.
In addition, we propose O-TS-Bandit+, an OFU-inspired,
optimistic learning algorithm, for stochastic bandits. Note



that O-TS-Bandit+ can be viewed as a randomized version
of UCB1 [Auer et al., 2002].

Now, we present the learning problem of stochastic ban-
dits with bounded rewards formally. In a stochastic bandit
problem, we have an arm set A with size A. At the be-
ginning of each round t, the environment generates a re-
ward vector X(t) = (X1(t), X2(t), . . . , XA(t)) with each
Xj(t) ∈ [0, 1] i.i.d. over time from a fixed but unknown
probability distribution with mean µj . Simultaneously, the
learning agent pulls an arm Jt ∈ A. At the end of round t,
the learning agent observes and obtains XJt

(t), the reward
associated with the pulled arm. The goal of the learning
agent is to pull arms sequentially to accumulate as much re-
ward as possible over a finite number of T rounds. Without
loss of generality, we assume that the first arm is the unique
optimal arm. In other words, we assume µ1 > µj for all
j ̸= 1. Let ∆j := µ1 − µj denote the mean reward gap.

We use regret to measure the performance of the learning
agent’s decisions. Similar to (1), the regret is defined as

R(T ) = T · µ1 − E
[

T∑
t=1

µJt

]
, (11)

where the expectation is taken over Jt. Different from
episodic MDPs, where only the worst-case regret bounds
are analyzed, for stochastic bandits we are interested in both
problem-dependent regret bounds and problem-independent
regret bounds. The difference between problem-dependent
regret bounds and problem-independent regret bounds is
the former one depends on the mean reward parameters
µ1, µ2, . . . , µA while the latter one provides a regret bound
for all the possible choices of mean reward parameters.

We introduce additional notation specific to stochastic ban-
dits. Let Oj(t− 1) denote the number of pulls of arm j by
the end of round t− 1 and µ̂j,Oj(t−1) denote the empirical
mean of arm j by the end of round t− 1.

4.1 O-TS

The learning algorithm of O-TS is presented in Algorithm 3.
Similar to Algorithm 1, at the beginning of each round
t, for each arm j ∈ A, a random sample µ̃j(t) is drawn
from N

(
µ̂j,Oj(t−1), 1/Oj(t− 1)

)
. If µ̃j(t) is smaller than

µ̂j,Oj(t−1), it will be boosted to µ̂j,Oj(t−1). Let µ̃′
j(t) =

max
{
µ̃j(t), µ̂j,Oj(t−1)

}
. With all µ̃′

j(t) in hand, the learn-
ing agent pulls arm Jt = argmaxj∈A µ̃′

j(t).

Now, we present regret bounds for Algorithm 3.

Theorem 9. The problem-dependent regret bound of Algo-
rithm 3 is

∑
j∈A:∆j>0 O

(
ln(T )
∆j

)
.

Theorem 10. The problem-independent regret bound of
Algorithm 3 is O

(√
AT ln(A)

)
.

Algorithm 3 O-TS (Optimistic Thompson Sampling
[Chapelle and Li, 2011])

1: Input: an arm set A
2: Pull each arm once to initialize Oj , µ̂j,Oj

3: for round t = A+ 1, A+ 2, . . . do
4: for a ∈ A do
5: Draw µ̃j(t) ∼ N

(
µ̂j,Oj , 1/Oj

)
Set µ̃′

j(t)← max
{
µ̃j(t), µ̂j,Oj

}
6: end for
7: Pull arm Jt ← argmaxj∈A µ̃′

j(t)
8: Update OJt and µ̂Jt,OJt

.
9: end for

O-TS achieves the same problem-dependent and problem-
independent regret bounds as Thompson Sampling with
Gaussian priors (TS-Gaussian) (Algorithm 2 in Agrawal and
Goyal [2017]). The key difference between O-TS and TS-
Gaussian is TS-Gaussian uses normal distributions while O-
TS uses one-sided Gaussian distributions with the left side
being clipped. The problem-independent regret bound of O-
TS is minimax optimal up to a

√
ln(A) factor. Note that O-

TS and TS-Gaussian are not optimistic learning algorithms.

4.2 O-TS-BANDIT+

An OFU-inspired optimistic learning algorithm, O-TS-
Bandit+, is presented in Algorithm 4. Similar to Algo-
rithm 2, O-TS-Bandit+ does the clipping aggressively to
boost optimism and can be viewed as a randomized ver-
sion of UCB1 [Auer et al., 2002]. Let µj(t) = µ̂j,Oj(t−1) +√
1.5 ln(t)/Oj(t− 1) be the upper confidence bound. O-

TS-Bandit+ boosts µ̃j(t) to µj(t) if it is smaller than
µj(t). Let µ̃′

j(t) = max
{
µ̃j(t), µj(t)

}
denote the value

after the boosting. Then, O-TS-Bandit+ pulls arm Jt =
argmaxj∈A µ̃′

j(t). The differences between O-TS and
O-TS-Bandit+ are highlighted in Algorithm 3 and Algo-
rithm 4, respectively.

Algorithm 4 O-TS-Bandit+

1: Input: an arm set A
2: Pull each arm once to initialize Oj , µ̂j,Oj

3: for round t = A+ 1, A+ 2, . . . do
4: for j ∈ A do
5: Draw µ̃j(t) ∼ N

(
µ̂j,Oj

, 1/Oj

)
Set µj ← µ̂j,Oj +

√
1.5 ln(t)/Oj

Set µ̃′
j(t)← max

{
µ̃j(t), µj(t)

}
6: end for
7: Pull arm Jt ← argmaxj∈A µ̃′

j(t)
8: Update OJt

and µ̂Jt,OJt
.

9: end for

Now, we present regret bounds for Algorithm 4.



Theorem 11. The problem-dependent regret bound of Algo-
rithm 4 is

∑
j∈A:∆j>0 O

(
ln(T )
∆j

)
.

Theorem 12. The problem-independent regret bound of
Algorithm 4 is O

(√
AT ln(T )

)
.

O-TS and O-TS-Bandit+ have the same problem-dependent
regret bound. For the problem-independent regret bound,
O-TS-Bandit+ is worse than O-TS. Note that O-TS-Bandit+

is an optimistic algorithm. O-TS-Bandit+ and MOTS [Jin
et al., 2021] share in common that they both clip the Gaus-
sian distributions based on the upper confidence bounds.
The key difference lies in that MOTS clips the upper tail of
Gaussian distributions to control the overestimation of the
sub-optimal arms while O-TS-Bandit+ keeps the upper tail
of the Gaussian distributions to preserve optimism.

5 EXPERIMENTAL RESULTS

In this section, we evaluate the empirical performance of
our proposed algorithms O-TS-MDP and O-TS-MDP+ for
MDPs with S = [5, 20, 50], A = 3 and H = 10. For a
fair performance comparison, our experimental set-up is
fully adopted from Dann et al. [2017], where the empir-
ical performance for several UCB-based algorithms was
studied. For a specific (s, a, t), the random reward Xs,a,t

in each episode is drawn from a Bernoulli distribution with
parameter µs,a,t. To ensure the sparsity of the random re-
wards, we set µs,a,t = 0 with probability 0.85 and with
probability 0.15, the value of µs,a,t is drawn from a uniform
distribution. The sparsity design is to control the occurrence
that sub-optimal policies can obtain rewards by chance. We
compare O-TS-MDP, O-TS-MDP+, SSR-Bernstein [Xiong
et al., 2022], and TS-MDP, a Thompson Sampling-based
learning algorithm without clipping the posterior distribu-
tions, i.e., constructing the episode-dependent model as
M̃ =

{
S,A, H, P̂ k−1, µ̃k, p0

}
. We set T = 107 and com-

pare the cumulative average rewards of each episode.

0.2 0.4 0.6 0.8 1.0
Episode 1e7

0.5

1.0

1.5

2.0

Re
wa

rd

S = 5, A = 3, H = 10

SSR-Bernstein
TS-MDP

O-TS-MDP
O-TS-MDP +

Figure 1: Empirical performance for 5 states
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Figure 2: Empirical performance for 20 states
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Figure 3: Empirical performance for 50 states

As shown in Figure 1, the rewards for all algorithms steadily
increase as the learning agent gains a better estimation of the
parameters of the true MDP over time. When the number of
states is small (S = 5), O-TS-MDP+ performs slightly bet-
ter than O-TS-MDP. TS-MDP demonstrates a similar trend
as O-TS-MDP since they are both Thompson Sampling-
based algorithms. Despite the lack of theoretical analysis,
TS-MDP does achieve better empirical performance. The
gap between O-TS-MDP and TS-MDP comes from the fact
that clipping the left side of the posterior distributions in-
creases the chance to visit a sub-optimal (s, a, t), just as
implied in the design of MOTS [Jin et al., 2021]. It is not
surprising that SSR-Bernstein outperforms the remaining
algorithms as it is theoretically optimal. Figure 2 and 3
show similar trends for Thomson-sampling-based methods
in larger state space. SSR-Bernstein still performs the best.

It is important to note that SSR-Bernstein uses a single ran-
dom seed for all (s, a, t) in each episode. In contrast, in our
proposed algorithms, each (s, a, t) has its own randomness
within an episode. In other words, our proposed algorithms
inject more randomness than SSR-Bernstein. Additionally,
SSR-Bernstein needs to construct confidence intervals to
tune the magnitude of the variance, whereas our algorithms
are simpler and easier to implement and enjoy good regret



bounds. We also implement UCB-VI [Azar et al., 2017] and
more experimental results can be found in Appendix H.

