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Uncertainty-Aware Diffusion-Guided Refinement of 3D Scenes

Supplementary Material

1. Preliminaries001

1.1. 3D Gaussian Splatting002

Gaussian Primitives (γn). A 3D scene can be explicitly003
represented by a set of anisotropic Gaussian ellipsoids with004
positions µn ∈ R3 , covariance matrix Σn ∈ R3×3, color005

cn ∈ R3×(k+1)2 for order k, typically represented using006
Spherical Harmonic (SH) coefficients and opacity αn ∈007
[0, 1]. For each Gaussian point x, it’s 3D position is given as008

G(x) = e−
1
2 (x−µn)

⊤ Σ−1
n (x−µn), (1)009

The Σn is decomposed into two learnable components010
represented by the scaling matrix Sn and a rotation matrix011
Rn as follows:012

Σn = Rn Sn S
⊤
n R⊤

n . (2)013

Therefore any scene can be represented as a collection of014
Gaussian primitives where each primitive can be represented015
as γn := (µn, Rn, Sn, αn).016

017
Rasterization. The trainable parameters acquired within018
the primitive γn can be optimized via the application of the019
ensuing differentiable rendering function:020

I0(p) =

N∑
n=1

cn α̃n

n−1∏
m=1

(
1− α̃m

)
, (3)021

where I0(p) represents the rendered color at pixel p in ren-022
dered image I0 and α̃n is calculated from the back-projected023
2D Gaussians.024

1.2. Latent Video Diffusion Models (LVDMs)025

Video Diffusion Model. Latent Video Diffusion Models026
consist of a pre-trained encoder E , a U-Net denoiser ϵθ and027
a pre-tained decoder D. The diffusion process occurs in the028
latent space. Given an image I, it is initially embedded in029
the latent space via the frozen encoder E yielding latent030
z1:M0 = E

(
x1:M
0

)
by progressively sampling noise from a031

Gaussian distribution ϵ ∼ N (0, I) to produce noise zT over032
T progressive timesteps. This could be given by the equation:033

z1..Mt =
√
αt z

1..M
0 +

√
1− αt ϵ

1..M
t , (4)034

where αt ∈ (0, 1), and αt =
∏t

i=1 αi. The denoiser ϵθ is035
then trained by minimizing the reconstruction loss:036

Ex1..M
0 , y1..M

t , ϵ1..Mt ∼N (0,I)

∥∥∥ϵ1..Mt − ϵθ
(
z1..Mt , t, y

)∥∥∥
2
, (5)037

where y is the input conditioning signal. This trained de- 038
noiser can then be used to generate a sequence of M images 039
I1...M given a conditioning image I at the test time. 040

1.3. Training Details 041

Pseudo View Pre-Processing. To prepare the pseudo views, 042
we generate 14 frames using MotionCtrl [3] in both the 043
forward and backward directions and continue to progres- 044
sively do so until paired pseudo views have been generated 045
for all the frames corresponding to each particular scene 046
in RealEstate-10k [4]. For the out-domain KITTI-v2 [5] 047
dataset, since it follows a stereo format, we generate the 048
pseudo views for the right camera following the standard 049
protocol followed by existing works [6, 7] all of which re- 050
construct the scene based on views obtained from the left 051
camera and test on novel views from the right camera. We 052
keep the standard test resolution of 375× 1242 and crop the 053
outer 5% from all the images following the baseline [7–10] 054
protocols. 055
LVDM Details. To denoise the pseudo views, we perform 056
50 denoising inference steps per image. We follow the same 057
resolution of 256× 384 in RealEstate-10K to ensure that the 058
generated images are consistent with the rendered images 059
from the 3D scene. We keep a FPS of 6 for all our experi- 060
ments and set speed=1. We don’t utilize the motion bucket id 061
parameter since it is irrelevant for our use case. 062

1.4. MLLM for Object Tagging 063

In this work, we utilize the BLIP2-Flan-T5-XL [1] model 064
for extracting both partially and fully visible objects. To 065
ensure that the MLLM adheres to the task in hand, we 066
leverage a one-shot in-context learning setup [11] which 067
significantly enhances it’s ability to detect objects. The 068
prompting regimen which we followed for generating the 069
object tags is described in Figure 1. 070

071

1.5. Qualitative Results 072

We present additional qualitative results on the RealEstate- 073
10K [4] and KITTI-v2 [5] datasets shown in Figure 2. As 074
it can be seen, UAR-Scenes shows robust performance 075
across a wide variety of indoor and outdoor scenes. Further, 076
UAR-Scenes is able to produce meaningful explanations 077
outside of the input image’s view owing to it’s strong extrap- 078
olation capabilities. Hence, when combined with an existing 079
3D reconstruction pipeline, we can refine the coarse Gaus- 080
sians and get more realistic and plausible renderings over a 081
wide variety of real-world scenes. 082
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"Chair", "Stairs", "floor", "dresser",
"hardwood", "dining"

System Prompt
"You are an object tagging AI assistant"
"When I ask you to list all individual objects in the following
image:"
"Your task is to identify every object, including those partially
visible,"
"and list them as comma-separated list of one-word nouns."
"Respond only with OK if you understand the instructions"

In-context Prompt

"For example,  in the following image, 
when I ask you to list all individual objects 
in the following image:"
"Your Answer: fridge, table, counter."
"Respond only with I UNDERSTAND 
if you understand the example and instructions."

+

Figure 1. Uncertainty Map Pipeline. We pass the pseudo views to the MLLM [1] first using the one shot in-context learning setup as
shown above. This gives the object tags which is then passed onto the open-vocabulary segmentation model LSeg [2]. We then compute the
per-pixel entropy obtained from the segmentation maps to generate the corresponding uncertainty maps U .

Input View Ground TruthFlash3D UAR-Scenes

Input View Flash3D

UAR-Scenes Ground Truth

(a) RealEstate-10K

(b) KITTI-v2

Figure 2. Plausible Generation Results. (a) UAR-Scenes is seamlessly able to adapt to indoor and outdoor scenes while preserving
realistic and plausible quality in areas where Flash3D fails. In some cases as in the 2nd row, our method produces plausible explanations
for regions outside of the input image’s view but which may not align with the ground truth image. The FID metric is crucial to assess
the effectiveness of our method in such cases.(b) UAR-Scenes similarly generalizes to KITTI as well showing robust performance in
previously unseen scenarios.
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Figure 3. Additional Qualitative Results. UAR-Scenes notably improves in those scenarios where the baseline (Flash3D) falters in all
three tested cases (in-domain, out-domain & in-the-wild) as the camera moves further/rotates away from the source, i.e. unable to keep
geometry & texture (rows 1, 2 & 5), with artifacts in unknown/occluded regions (row 3 & last row).
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