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Abstract

Out-of-distribution (OOD) generalization deals
with the prevalent learning scenario where test
distribution shifts from training distribution. With
rising application demands and inherent complex-
ity, graph OOD problems call for specialized
solutions. While data-centric methods exhibit
performance enhancements on many generic ma-
chine learning tasks, there is a notable absence
of data augmentation methods tailored for graph
OOD generalization. In this work, we propose to
achieve graph OOD generalization with the novel
design of non-Euclidean-space linear extrapola-
tion. The proposed augmentation strategy extrap-
olates structure spaces to generate OOD graph
data. Our design tailors OOD samples for specific
shifts without corrupting underlying causal mech-
anisms. Theoretical analysis and empirical results
evidence the effectiveness of our method in solv-
ing target shifts, showing substantial and constant
improvements across various graph OOD tasks.

1. Introduction

Machine learning algorithms typically assume training and
test data are independently and identically distributed (i.i.d.).
However, distribution shift is a common problem in real-
world applications, which substantially degrades model per-
formance. The out-of-distribution (OOD) generalization
problem deals with learning scenarios where test distribu-
tions shift from training distributions and remain unknown
during the training phase. The area of OOD generalization
has gained increasing interest over the years, and multiple
OOD methods have been proposed (Ganin et al., 2016; Ar-
jovsky et al., 2019; Krueger et al., 2021; Gui et al., 2024).
Although both general OOD problems and graph analy-
sis (Velickovié et al., 2018; Liu et al., 2021b; Gui et al.,
2022b; Sun et al., 2024) have been intensively studied,
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graph OOD research is only in its early stage (Wu et al.,
2022b;a; Bevilacqua et al., 2021; Gui et al., 2023). With var-
ious applications and unique complexity, graph OOD prob-
lems call for specific solutions. Data augmentation (DA)
methods have shown a significant boost in generalization
capability and performance improvement across multiple
fields (Shorten & Khoshgoftaar, 2019; Yao et al., 2022; Park
et al., 2022; Han et al., 2022), creating a promising possibil-
ity for graph OOD studies. Currently, environment-aware
DA methods for graph OOD are under-explored.

Conventional data augmentations increase the amount of
data and act as regularizers to reduce over-fitting, which
empirically enhances model performance in previous stud-
ies (Rong et al., 2019; You et al., 2020). Many DA tech-
niques (Zhang et al., 2017; Yao et al., 2022; Wang et al.,
2021), including graph data augmentations (GDA), ex-
clusively interpolate data samples to generate new ones.
Interpolation-based DA boosts model performances by
making overall progress in learning (Xu et al., 2020),
Mixup (Zhang et al., 2017) being a typical example. How-
ever, practical tasks are often out-of-distribution instead of
in-distribution (ID). Thus, models are expected to extrap-
olate instead of interpolate. Currently, few augmentation
studies focus on extrapolation, especially for graphs. The
distribution area where models cannot generalize to is also
hardly reachable when generating augmentation samples
using traditional techniques, which is a substantial obstacle
to OOD generalization. Although graphon calculation (Han
et al., 2022) is a potential avenue to extrapolate, the lack of
consideration in environment information and causal design
renders its causal correlations easily breached. Thus, the
performance gain from DA appears limited in OOD tasks.

In this work, we propose to solve OOD generalization in
graph classification tasks from a data-centric perspective.
To stimulate the potential improvement of DA in OOD tasks,
we study graph-space extrapolation, essentially, generating
OOD data samples. Graph data has the complex nature
of topological irregularity and connectivity, with unique
types of distribution shifts in structure. Theoretically, it is
impossible to solve unknown shifts without auxiliary infor-
mation (Lin et al., 2022). Thus, injecting environment infor-
mation (Gulrajani & Lopez-Paz, 2020) in training to convey
the types of shifts is a necessary and promising solution
for OOD. We innovatively propose an environment-aware
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framework with non-Euclidean-space linear extrapolation
designed in both graph structural and feature space. Our con-
tributions are three-fold. Firstly, we establish non-Euclidean
space linear extrapolation with definitions, analyses, and
guarantees. We theoretically justify that samples generated
from linear extrapolation follow common causal assump-
tions and are tailored for specific OOD shifts. Secondly, we
instantiate graph extrapolation as an efficacious generaliza-
tion method. Structural linear extrapolation is enabled with
novel graph splicing and label-environment-aware pair learn-
ing techniques. The proposed techniques cover complete
structural global/local extrapolation in both distribution di-
rections. Thirdly, our extensive experiments validate the
superiority of our method over both graph invariant learning
and data augmentation baselines for complex shifts.