6 CONCLUSION AND FUTURE WORK

In this work, we have presented two Optimistic Thompson
Sampling-based learning algorithms, O-TS-MDP and O-
TS-MDP+, for episodic MDPs. The key feature that distin-
guishes our proposed learning algorithms from the existing
RLSVI-based algorithms [Russo, 2019, Xiong et al., 2022,
Agrawal et al., 2021] is the introduction of O-TS to avoid
upper bounding the absolute value of the estimation error,
thus simplifying the regret analysis. This work leaves two
interesting open questions. Just as pointed out in Abeille
and Lazaric [2017], Pacchiano et al. [2021], Agrawal et al.
[2021], removing the extra

√
SH factor is challenging if

the learning algorithms are Thompson Sampling-based. The
first open question is whether the ideas in SSR of Xiong
et al. [2022], i.e., controlling the amount of randomness
within the learning algorithm, can be used to tighten the re-
gret bound of O-TS-MDP to Õ

(√
ASH3T

)
. Our thought

is that by reducing the amount of posterior random samples,
a better regret bound for O-TS-MDP may be possible. The
analysis of O-TS-MDP and RLSVI-based algorithms all rely
on the property that the sum of multiple independent normal
random variables is still normally distributed, and normal
distributions have nice anti-concentration bounds. Although
Tiapkin et al. [2022a] have proved a sharp anti-concentration
bound for Dirichlet distributions, the distribution of the sum
of multiple independent Dirichlet random variables is still
less understood. The lack of understanding of Dirichlet dis-
tributions results in the need for multiple posterior samples
in OPSRL of Tiapkin et al. [2022a]. The second interesting
open question is whether we can reshape the Dirichlet poste-
rior distribution in an optimistic way to improve the number
of Dirichlet random variables in OPSRL to one.
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APPENDIX

The appendix is organized as follows.

1. Appendix A presents proofs for Theorem 1 ;

2. Appendix B presents proofs for Theorem 5 ;

3. Appendix C presents other technical lemmas used in MDPs ;

4. Appendix D presents proofs for Theorem 9 ;

5. Appendix E presents proofs for Theorem 10 ;

6. Appendix F presents proofs for Theorem 11 ;

7. Appendix G presents proofs for Theorem 12 ;

8. Appendix H presents additional experimental results.

Since E
[(
V π∗
1 (sk1)− V πk

1 (sk1)
)]

= E
[
E
[
(V π∗

1 (s)− V πk
1 (s)) | sk1 = s

]︸ ︷︷ ︸
]

, for the analysis in Appendix A and Appendix B,

we upper bound the expected value difference conditioned on sk1 = s. For ease of presentation, we drop the conditioning.

A PROOFS FOR THEOREM 1

To prove Theorem 1, in episode k, we also construct another MDP M̃k =
{
S,A, H, P̂ k−1, µ̃k, p0

}
, where µ̃k =

{
µ̃k
s,a,t

}
collects all the random samples that are initially drawn from Gaussian distributions (before doing the clippings). Note that
M̃k can be viewed as the “parental” MDP of M̃ ′

k. Let Ṽ π
t denote the value functions of a fixed policy π for M̃k in round t.

We have the following facts.

1. The MDPs of M̃k and M̃ ′
k use the same P̂ k−1 to construct the models.

2. The learning algorithm of O-TS-MDP guarantees µ̃′k
s,a,t ≥ µ̃k

s,a,t for all (s, a, t) hold simultaneously.

3. The learning algorithm of O-TS-MDP guarantees µ̃′k
s,a,t ≥ µ̂k−1

s,a,t for all (s, a, t) hold simultaneously.

4. The empirical estimates of µ̂k−1 and P̂ k−1, the distributions for µ̃k and µ̃′k, and whether event Ekπ∗
is true or not are

all determined by Fk−1.

Let c0 = 2e−2

5
√
2π

be a universal constant.

Lemma 13. (Weak optimism lemma). For any instantiation Fk−1 of Fk−1 such that event Ekπ∗
is true, we have

P
{
1
{
Ekπ∗

}(
Ṽ π∗
1 (s)− V π∗

1 (s)
)
≥ 0 | Fk−1 = Fk−1

}
≥ c0. (12)

The proof of Lemma 2 uses the result stated in Lemma 13.

Proof of Lemma 2 (Optimism lemma). We use Markov’s inequality and Lemma 13 to complete the proof. Some parts of the
analysis use ideas presented in the proof of Lemma 6 in Russo [2019]. We would like to highlight that the introduce of O-TS
simplifies the analysis avoiding upper bounding the absolute value of the estimation error.

We first rewrite the LHS in (3) as

LHS of (3) = E
[(

V π∗
1 (s)− Ṽ ′πk

1 (s)
)
1
{
Ekπ∗

}]
= E

[
E
[
1
{
Ekπ∗

}(
V π∗
1 (s)− Ṽ ′πk

1 (s)
)
| Fk−1

]]
=(a) E

E [1{Ekπ∗

}(
V π∗
1 (s)−max

π∈Π
Ṽ ′π

1 (s)

)
| Fk−1

]
︸ ︷︷ ︸

λ

 ,

(13)



where equality (a) uses the fact that policy πk is the optimal one for M̃ ′
k, i.e., Ṽ ′πk

1 (s) = maxπ∈Π Ṽ ′π
1 (s). Since λ is

determined by Fk−1, we only need to consider all the instantiations Fk−1 of Fk−1 such that λ > 0. Let Ek−1 [·] =
E [· | Fk−1 = Fk−1] and Pk−1 {·} = P {· | Fk−1 = Fk−1}. Conditioned on such Fk−1, we use Markov’s inequality and
have

λ ≤

Ek−1

max

{
0,1

{
Ekπ∗

}(
Ṽ ′πk

1 (s)− Ek−1

[
max
π∈Π

Ṽ ′π
1 (s)

])}
︸ ︷︷ ︸

r.v.



Pk−1

max

{
0,1

{
Ekπ∗

}(
Ṽ ′πk

1 (s)− Ek−1

[
max
π∈Π

Ṽ ′π
1 (s)

])}
︸ ︷︷ ︸

r.v.

≥λ



≤
Ek−1

[
max

{
0,

(
Ṽ ′πk

1 (s)−Ek−1

[
max
π∈Π

Ṽ ′π
1 (s)

])}]
Pk−1

{
1{Ek

π∗}
(
Ṽ ′πk

1 (s)−Ek−1

[
max
π∈Π

Ṽ ′π
1 (s)

])
≥λ

} .

(14)

Construct a lower bound. Now, we construct a lower bound for the denominator in the last step of (14) by using
Lemma 13. We have

Pk−1

{
1
{
Ekπ∗

}(
Ṽ ′πk

1 (s)− Ek−1

[
max
π∈Π

Ṽ ′π
1 (s)

])
≥ λ

}
= Pk−1

{
1
{
Ekπ∗

}(
Ṽ ′πk

1 (s)− Ek−1

[
max
π∈Π

Ṽ ′π
1 (s)

])
≥ Ek−1

[
1
{
Ekπ∗

}(
V π∗
1 (s)−max

π∈Π
Ṽ ′π

1 (s)

)]}
= Pk−1

{
1
{
Ekπ∗

}(
Ṽ ′πk

1 (s)− V π∗
1 (s)

)
≥ 0
}

≥(a) Pk−1

{
1
{
Ekπ∗

}(
Ṽ ′π∗

1 (s)− V π∗
1 (s)

)
≥ 0
}

≥(b) Pk−1

{
1
{
Ekπ∗

}(
Ṽ π∗
1 (s)− V π∗

1 (s)
)
≥ 0
}

≥(c) c0 ,

(15)

where inequality (a) uses the fact that Ṽ ′πk

1 (s) ≥ Ṽ ′π∗

1 (s) as policy πk is the optimal one for M̃ ′
k and inequality (b) uses the

fact that Ṽ ′π∗

1 (s) ≥ Ṽ π∗
1 (s) as MDPs M̃ ′

k and M̃k are constructed based on the same P̂ k−1 and O-TS-MDP guarantees that

µ̃′k
s,a,t ≥ µ̃k

s,a,t for all (s, a, t) hold simultaneously. Inequality (c) uses Lemma 13.

Construct an upper bound. To construct an upper bound for the numerator in the last step of (14), we introduce a new

MDP ˜̃M ′
k =

{
S,A, H, P̂ k−1,

˜̃
µ′

k

, p0

}
, where ˜̃µ′

k

s,a,t ∼ N ′k
s,a,t. Note µ̃′k

s,a,t and ˜̃µ′
k

s,a,t are i.i.d. according to N ′k
s,a,t, a

distribution determined by Fk−1. Let ˜̃V ′
π

t denote the value functions of a fixed policy π for ˜̃M ′
k. Then, we have

Ek−1

[˜̃
V ′

πk

1 (s) | πk

]
≤ Ek−1

[
max
π∈Π

˜̃
V ′

π

1 (s)

]
= Ek−1

[
max
π∈Π

Ṽ ′π
1 (s)

]
. (16)



Now, we come back to constructing the upper bound for the numerator in the last step of (14). We have

Ek−1

[
max

{
0, Ṽ ′πk

1 (s)− Ek−1

[
max
π∈Π

Ṽ ′π
1 (s)

]}]
≤(a) Ek−1

[
max

{
0, Ṽ ′πk

1 (s)− Ek−1

[˜̃
V ′

πk

1 (s) | πk

]}]
≤ Ek−1

[∣∣∣∣Ṽ ′πk

1 (s)− Ek−1

[˜̃
V ′

πk

1 (s) | πk

]∣∣∣∣]
= Ek−1

[∣∣∣∣Ṽ ′πk

1 (s)− Ek−1

[˜̃
V ′

πk

1 (s) | πk, M̃
′
k

]∣∣∣∣]
= Ek−1

[∣∣∣∣Ek−1

[(
Ṽ ′πk

1 (s)− ˜̃V ′
πk

1 (s)

)
| πk, M̃

′
k

]∣∣∣∣]
≤ Ek−1

[
Ek−1

[∣∣∣∣(Ṽ ′πk

1 (s)− ˜̃V ′
πk

1 (s)

)∣∣∣∣ | πk, M̃
′
k

]]
= Ek−1

[∣∣∣∣Ṽ ′πk

1 (s)− ˜̃V ′
πk

1 (s)

∣∣∣∣]
= Ek−1

[∣∣∣∣Ṽ ′πk

1 (s)− V̂ πk
1 (s) + V̂ πk

1 (s)− ˜̃V ′
πk

1 (s)

∣∣∣∣]
≤ Ek−1

[∣∣∣Ṽ ′πk

1 (s)− V̂ πk
1 (s)

∣∣∣]+ Ek−1

[∣∣∣∣V̂ πk
1 (s)− ˜̃V ′

πk

1 (s)

∣∣∣∣]

= Ek−1

Ek−1


∣∣∣∣∣∣∣Ṽ ′πk

1 (s)− V̂ πk
1 (s)︸ ︷︷ ︸

I1≥0

∣∣∣∣∣∣∣ | πk


+ Ek−1

Ek−1


∣∣∣∣∣∣∣V̂ πk

1 (s)− ˜̃V ′
πk

1 (s)︸ ︷︷ ︸
I2≤0

∣∣∣∣∣∣∣ | πk




=(b) Ek−1

Ek−1

Ṽ ′πk

1 (s)− V̂ πk
1 (s)︸ ︷︷ ︸

I1

| πk


+ Ek−1

Ek−1

˜̃V ′
πk

1 (s)− V̂ πk
1 (s)︸ ︷︷ ︸

−I2

| πk




=(c) Ek−1

[
Ṽ ′πk

1 (s)− V̂ πk
1 (s)

]
+ Ek−1

[˜̃
V ′

πk

1 (s)− V̂ πk
1 (s)

]
,

(17)

where inequality (a) uses (16) and equality (b) uses the fact that conditioned on Fk−1 = Fk−1 and πk, we have I1 ≥ 0 since

MDPs M̃ ′
k and M̂k are constructed based on the same P̂ k−1 and O-TS-MDP guarantees µ̃′k

s,a,t ≥ µ̂k−1
s,a,t for all (s, a, t) hold

simultaneously. Similarly, we have I2 ≤ 0.

Upper bound λ. By plugging (15) and (17) into (14), we have

λ ≤ 1
c0
·
(
Ek−1

[
Ṽ ′πk

1 (s)− V̂ πk
1 (s)

]
+ Ek−1

[˜̃
V ′

πk

1 (s)− V̂ πk
1 (s)

])
= O

(
Ek−1

[
Ṽ ′πk

1 (s)− V̂ πk
1 (s)

]
+ Ek−1

[˜̃
V ′

πk

1 (s)− V̂ πk
1 (s)

])
.

(18)

By plugging the upper bound of λ into (13), we have

E
[
1
{
Ekπ∗

}
·
(
V π∗
1 (s)− Ṽ ′πk

1 (s)
)]

≤ O

(
E
[
Ṽ ′πk

1 (s)− V̂ πk
1 (s)

]
+ E

[˜̃
V ′

πk

1 (s)− V̂ πk
1 (s)

])
. (19)

Now, we use Lemma 3 to upper bound (19). We have

E
[
Ṽ ′πk

1 (s)− V̂ πk
1 (s)

]
≤
√
SH

H∑
t=1

E
[
σk
st,πk(st,t),t

]
. (20)

Similarly, we have

E
[˜̃
V ′

πk

1 (s)− V̂ πk
1 (s)

]
≤
√
SH

H∑
t=1

E
[
σk
st,πk(st,t),t

]
, (21)

which concludes the proof.

Before presenting the proof of Lemma 3, we present Lemma 14 first.



Lemma 14. Let µ̂ be a constant in R and σ > 0 be a positive constant. Let µ̃′ be a random variable that is drawn from a
distribution with probability density function f ′(x) defined as the following.

f ′(x) =

{
0, if x < µ̂;
ϕ
(
x; µ̂, σ2

)
+ 0.5 · δ(x− µ̂), if x ≥ µ̂,

(22)

where ϕ
(
x; µ̂, σ2

)
denotes the PDF of N

(
µ̂, σ2

)
and δ(x) denotes the Dirac delta function. Then, we have E [µ̃′]− µ̂ ≤ σ.

Proof of Lemma 14. We use the definition of expectation to complete the proof. We have

E [µ̃′] =
∫ +∞
−∞ xf ′(x)dx

=
∫ +∞
µ̂

xf ′(x)dx

=
∫ +∞
µ̂

x ·
(
ϕ
(
x; µ̂, σ2

)
+ 0.5 · δ(x− µ̂)

)
dx

=
∫ +∞
µ̂

(x− µ̂) 1
σ
√
2π

e−
(x−µ̂)2

2σ2 dx+
∫ +∞
µ̂

µ̂ 1
σ
√
2π

e−
(x−µ̂)2

2σ2 dx+ 0.5µ̂

≤ σ + µ̂ .

(23)

Proof of Lemma 3 (Posterior deviation lemma). We have

E
[
Ṽ ′πk

1 (s)− V̂ πk
1 (s)

]
= E

E
Ṽ ′πk

1 (s)− V̂ πk
1 (s)︸ ︷︷ ︸

LHS in Lemma 16

| Fk−1, M̃
′
k



= E

E
Es2,...,sH

[
H∑
t=1

(
µ̃′k

st,πk(st,t),t
− µ̂k−1

st,πk(st,t),t

)
| Fk−1, M̃

′
k

]
︸ ︷︷ ︸

RHS in Lemma 16

| Fk−1, M̃
′
k




= E
[
Es2,...,sH

[
H∑
t=1

(
µ̃′k

st,πk(st,t),t
− µ̂k−1

st,πk(st,t),t

)
| Fk−1, M̃

′
k

]]
= E

[
H∑
t=1

(
µ̃′k

st,πk(st,t),t
− µ̂k−1

st,πk(st,t),t

)]

=
H∑
t=1

E

E [(µ̃′k
st,πk(st,t),t

− µ̂k−1
st,πk(st,t),t

)
| Fk−1, st, πk

]
︸ ︷︷ ︸

Lemma 14


≤

H∑
t=1

E
[√

SH · σk
st,πk(st,t),t

]
,

(24)
where the second equality uses the fact that conditioned on Fk−1 and M̃ ′

k, the policy πk is determined.



Proof of Lemma 4 (Empirical deviation lemma). We have

E
[(

V̂ πk
1 (s)− V πk

1 (s)
)
· 1
{
Ek
}]

= E

E
(V̂ πk

1 (s)− V πk
1 (s)

)
︸ ︷︷ ︸

LHS in Lemma 16

·1
{
Ek
}
| πk,Fk−1




= E

E
1{Ek}Es2,...,sH

[
H∑
t=1

(
µ̂k−1
st,πk(st,t),t

− µst,πk(st,t),t

)
+
(
P̂ k−1
st,πk(st,t),t

− Pst,πk(st,t),t

)⊺
V πk
t+1 | πk,Fk−1

]
︸ ︷︷ ︸

RHS in Lemma 16

| πk,Fk−1




≤ E

E
1{Ek}Es2,...,sH

 H∑
t=1

∣∣∣µ̂k−1
st,πk(st,t),t

− µst,πk(st,t),t

∣∣∣︸ ︷︷ ︸
≤σk

st,πk(st,t),t

+
∣∣∣(P̂ k−1

st,πk(st,t),t
− Pst,πk(st,t),t

)⊺
V πk
t+1

∣∣∣︸ ︷︷ ︸
≤σk

st,πk(st,t),t

| πk,Fk−1

 | πk,Fk−1




≤ E
[
E
[
Es2,...,sH

[
H∑
t=1

2σk
st,πk(st,t),t

| πk,Fk−1

]
| πk,Fk−1

]]
= E

[
Es2,...,sH

[
H∑
t=1

2σk
st,πk(st,t),t

| πk,Fk−1

]]
=

H∑
t=1

E
[
2σk

st,πk(st,t),t

]
.

(25)
The last inequality uses the fact that if event Ek is true, we have

∣∣(µ̂k−1
s,a,t − µs,a,t

)∣∣ ≤ σk
s,a,t and

∣∣∣(P̂ k−1
s,a,t − Ps,a,t

)⊺
V πk
t+1

∣∣∣ ≤
σk
s,a,t for all (s, a, t) hold simultaneously.