Comparison with prior methods. While previous graph
OOD methods (Wu et al., 2022b; Miao et al., 2022; Li et al.,
2022; Chen et al., 2022b) focus on invariant learning regu-
larization, we target OOD generalization from an explicit
data-centric perspective. The major distinction between our
method and the augmented-based learning strategy DIR (Wu
et al., 2022b) is the ability to generate new graphs. Specif-
ically, DIR mixes the embedding of subgraphs instead of
generating new data in input spaces, limiting its applica-
tion scope of augmentation to single trainings. In contrast,
our method aims to produce explicit OOD graphs, which
can be easily transferred and jointly used with other graph
datasets. In the context of DA, current graph OOD augmen-
tation methods either augment in embedding level (Kwon
et al., 2022) or limit the augmented data to subgraphs of
the original data (Yu et al., 2022; Sui et al., 2022). On the
contrary, we define innovative extrapolation operators in the
input level rigorously and generate diverse unseen graphs of
functional sizes, backbones, and features. A more detailed
discussion of related works is provided in Appendix A.

2. Problem Setting

Graph notations. We denote a graph as G = (A, X, E),
where A € R™"*" X € RP*" and E € R?*"™ are the adja-
cency, node feature, and edge feature matrices, respectively.
We assume n, m, p, and g are the numbers of nodes, edges,
node features, and edge features respectively. Additionally,
we assume a set of latent variables {z; € R/} | form
amatrix Z = [z1, 29, -+ ,2,] € R/*". For graph-level
tasks, each graph has a label Y € )/, and for node-level
tasks there is a label per node.

OOD settings. The environment formalism following in-
variant risk minimization (IRM) is a common setting for
OQOD studies (Peters et al., 2016; Arjovsky et al., 2019;
Krueger et al., 2021). This framework assumes that training
data form groups, known as environments. Data are similar
within the same environment but dissimilar across differ-

ent environments. Since multiple shifts can exist between
training and test data, models are usually not expected to
solve all shifts. Instead, the target shift type is conveyed
using environments. Specifically, the target shift between
training and test data, though more significant, should be
similarly reflected among different training environments.
In this case, OOD methods can potentially grasp the shift
by learning among different environments. In this work,
we follow the formalism and use environment information
in augmentation strategies to benefit OOD generalization.
Environments are given as environment labels ¢; € £ for
each data sample.

Graph structure and feature distribution shifts. Graph
data contains complex topologies. Graph distribution shifts
can happen on both features and structures, which possesses
different properties and should be handled separately. Nor-
mal feature distribution shifts happen on node or edge fea-
tures, and we consider node features in this work. In this
case, shifts are solely on the node feature distribution as
P"(X) # P*(X), while P"(A) = P"(A), where P"(")
and P*(-) denote training and test distributions, respectively.
In contrast, structure distribution shift is the more distinctive
and complex case in graph OOD. Structural shifts can hap-
pen in the distribution of A or the conditional distribution be-
tween X and A, resulting in P™"(X, A) # P*Y(X, A).
In graph-level tasks, structural shifts exist both globally and
locally. Common global/local domain examples are graph
size and graph base (Hu et al., 2020; Gui et al., 2022a), the
latter also known as scaffold (Bemis & Murcko, 1996) in
molecule data. Specifically, graph size refers to its number
of nodes, and graph base refers to the non-functional back-
bone substructure irrelevant with targets. In this work, we
primarily focus on structure distribution shifts.