Proof of Lemma 13. The proof is very similar to the proof of Lemma 5 in Russo [2019]. We use anti-concentration bounds
of Gaussian distributions shown in Lemma 19. Let Pk−1 {·} = P {· | Fk−1 = Fk−1} and Ek−1 [·] = E [· | Fk−1 = Fk−1].

We first rewrite the LHS in (12) as

Pk−1

{
1
{
Ekπ∗

}(
Ṽ π∗
1 (s)− V π∗

1 (s)
)
≥ 0
}
= Pk−1

1
{
Ekπ∗

}
·
(
Ṽ π∗
1 (s)− V̂ π∗

1 (s)
)

︸ ︷︷ ︸
I2

≥ 1
{
Ekπ∗

}
·
(
V π∗
1 (s)− V̂ π∗

1 (s)
)

︸ ︷︷ ︸
I1

 .

(26)
Conditioned on Fk−1 = Fk−1 such that event Ekπ∗

is true, we construct an upper bound on I1. We have

I1 = V π∗
1 (s)− V̂ π∗

1 (s)︸ ︷︷ ︸
LHS in Lemma 16

= Es2,...,sH

[
H∑
t=1

(
µst,π∗(st,t),t − µ̂k−1

st,π∗(st,t),t

)
+
(
Pst,π∗(st,t),t − P̂ k−1

st,π∗(st,t),t

)⊺
V π∗
t+1 | Fk−1 = Fk−1

]
︸ ︷︷ ︸

RHS in Lemma 16

≤ Es2,...,sH

[
H∑
t=1

∣∣∣µ̂k−1
st,π∗(st,t),t

− µst,π∗(st,t),t

∣∣∣+ ∣∣∣(P̂ k−1
st,π∗(st,t),t

− Pst,π∗(st,t),t

)⊺
V π∗
t+1

∣∣∣ | Fk−1 = Fk−1

]
≤ Es2,...,sH

[
H∑
t=1

2σk
st,π∗(st,t),t

| Fk−1 = Fk−1

]
,

(27)

where the expectation is taken over the sampled trajectory s2, . . . , sH drawn following π∗ and P̂ k−1 given s as the initial state.

The last inequality uses the fact that if event Ekπ∗
is true, we have

∣∣µs,a,t − µ̂k−1
s,a,t

∣∣ ≤ σk
s,a,t and

∣∣∣(Ps,a,t − P̂ k−1
s,a,t

)⊺
V π∗
t+1

∣∣∣ ≤
σk
s,a,t for all (s, a, t) hold simultaneously.



By plugging the upper bound on I1 in (26), we have

(26) = Pk−1

1
{
Ekπ∗

}
·
(
Ṽ π∗
1 (s)− V̂ π∗

1 (s)
)

︸ ︷︷ ︸
I2

≥ 1
{
Ekπ∗

}
·
(
V π∗
1 (s)− V̂ π∗

1 (s)
)

︸ ︷︷ ︸
I1


≥ Pk−1

1
{
Ekπ∗

}
·
(
Ṽ π∗
1 (s)− V̂ π∗

1 (s)
)
≥ 1

{
Ekπ∗

}
·

(
Es2,...,sH

[
H∑
t=1

2σk
st,π∗(st,t),t

| Fk−1 = Fk−1

])
︸ ︷︷ ︸

an upper bound on I1


= Pk−1

{(
Ṽ π∗
1 (s)− V̂ π∗

1 (s)
)
≥ Es2,...,sH

[
H∑
t=1

2σk
st,π∗(st,t),t

| Fk−1 = Fk−1

]}
= Ek−1

[
1

{(
Ṽ π∗
1 (s)− V̂ π∗

1 (s)
)
≥ Es2,...,sH

[
H∑
t=1

2σk
st,π∗(st,t),t

| Fk−1 = Fk−1

]}]

= Ek−1

Ek−1

1

(
Ṽ π∗
1 (s)− V̂ π∗

1 (s)
)

︸ ︷︷ ︸
I2

≥ Es2,...,sH

[
H∑
t=1

2σk
st,π∗(st,t),t

| Fk−1 = Fk−1

] | M̃k


 .

(28)
Now, conditioned on Ft−1 = Ft−1 and M̃k, we rewrite I2 as

I2 = Ṽ π∗
1 (s)− V̂ π∗

1 (s) = Es2,...,sH

[
H∑
t=1

(
µ̃k
st,π∗(st,t),t

− µ̂k−1
st,π∗(st,t),t

)
| Fk−1 = Fk−1, M̃k

]
, (29)

where the expectation is still taken over the sampled trajectory s2, . . . , sH drawn following π∗ and P̂ k−1 given s as the
initial state. Then, we have

(28) = Ek−1

Ek−1

1

(
Ṽ π∗
1 (s)− V̂ π∗

1 (s)
)

︸ ︷︷ ︸
I2

≥ Es2,...,sH

[
H∑
t=1

2σk
st,π∗(st,t),t

| Fk−1 = Fk−1

] | M̃k




= Ek−1

[
Ek−1

[
1

{
Es2,...,sH

[
H∑
t=1

(
µ̃k
st,π∗(st,t),t

− µ̂k−1
st,π∗(st,t),t

)
| Fk−1 = Fk−1, M̃k

]
≥

Es2,...,sH

[
H∑
t=1

2σk
st,π∗(st,t),t

| Fk−1 = Fk−1

]}
| M̃k

]]
= Ek−1

[
Ek−1

[
1

{
Es2,...,sH

[
H∑
t=1

(
µ̃k
st,π∗(st,t),t

− µ̂k−1
st,π∗(st,t),t

)
| Fk−1 = Fk−1, M̃k

]
≥

Es2,...,sH

[
H∑
t=1

2σk
st,π∗(st,t),t

| Fk−1 = Fk−1, M̃k

]}
| M̃k

]]

= Ek−1

Ek−1

1
Es2,...,sH

[
H∑
t=1

(
µ̃k
st,π∗(st,t),t

− µ̂k−1
st,π∗(st,t),t

− 2σk
st,π∗(st,t),t

)
| Fk−1 = Fk−1, M̃k

]
︸ ︷︷ ︸

I3

≥ 0

 | M̃k


 .

(30)
For each (s, a, t), let nk

s,a,t := µ̃k
s,a,t − µ̂k−1

s,a,t and ωs,a,t be the probability that (s, a) is visited in round t when following
policy π∗ and P̂ k−1 given s as the initial state. Now, we express I3 as

I3 =

H∑
t=1

∑
s∈S

ωs,π∗(s,t),t · n
k
s,π∗(s,t),t︸ ︷︷ ︸

=:X

−
H∑
t=1

∑
s∈S

ωs,π∗(s,t),t · 2σ
k
s,π∗(s,t),t︸ ︷︷ ︸

=:z

.
(31)

Since µ̃k
s,a,t ∼ N

(
µ̂k−1
s,a,t, SH

(
σk
s,a,t

)2)
, we know nk

s,a,t ∼ N
(
0, SH

(
σk
s,a,t

)2)
, which future implies X ∼(

0,
H∑
t=1

∑
s∈S

SH ·
(
ωs,π∗(s,t),t

)2 · (σk
s,π∗(s,t),t

)2)
. Now, we construct an upper bound for z using Cauchy-Schwarz in-



equality. We have

z ≤

√
H∑
t=1

∑
s∈S

22

√
H∑
t=1

∑
s∈S

(
ωs,π∗(s,t),t

)2 (
σk
s,π∗(s,t),t

)2
≤ 2
√
SH

√
H∑
t=1

∑
s∈S

(
ωs,π∗(s,t),t

)2 (
σk
s,π∗(s,t),t

)2
. (32)

Now, we come back to (30) and have

(30) = Ek−1

Ek−1

1


H∑
t=1

∑
s∈S

ωs,π∗(s,t),t · n
k
s,π∗(s,t),t

−
H∑
t=1

∑
s∈S

ωs,π∗(s,t),t · 2σ
k
s,π∗(s,t),t︸ ︷︷ ︸

=I3

≥ 0

 | M̃k




= Ek−1

1


H∑
t=1

∑
s∈S

ωs,π∗(s,t),t · n
k
s,π∗(s,t),t︸ ︷︷ ︸

X

−
H∑
t=1

∑
s∈S

ωs,π∗(s,t),t · 2σ
k
s,π∗(s,t),t︸ ︷︷ ︸

z

≥ 0




= Pk−1

{
H∑
t=1

∑
s∈S

ωs,π∗(s,t),t · nk
s,π∗(s,t),t

−
H∑
t=1

∑
s∈S

ωs,π∗(s,t),t · 2σk
s,π∗(s,t),t

≥ 0

}

≥ Pk−1


H∑
t=1

∑
s∈S

ωs,π∗(s,t),t · n
k
s,π∗(s,t),t︸ ︷︷ ︸

X

≥ 2 ·

√
SH

H∑
t=1

∑
s∈S

(
ωs,π∗(s,t),t

)2 · (σk
s,π∗(s,t),t

)2


≥ c0 ,

(33)

where the last inequality uses anti-concentration bounds of Gaussian distributions shown in Lemma 19.

B PROOFS FOR THEOREM 5

Proof of Lemma 6 (Optimism lemma). As O-TS-MDP+ guarantees V
π∗
1 (s) ≤ Ṽ ′π∗

1 (s) ≤ Ṽ ′πk

1 (s), we only need to show
that if event Ekπ∗

is true, we have V π∗
1 (s) ≤ V

π∗
1 (s) to complete the proof. We use backwards induction to prove this claim.

Recall event Ekπ∗
=
{∣∣µs,a,t − µ̂k−1

s,a,t

∣∣ ≤ σk
s,a,t,

∣∣∣(Ps,a,t − P̂ k−1
s,a,t

)⊺
V π∗
t+1

∣∣∣ ≤ σk
s,a,t,∀s, a, t

}
. Define V

π∗
H+1 = V π∗

H+1 = 0⃗.

If event Ekπ∗
is true, we have the following.

When t = H , for any s, we have

V π∗
H (s) = µs,π∗(s,H),H + P ⊺

s,π∗(s,H),HV π∗
H+1︸ ︷︷ ︸

=0

≤ µ̂k−1
s,π∗(s,H),H + σk

s,π∗(s,H),H

< µ̂k−1
s,π∗(s,H),H + 2σk

s,π∗(s,H),H

= µk
s,π∗(s,H),H +

〈
P̂ k−1
s,π∗(s,H),H , V

π∗
H+1

〉
︸ ︷︷ ︸

=0

= V
π∗
H (s) .

(34)

When t = H − 1, for any s, we have

V π∗
H−1(s) = µs,π∗(s,H−1),H−1 + P ⊺

s,π∗(s,H−1),H−1V
π∗
H

≤ µ̂k−1
s,π∗(s,H−1),H−1 + σk

s,π∗(s,H−1),H−1 +
〈
P̂ k−1
s,π∗(s,H−1),H−1, V

π∗
H

〉
+ σk

s,π∗(s,H−1),H−1

≤ µs,π∗(s,H−1),H−1 +
〈
P̂ k−1
s,π∗(s,H−1),H−1, V

π∗
H

〉
= V

π∗
H−1(s) .

(35)

...



When t = 1, for any s, we have

V π∗
1 (s) = µs,π∗(s,1),1 + P ⊺

s,π∗(s,1),1
V π∗
2

≤ µ̂k−1
s,π∗(s,1),1

+ σk
s,π∗(s,1),1

+
〈
P̂ k−1
s,π∗(s,1),1

, V π∗
2

〉
+ σk

s,π∗(s,1),1

≤ µs,π∗(s,1),1 +
〈
P̂ k−1
s,π∗(s,1),1

, V
π∗
2

〉
= V

π∗
1 (s) ,

(36)

which concludes the proof.

Proof of Lemma 7 (Posterior deviation lemma). We have

E
[
Ṽ ′πk

1 (s)− V
πk

1 (s)
]

= E

E
Ṽ ′πk

1 (s)− V
πk

1 (s)︸ ︷︷ ︸
LHS in Lemma 16

| Fk−1, M̃
′
k



= E

E
Es2,...,sH

[
H∑
t=1

(
µ̃′k

st,πk(st,t),t
− µk

st,πk(st,t),t

)
| Fk−1, M̃

′
k

]
︸ ︷︷ ︸

RHS in Lemma 16

| Fk−1, M̃
′
k




= E
[
Es2,...,sH

[
H∑
t=1

(
µ̃′k

st,πk(st,t),t
− µk

st,πk(st,t),t

)
| Fk−1, M̃

′
k

]]
=

H∑
t=1

E
[
µ̃′k

st,πk(st,t),t
− µk

st,πk(st,t),t

]
=

H∑
t=1

E

E [(µ̃′k
st,πk(st,t),t

− µk
st,πk(st,t),t

)
| πk,Fk−1, st

]
︸ ︷︷ ︸

Lemma 15


≤

H∑
t=1

E
[
σk
st,πk(st,t),t

]
,

(37)

where the first equality uses the fact that conditioned on Fk−1 and M̃ ′
k, MDP M̄k and policy πk are determined. Note that

M̃ ′
k and M̄k are constructed based on the same P̂ k−1.

Proof of Lemma 8 (UCB-like lemma). The proof is very similar to the proofs for Lemma 4 and uses the result of Lemma 4.
Note that πk may not be the optimal policy for M̄k. We first do the following decomposition. We have

E
[(

V
πk

1 (s)− V πk
1 (s)

)
1
{
Ek
}]

≤ E
[(

V
πk

1 (s)− V̂ πk
1 (s)

)]
+ E

[(
V̂ πk
1 (s)− V πk

1 (s)
)
1
{
Ek
}]

︸ ︷︷ ︸
≤

H∑
t=1

E
[
2σk

st,πk(st,at),t

]
, Lemma 4

.

(38)

For the first term above, we have

E
[(

V
πk

1 (s)− V̂ πk
1 (s)

)]
= E

[
E
[(

V
πk

1 (s)− V̂ πk
1 (s)

)
| πk,Fk−1

]]
= E

[
E
[
Es2,...,sH

[
H∑
t=1

(
µk
st,πk(st,t),t

− µ̂k−1
st,πk(st,t),t

)
| πk,Fk−1

]
| πk,Fk−1

]]
= E

[
Es2,...,sH

[
H∑
t=1

(
µk
st,πk(st,t),t

− µ̂k−1
st,πk(st,t),t

)
| πk,Fk−1

]]
=

H∑
t=1

E
[(

µk
st,πk(st,t),t

− µ̂k−1
st,πk(st,t),t

)]
=

H∑
t=1

E
[
2σk

st,πk(st,t),t

]
.

(39)



Then, we have

(38) ≤
H∑
t=1

E
[
O
(
σk
st,πk(st,at),t

)]
, (40)

which concludes the proof.

Lemma 15. Let µ̂ be a constant in R and σ > 0 be a positive constant. Let µ = µ̂+ zσ, where constant z > 0. Let µ̃′ be a
random variable that is drawn from a distribution with probability density function f ′(x) defined as the following.

f ′(x) =

{
0, if x < µ;
ϕ
(
x; µ̂, σ2

)
+Φ

(
µ; µ̂, σ2

)
δ(x− µ), if x ≥ µ,

(41)

where ϕ
(
x; µ̂, σ2

)
and Φ

(
x; µ̂, σ2

)
denote the PDF and CDF of N

(
µ̂, σ2

)
, and δ(x) denotes the Dirac delta function.

Then, we have E [µ̃′]− µ ≤ σ.

Proof of Lemma 15. We use the definition of expectation and have

E [µ̃′]

=
∫ +∞
−∞ xf ′(x)dx

=
∫ +∞
µ

xf ′(x)dx

=
∫ +∞
µ

x ·
(
ϕ
(
x; µ̂, σ2

)
+Φ

(
µ; µ̂, σ2

)
δ(x− µ)

)
dx

=
∫ +∞
µ

(x− µ̂) 1
σ
√
2π

e−
(x−µ̂)2

2σ2 dx+
∫ +∞
µ

µ̂ 1
σ
√
2π

e−
(x−µ̂)2

2σ2 dx+ µ · Φ
(
µ; µ̂, σ2

)
=

∫ +∞
µ

(x− µ̂) 1
σ
√
2π

e−
(x−µ̂)2

2σ2 dx+ µ̂ ·
(
1−

∫ µ

−∞
1

σ
√
2π

e−
(x−µ̂)2

2σ2 dx

)
+ µ · Φ

(
µ; µ̂, σ2

)
≤

∫ +∞
µ̂

(x− µ̂) 1
σ
√
2π

e−
(x−µ̂)2

2σ2 dx+ µ̂ ·
(
1− Φ

(
µ; µ̂, σ2

))
+ µ · Φ

(
µ; µ̂, σ2

)
≤ σ + µ̂+ zσ · Φ

(
µ; µ̂, σ2

)
≤ σ + µ̂+ zσ
= σ + µ .

(42)

C OTHER LEMMAS USED FOR MDPS

Lemma 16. (Value difference lemma, Lemma 3 in Russo [2019], Lemma E.15 in Dann et al. [2017]). Consider any fixed
policy π and two MDPs M (1) =

(
S,A, H, P (1), µ(1), p0

)
and M (2) =

(
S,A, H, P (2), µ(2), p0

)
. Let V π,(1)

t and V
π,(2)
t

denote the respective value functions of π under M (1) and M (2). Then, for any s, we have

V
π,(1)
1 (s)− V

π,(2)
1 (s)

= Es2,...,sH

[
H∑
t=1

(
µ
(1)
st,π(st,t),t

− µ
(2)
st,π(st,t),t

)
+
(
P

(1)
st,π(st,t),t

− P
(2)
st,π(st,t),t

)⊺
V

π,(2)
t+1 | s1 = s

]
,

(43)

where the expectation is over the sampled state trajectory s2, . . . , sH drawn following π in M (1) given s as the initial state.

Lemma 17. (Proposition 5.2 in Agrawal and Jia [2020]). For any fixed vector h ∈ [0, H]S , let p̂ ∈ ∆S be the average of n
independent multi-noulli trials with parameter p ∈ ∆S . Then, for any δ ∈ (0, 1), we have

P

|(p̂− p)
⊺
h| > 5

√
H2 log2(T/δ)

n

 ≤ δ . (44)

Proof of Lemma 17. Proposition 5.2 in Agrawal and Jia [2020] is derived based on Bernstein’s inequality already. By setting

ci = H and using the fact that γi ≤ pi in Proposition 5.2, we have 2
√
log(n/δ)

∑
i<S

γic2i
n < 2

√
H2 log2(T/δ)

n and the fast

rate term 3H log(2/δ)
n ≤ 3H log(T/δ)

n ≤ 3H

√
log2(T/δ)

n . Combining both terms, we have the stated concentration bound.



Lemma 18. In any episode k, we have P
{
Ek
}
≤ O(SAHTδ) and P

{
Ekπ∗

}
≤ O(SAHTδ).

Proof of Lemma 18. For each (s, a, t), we let P̂ (ns,a,t)
s,a,t denote the average of ns,a,t independent multi-noulli trials with

parameter Ps,a,t and µ̂
(ns,a,t)
s,a,t denote the average of ns,a,t independent Bernoulli trials with parameter µs,a,t.

Proofs for the first claim. We have

P
{
Ek
}
≤ P

{
∃s, a, t :

∣∣∣(P̂ k−1
s,a,t − Ps,a,t

)⊺
V πk
t+1

∣∣∣ > σk
s,a,t

}
+ P

{
∃s, a, t :

∣∣(µ̂k−1
s,a,t − µs,a,t

)∣∣ > σk
s,a,t

}
. (45)

For the first term above, we use Lemma 17. For the second term above, we use Hoeffding’s inequality. We have

P
{
∃s, a, t :

∣∣∣(P̂ k−1
s,a,t − Ps,a,t

)⊺
V πk
t+1

∣∣∣ > σk
s,a,t

}
≤

∑
s,a

H∑
t=1

P
{∣∣∣(P̂ k−1

s,a,t − Ps,a,t

)⊺
V πk
t+1

∣∣∣ > σk
s,a,t

}
≤

∑
s,a

H∑
t=1

k−1∑
ns,a,t=1

P
{∣∣∣(P̂ (ns,a,t)

s,a,t − Ps,a,t

)⊺
V πk
t+1

∣∣∣ > σk
s,a,t

}

=
∑
s,a

H∑
t=1

k−1∑
ns,a,t=1

E

P{∣∣∣(P̂ (ns,a,t)
s,a,t − Ps,a,t

)⊺
V πk
t+1

∣∣∣ > σk
s,a,t | πk

}
︸ ︷︷ ︸

≤δ, Lemma 17


≤ O(SAHTδ) ,

(46)

where the last inequality uses Lemma 17. Note that πk is random as it is the optimal policy for M̃ ′
k. Conditioned on πk, the

value functions V πk
t+1 ∈ [0, H] are determined.

Similarly, we have
P
{
∃s, a, t :

∣∣(µ̂k−1
s,a,t − µs,a,t

)∣∣ > σk
s,a,t

}
≤

∑
s,a

H∑
t=1

k−1∑
ns,a,t=1

P
{∣∣∣(µ̂(ns,a,t)

s,a,t − µs,a,t

)∣∣∣ > σk
s,a,t

}
︸ ︷︷ ︸

Hoeffding’s inequality

≤ O(SAHTδ) ,

(47)

which concludes the proof for the first claim.

Proofs for the second claim. We have

P
{
Ekπ∗

}
≤ P

{
∃(s, a, t) :

∣∣∣(Ps,a,t − P̂ k−1
s,a,t

)⊺
V π∗
t+1

∣∣∣ > σk
s,a,t

}
+ P

{
∃(s, a, t) :

∣∣µs,a,t − µ̂k−1
s,a,t

∣∣ > σk
s,a,t

}
.

(48)
We only need to upper bound the first term above as the second term is exactly the same as (47). We have

P
{
∃(s, a, t) :

∣∣∣(Ps,a,t − P̂ k−1
s,a,t

)⊺
V π∗
t+1

∣∣∣ > σk
s,a,t

}
≤

∑
s,a

H∑
t=1

P
{∣∣∣(P̂ k−1

s,a,t − Ps,a,t

)⊺
V π∗
t+1

∣∣∣ > σk
s,a,t

}
≤

∑
s,a

H∑
t=1

k−1∑
ns,a,t=1

P
{∣∣∣(P̂ (ns,a,t)

s,a,t − Ps,a,t

)⊺
V π∗
t+1

∣∣∣ > σk
s,a,t

}
︸ ︷︷ ︸

≤δ, Lemma 17

≤ O(SAHTδ) ,

(49)

which concludes the proof of the second claim.

For the case where (s, a, t) has not been visited yet by the of episode k − 1, i.e., Ôk−1
s,a,t = 0, based on the learning

algorithm, we set P̂ (k−1)
s,a,t = 0⃗ and µ̂k−1

s,a,t = 0. Since Ôk−1
s,a,t = 0, the learning algorithm can set σk

s,a,t = Õ

(√
H2

Ôk−1
s,a,t

)
to

an extremely large value. Then, we know events
∣∣∣(P̂ (k−1)

s,a,t − Ps,a,t

)⊺
V πk
t+1

∣∣∣ > σk
s,a,t,

∣∣∣(P̂ (k−1)
s,a,t − Ps,a,t

)⊺
V π∗
t+1

∣∣∣ > σk
s,a,t,

and
∣∣∣µ̂(k−1)

s,a,t − µs,a,t

∣∣∣ > σk
s,a,t cannot happen.



Lemma 19. (Concentration and anti-concentration bounds of Gaussian distributions). For a Gaussian distributed random
variable Z with mean µ and variance σ2, for z > 0, we have

P {Z > µ+ zσ} ≤ 1

2
e−

z2

2 ,P {Z < µ− zσ} ≤ 1

2
e−

z2

2 , (50)

and
P {Z > µ+ zσ} ≥ 1√

2π

z

z2 + 1
e−

z2

2 . (51)



D PROOFS FOR THEOREM 9

Proof of Theorem 9. Regret can be expressed as

R(T ) =
T∑

t=1
E [µ1 − µJt ] =

∑
j∈A:∆j>0

T∑
t=1

E [1 {Jt = j}]︸ ︷︷ ︸
E[Oj(T )]

·∆j .
(52)

We first define some events to decompose the regret. Let Cj(t − 1) =

{∣∣µ̂j,Oj(t−1) − µj

∣∣ ≤√ 0.5 ln(T∆2
j)

Oj(t−1)

}
be the

event that the confidence interval of the empirical mean holds for an arm j ∈ A. Let µ̃j(t) be the value of the random

posterior sample of arm j ∈ A before the boosting, i.e., µ̃j(t) ∼ N
(
µ̂j,Oj(t−1),

1
Oj(t−1)

)
. For any sub-optimal arm j, let

yj = µj +
1
2∆j . Let E ′j(t) =

{
µ̃′
j(t) ≤ yj

}
be the event that the random sample of the sub-optimal arm j after the boosting

is near to the true mean µj . Let Ft = {Jτ , XJτ
(τ), τ = 1, 2, . . . , t} collect all the history information by the end of round t.

Now, for a fixed sub-optimal arm j, we upper bound the expected number of pulls of it by the end of round T . Let

Lj =
36 ln(T∆2

j )

∆2
j

. We have

E [Oj(T )]

=
T∑

t=1
E [1 {Jt = j}]

≤ Lj +
T∑

t=1
E [1 {Jt = j,Oj(t− 1) > Lj}]

≤ Lj +

T∑
t=1

E
[
1
{
Jt = j, Cj(t− 1)

}]
︸ ︷︷ ︸

ω3

+

T∑
t=1

E
[
1
{
Jt = j, E ′j(t), Cj(t− 1), Oj(t− 1) > Lj

}]
︸ ︷︷ ︸

ω2

+

T∑
t=1

E
[
1
{
Jt = j, E ′j(t)

}]
︸ ︷︷ ︸

ω1

.

(53)

Upper bound ω3. We only need to use Hoeffding’s inequality here. Let τs be the round when the s-th pull of arm j occurs.
Define τ0 = 0. The definition of τs means 1 {Jt = j} = 0 for all t ∈ {τs + 1, . . . , τs+1 − 1}. We have

ω3 =
T∑

t=1
E
[
1
{
Jt = j, Cj(t− 1)

}]
≤

T∑
s=0

E
[

τs+1∑
t=τs+1

1
{
Jt = j, Cj(t− 1)

}]
≤

T∑
s=0

E
[
1
{
Jτs+1

= j, Cj(τs+1 − 1)
}]

≤
T∑

s=0
E
[
1
{
Cj(τs+1 − 1)

}]
=

T∑
s=0

P
{
Cj(τs+1 − 1)

}
=

T∑
s=0

P

|µ̂j,s − µj | >

√
0.5 ln(T∆2

j )

s

︸ ︷︷ ︸
Hoeffding’s inequality

≤
T∑

s=0
O
(

1
T∆2

j

)
≤ O

(
1
∆2

j

)
.

(54)



Upper bound ω2 (posterior deviation bound). We have

ω2 =
T∑

t=1
E
[
1
{
Jt = j, E ′j(t), Cj(t− 1), Oj(t− 1) > Lj

}]
=

T∑
t=1

E
[
1 {Cj(t− 1), Oj(t− 1) > Lj} · E

[
1
{
Jt = j, E ′j(t)

}
| Ft−1

]]
≤

T∑
t=1

E
[
1 {Cj(t− 1), Oj(t− 1) > Lj} · P

{
E ′j(t) | Ft−1

}]

=
T∑

t=1
E

1 {Cj(t− 1), Oj(t− 1) > Lj}︸ ︷︷ ︸
I1

·P
{
µ̃′
j(t) > yj | Ft−1

}︸ ︷︷ ︸
I2︸ ︷︷ ︸

I

 .

(55)

Note that the value of I1 is determined by Ft−1. Now, we categorize all the possible instantiations Ft−1 of Ft−1 into two
types. For a particular instantiation Ft−1 such that I1 = 0, we have I = 0. For any instantiation Ft−1 such that I1 = 1, i.e.,

1 {Cj(t− 1), Oj(t− 1) > Lj} = 1, we first construct a lower bound on yj . From Oj(t− 1) > Lj =
36 ln(T∆2

j)
∆2

j
, we know

∆j

2 > 3

√
ln(T∆2

j)
Oj(t−1) . Then, we have yj = µj +

1
2∆j ≥ µ̂j,Oj(t−1) −

√
0.5 ln(T∆2

j )

Oj(t−1) + 1
2∆j ≥ µ̂j,Oj(t−1) −

√
0.5 ln(T∆2

j )

Oj(t−1) +

3

√
ln(T∆2

j )

Oj(t−1) > µ̂j,Oj(t−1) +

√
2 ln(T∆2

j )

Oj(t−1) . Then, we have

P
{
µ̃′
j(t) > yj | Ft−1 = Ft−1

}
= 1− P

{
µ̃′
j(t) ≤ yj | Ft−1 = Ft−1

}
= 1−

(∫ yj

µ̂j,Oj(t−1)
ϕ
(
x; µ̂j,Oj(t−1),

1
Oj(t−1)

)
dx+ 0.5

)
= 1−

(
0.5−

∫ +∞
yj

ϕ
(
x; µ̂j,Oj(t−1),

1
Oj(t−1)

)
dx+ 0.5

)
=

∫ +∞
yj

ϕ
(
x; µ̂j,Oj(t−1),

1
Oj(t−1)

)
dx

= P {µ̃j(t) > yj | Ft−1 = Ft−1}
= P

{
µ̃j(t)− µ̂j,Oj(t−1) > yj − µ̂j,Oj(t−1) | Ft−1 = Ft−1

}
≤ P

µ̃j(t)− µ̂j,Oj(t−1) >

√
2 ln(T∆2

j )

Oj(t− 1)
| Ft−1 = Ft−1

︸ ︷︷ ︸
Gaussian concentration inequality

≤ O
(

1
T∆2

j

)
,

(56)

which gives us I ≤ O
(

1
T∆2

j

)
. The last inequality uses concentration bound of Gaussian distributions shown in Lemma 19.

Then, we have ω2 ≤
T∑

t=1
O
(

1
T∆2

j

)
≤ O

(
1
∆2

j

)
.

Upper bound ω1. The proof is very similar to the proof for Lemma 2.14 in Agrawal and Goyal [2017]. Let L1,j =⌈
288 ln(T∆2

j+e32)
∆2

j

⌉
. Let τs be the round when the s-th pull of arm 1 occurs. The definition of τs means 1 {Jt = 1} = 0 for



all t ∈ {τs + 1, . . . , τs+1 − 1}. Set τ0 = 0. We have

ω1 =
T∑

t=1
E
[
1
{
Jt = j, E ′j(t)

}]
=

T∑
t=1

E

P{Jt = j, E ′j(t) | Ft−1

}︸ ︷︷ ︸
LHS in Lemma 22


≤

T∑
t=1

E

P {µ̃1(t) ≤ yj | Ft−1}
P {µ̃1(t) > yj | Ft−1}

P
{
Jt = 1, E ′j(t) | Ft−1

}
︸ ︷︷ ︸

RHS in Lemma 22


=

T∑
t=1

E
[
P{µ̃1(t)≤yj |Ft−1}
P{µ̃1(t)>yj |Ft−1}1

{
Jt = 1, E ′j(t)

}]
≤

T∑
s=1

E
[

τs+1∑
t=τs+1

P{µ̃1(t)≤yj |Ft−1}
P{µ̃1(t)>yj |Ft−1}1

{
Jt = 1, E ′j(t)

}]
=

T∑
s=1

E

[
τs+1−1∑
t=τs+1

P {µ̃1(t) ≤ yj | Ft−1}
P {µ̃1(t) > yj | Ft−1}

1
{
Jt = 1, E ′j(t)

}]
︸ ︷︷ ︸

=0

+
T∑

s=1
E
[
P{µ̃1(τs+1)≤yj |Fτs+1−1}
P{µ̃1(τs+1)>yj |Fτs+1−1}1

{
Jτs+1

= 1, E ′j(τs+1)
}]

=
T∑

s=1
E
[
P{µ̃1(τs+1)≤yj |Fτs+1−1}
P{µ̃1(τs+1)>yj |Fτs+1−1}1

{
Jτs+1 = 1, E ′j(τs+1)

}]
≤

T∑
s=1

E
[
P{µ̃1(τs+1)≤yj |Fτs+1−1}
P{µ̃1(τs+1)>yj |Fτs+1−1}

]
=

L1,j∑
s=1

E

[
P
{
µ̃1(τs+1) ≤ yj | Fτs+1−1

}
P
{
µ̃1(τs+1) > yj | Fτs+1−1

}]︸ ︷︷ ︸
Constant

+
T∑

s=L1,j+1

E

[
P
{
µ̃1(τs+1) ≤ yj | Fτs+1−1

}
P
{
µ̃1(τs+1) > yj | Fτs+1−1

}]︸ ︷︷ ︸
≤O

(
1

T∆2
j

)
≤ O (L1,j) +O

(
1
∆2

j

)
≤ O

(
ln(T∆2

j+e32)
∆2

j

)
,

(57)
where the last inequality uses Lemma 20.

Now, we plug the upper bounds on ω1, ω2 and ω3 into (53). We have

E [Oj(T )] ≤ O

(
ln(T∆2

j )

∆2
j

)
+O

(
ln
(
T∆2

j + e32
)

∆2
j

)
+O

(
1

∆2
j

)
+O

(
1

∆2
j

)
≤ O

(
ln
(
T∆2

j + e32
)

∆2
j

)
, (58)

which gives

R(T ) ≤
∑

j∈A:∆j>0

O

(
ln(T∆2

j+e32)
∆j

)
≤

∑
j∈A:∆j>0

O

(
ln(T+e32)

∆j

)
≤

∑
j∈A:∆j>0

O

(
ln(2Te32)

∆j

)
=

∑
j∈A:∆j>0

O
(

ln(T )
∆j

)
+O

(
ln(2e32)

∆j

)
=

∑
j∈A:∆j>0

O
(

ln(T )
∆j

)
,

(59)

which concludes the proof of Theorem 9.

Lemma 20. (Lemma 2.13 in Agrawal and Goyal [2017]). We have

E

[
P
{
µ̃1(τs+1) ≤ yj | Fτs+1−1

}
P
{
µ̃1(τs+1) > yj | Fτs+1−1

}] ≤ { e64 + 5, ∀s
5

T∆2
j
, s > L1,j . (60)



Lemma 21. (Lemma 2.8 in Agrawal and Goyal [2017]). For all t and all instantiations Ft−1 of Ft−1, we have

P
{
Jt = j, E ′j(t) | Ft−1 = Ft−1

}
≤ P{µ̃′

1(t)≤yj |Ft−1=Ft−1}
P{µ̃′

1(t)>yj |Ft−1=Ft−1}P
{
Jt = 1, E ′j(t) | Ft−1 = Ft−1

}
. (61)

Lemma 22. For all t and all instantiations Ft−1 of Ft−1, we have

P
{
Jt = j, E ′j(t) | Ft−1 = Ft−1

}
≤ P{µ̃1(t)≤yj |Ft−1=Ft−1}

P{µ̃1(t)>yj |Ft−1=Ft−1}P
{
Jt = 1, E ′j(t) | Ft−1 = Ft−1

}
. (62)

Proof of Lemma 22. From Lemma 21, we have

P
{
Jt = j, E ′j(t) | Ft−1 = Ft−1

}
≤ P{µ̃′

1(t)≤yj |Ft−1=Ft−1}
P{µ̃′

1(t)>yj |Ft−1=Ft−1}P
{
Jt = 1, E ′j(t) | Ft−1 = Ft−1

}
. (63)

Now, we construct a lower bound for P {µ̃′
1(t) > yj | Ft−1 = Ft−1} to complete the proof. We have

P {µ̃′
1(t) > yj | Ft−1 = Ft−1}

= P
{
max

{
µ̃1(t), µ̂1,O1(t−1)

}
> yj | Ft−1 = Ft−1

}
≥ P {µ̃1(t) > yj | Ft−1 = Ft−1} ,

(64)

which implies
P{µ̃′

1(t)≤yj |Ft−1=Ft−1}
P{µ̃′

1(t)>yj |Ft−1=Ft−1} ≤ P{µ̃1(t)≤yj |Ft−1=Ft−1}
P{µ̃1(t)>yj |Ft−1=Ft−1} . (65)
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Proof of Theorem 10. Set ∆ =
√

A ln(A)
T . Let set Φ = {j ∈ A : 0 < ∆j < ∆} collect all the arms with the mean reward

gap smaller than ∆. Let Φ = {j ∈ A : ∆j ≥ ∆}. Then, we have

R(T ) =
T∑

t=1
E [µ1 − µJt

]

=
T∑

t=1
E [(µ1 − µJt

)1 {Jt ∈ Φ}] +
T∑

t=1
E
[
(µ1 − µJt

)1
{
Jt ∈ Φ

}]
≤ T ·∆+

∑
j∈A:∆j≥∆

T∑
t=1

E [1 {Jt = j}]︸ ︷︷ ︸
E[Oj(T )]

·∆j

≤(a) T ·∆+
∑

j∈A:∆j≥∆

O

(
ln(T∆2

j+e32)
∆j

)
≤(b) T ·∆+

∑
j∈A:∆j≥∆

O

(
ln(2T∆2

j ·e
32)

∆j

)
= T ·∆+

∑
j∈A:∆j≥∆

O

(
ln(T∆2

j ·e
2)

∆j

)
+

∑
j∈A:∆j≥∆

O

(
ln(2·e30)

∆j

)
≤(c) T ·∆+

∑
j∈A:∆j≥∆

O

(
ln(T∆2e2)

∆

)
+

∑
j∈A:∆j≥∆

O

(
ln(2·e30)

∆

)
≤ T ·∆+A ·O

(
ln(T∆2e2)

∆

)
+A ·O

(
ln(2·e30)

∆

)
= T ·∆+A ·O

(
ln(A ln(A)e2)√

A ln(A)
T

)
+A ·O

(
ln(2·e30)√

A ln(A)
T

)

≤(d) T ·∆+A ·O

(
ln(A2·e2)√

A ln(A)
T

)
+O

(√
AT
)

= T ·∆+A ·O

(
ln(A2)√
A ln(A)

T

)
+A ·O

(
ln(e2)√
A ln(A)

T

)
+O

(√
AT
)

≤
√
AT ln(A) +O

(√
AT ln(A)

)
+O

(√
AT
)
+O

(√
AT
)

= O
(√

AT ln(A)
)

,

(66)

which concludes the proof.

Inequality (a) uses (58) and Inequality (b) uses the fact that x+ y ≤ 2xy when x, y > 1. Inequality (c) uses the fact that

f(x) = ln(Tx2e2)
x is a decreasing function when x >

√
1
T . Inequality (d) uses the fact that ln(x) ≤ x when x > 1.
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Proof of Theorem 11. Since O-TS-Bandit+ is an optimistic learning algorithm, the regret analysis can be very similar to the
proofs for UCB1 policy of Auer et al. [2002]. Regret can be expressed as

R(T ) =
T∑

t=1
E [µ1 − µJt

] =
∑

j∈A:∆j>0

T∑
t=1

E [1 {Jt = j}]︸ ︷︷ ︸
E[Oj(T )]

·∆j .
(67)

Now, for a fixed sub-optimal arm j, we let Lj =
25 ln(T )

∆2
j

. Then, we do the following decomposition. We have

E [Oj(T )] =
T∑

t=1
E [1 {Jt = j}]

≤ Lj +
T∑

t=1
E [1 {Jt = j,Oj(t− 1) ≥ Lj}]

≤ Lj +
T∑

t=1
E
[
1
{
µ̃′
j(t) ≥ µ̃′

1(t), Oj(t− 1) ≥ Lj

}]
≤ Lj +

T∑
t=1

E [1 {µ̃′
1(t) ≤ µ1}]︸ ︷︷ ︸

ω1

+

T∑
t=1

E

[
1

{
µ̃′
j(t) ≥ µj +

√
24 ln(t)

Oj(t− 1)
, Oj(t− 1) ≥ Lj

}]
︸ ︷︷ ︸

ω2

+

T∑
t=1

E

[
1

{√
24 ln(t)

Oj(t− 1)
> ∆j , Oj(t− 1) ≥ Lj

}]
︸ ︷︷ ︸

=0

.

(68)

Under-estimation of the optimal arm. We have

ω1 =
T∑

t=1
E [1 {µ̃′

1(t) ≤ µ1}]

≤
T∑

t=1
E [1 {µ1(t) ≤ µ1}]

=
T∑

t=1
E
[
1
{
µ̂1,O1(t−1) +

√
1.5 ln(t)
O1(t−1) ≤ µ1

}]
≤

T∑
t=1

t−1∑
s=1

E
[
1

{
µ̂1,s +

√
1.5 ln(t)

s ≤ µ1

}]
=

T∑
t=1

t−1∑
s=1

P
{
µ̂1,s +

√
1.5 ln(t)

s ≤ µ1

}
≤

T∑
t=1

t−1∑
s=1

O
(

1
t3

)
≤ O(1) .

(69)



Over-estimation of the sub-optimal arm. Define event Ej(t) :=
{∣∣µ̂j,Oj(t−1) − µj

∣∣ ≤√ 1.5 ln(t)
Oj(t−1)

}
. Let Ft−1 collect

all the history information by the end of round t− 1. Then, we have

ω2 =
T∑

t=1
E
[
1
{
µ̃′
j(t) ≥ µj +

√
24 ln(t)
Oj(t−1) , Oj(t− 1) ≥ Lj

}]
=

T∑
t=1

E
[
1
{
µ̃′
j(t)− µj(t) ≥ µj +

√
24 ln(t)
Oj(t−1) − µj(t), Oj(t− 1) ≥ Lj

}]
≤

T∑
t=1

E
[
1
{
µ̃′
j(t)− µj(t) ≥ µj +

√
24 ln(t)
Oj(t−1) − µj(t), Oj(t− 1) ≥ Lj , Ej(t)

}]
+

T∑
t=1

E
[
1
{
Ej(t)

}]
=

T∑
t=1

E
[
1
{
µ̃′
j(t)− µj(t) ≥ µj +

√
24 ln(t)
Oj(t−1) −

(√
1.5 ln(t)
Oj(t−1) + µ̂j,Oj(t−1)

)
, Oj(t− 1) ≥ Lj , Ej(t)

}]
+

T∑
t=1

E
[
1
{
Ej(t)

}]
≤

T∑
t=1

E
[
1
{
µ̃′
j(t)− µj(t) ≥

√
24 ln(t)
Oj(t−1) − 2

√
1.5 ln(t)
Oj(t−1) , Oj(t− 1) ≥ Lj

}]
+

T∑
t=1

E
[
1
{
Ej(t)

}]
=

T∑
t=1

E
[
1
{
µ̃′
j(t)− µj(t) ≥

√
6 ln(t)

Oj(t−1)

}]
+

T∑
t=1

E
[
1
{
Ej(t)

}]
=

T∑
t=1

E
[
P
{
µ̃′
j(t)− µj(t) ≥

√
6 ln(t)

Oj(t−1) | Ft−1

}]
+

T∑
t=1

E
[
1
{
Ej(t)

}]
︸ ︷︷ ︸

=O(1)

=
T∑

t=1
E
[
P
{
µ̃j(t) ≥ µj(t) +

√
6 ln(t)

Oj(t−1) | Ft−1

}]
+O(1)

≤
T∑

t=1
O
(
e−3 ln(t)

)
+O(1)

≤ O(1) ,
(70)

where the second last inequality uses concentration bound for Gaussian distributions and

T∑
t=1

E
[
1
{
Ej(t)

}]
=

T∑
t=1

P
{∣∣µ̂j,Oj(t−1) − µj

∣∣ >√ 1.5 ln(t)
Oj(t−1)

}
≤

T∑
t=1

t−1∑
s=1

P
{
|µ̂j,s − µj | >

√
1.5 ln(t)

s

}
≤ O(1).

Then, we have

R(T ) =
∑

j∈A:∆j>0

T∑
t=1

E [1 {Jt = j}]︸ ︷︷ ︸
E[Oj(T )]

·∆j

≤
∑

j∈A:∆j>0

(Lj +O(1)) ·∆j

≤
∑

j∈A:∆j>0

O
(

ln(T )
∆j

)
,

(71)

which concludes the proof.
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Proof of Theorem 12. Set ∆ =
√

A ln(T )
T . Let set Φ = {j ∈ A : 0 < ∆j < ∆} collect all the arms with the mean reward

gap smaller than ∆. Let Φ = {j ∈ A : ∆j ≥ ∆}. Then, we have

R(T ) =
T∑

t=1
E [µ1 − µJt

]

=
T∑

t=1
E [(µ1 − µJt

)1 {Jt ∈ Φ}] +
T∑

t=1
E
[
(µ1 − µJt

)1
{
Jt ∈ Φ

}]
≤ T ·∆+

∑
j∈A:∆j≥∆

T∑
t=1

E [1 {Jt = j}]︸ ︷︷ ︸
E[Oj(T )]

·∆j

≤ T ·∆+
∑

j∈A:∆j≥∆

O
(

ln(T )
∆j

)
≤

√
AT ln(T ) +O

(
A ln(T )

∆

)
= O

(√
AT ln(T )

)
,

(72)

which concludes the proof.

H ADDITIONAL EXPERIMENTAL RESULTS

We run additional experiments with different random seeds and state size S = [5, 20, 50], action size A = 3 and H = 10.
We use the same way as described in Section 5 to generate the underlying parameters of the MDPs. All experimental results
share similar trends. We also include the performance of UCB based method UCB-VI here. From Figure 4, 5 and 6, we can
see that SSR-Bernstein still performs the best. All three Thompson Sampling-like algorithms perform similarly and better
than UCB-VI.

Figure 4: Empirical performance for 5 states, including UCB-VI
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Figure 5: Empirical performance for 20 states, including UCB-VI
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Figure 6: Empirical performance for 50 states, including UCB-VI
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