3. Linear Extrapolation in Graph Space

We propose the GDA strategy of input-space linear extrapo-
lation, inspired by the philosophy of “linear interpolation” in
Mixup (Wang et al., 2021). Linear extrapolation of data dis-
tributions essentially guides the model to behave outside the
original range by introducing reachable OOD samples. In
this section, we define linear extrapolation to extend beyond
training distributions in both structure and feature spaces
for graph data, effectively teaching the model to anticipate
and handle OOD scenarios.

3.1. Causal Analysis

We first establish causal analyses following prior invariant
learning works (Ahuja et al., 2021; Rosenfeld et al., 2020;
Lu et al., 2021). As shown in Figure 1, C,S51,5;, € Z
are the latent variables in high-dimensional space that are
causally associated with the target Y, non-causally asso-
ciated with Y, and independent of Y, respectively. The
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Figure 1. Illustration of the causal graph. Unobservable vari-
ables lie in the latent space; partially observable variables can be
learned and selected.

environment & is target-irrelevant and observable. In the
non-Euclidean space, we posit that information from the
latent space is wholly reflected in the graph structure, so that
C and & determine respective subgraphs of a graph (Chen
et al., 2022b;c). Formally, we define subgraphs caused
by C as causal subgraphs Gj,y, and subgraphs caused by
& as environmental subgraphs Ge,y. Since graphs with the
same label should contain invariant causal subgraphs, causal
subgraphs are potentially extractable from label-invariant
graphs, and environmental subgraphs from environment-
invariant graphs. Let’s consider simple distribution shifts in
the feature space, where we assume C' and £ determine re-
spective elements of feature vectors. For single-node feature
x € RP, where x = X for node-level tasks and * C X
for graph-level tasks, let p = ¢ + v. We define node fea-
tures determined by C' as invariant node features xj,, € R,
while other node features are variant features x,+ € R".
In practice, with environment information, it is realistic to
assume we can learn to select a subset of the variant features
Lyyr € RI substantially determined by £, where j < v.

3.2. Linear Extrapolation Formulation

Linear extrapolation, which constructs samples beyond the
known range while maintaining the same direction and mag-
nitude of known sample differences, is a central concept in
our approach.

Definition 3.1. [Feature Linear Extrapolation (FLE)] Given
two feature vector points (x;,y;) and (x;, y;), feature linear
extrapolation is defined as

Tpe =x; +a(x; — ), Yfe = yi +a(y; — ¥i)s

(1)
st. a€R,a>1Va<O.

The extension of linear extrapolation to graph structure re-

quires the definition of structural linear calculations. We
define graph addition, G; + G2, as the splicing of two
graphs, resulting in unions of their vertex and edge sets.
Graph subtraction, G5 — (1, is defined as subtracting the
largest isomorphic subgraph of G; and G5 from Gs. Let

D{Gu} = {(G1,91),(G2,92),-- -, (GN,yN)}

be the N-sample graph training set. Given the discrete
nature of graph operations, we formulate the linear extrapo-
lation of graph structures below.

Definition 3.2. [Structural Linear Extrapolation (SLE)]
Given graphs G;,G; € D{Gy }, we define 1-dimension
structural linear extrapolation on D{G4, } as

Gye = ai-Gi+ by - (G — Gy),

where a;,b;; € {0,1}. We extend to define N-dimension
structural linear extrapolation:

N N N
GNe=>a;i-Gi+> > bij- (G - Gy)
i=1 i=1j=1 (2)

=a'G+(B,1GT —G17)p,
where a = [a1,...,an]", B = {b;}V*N, G =
[G1,...,GN]T, 1isa N-element vector of ones, and (-, -)
is the Frobenius inner product. Let ¢;; € {0, 1} indicate the

existence of causal subgraphs in (G; — G;). Then the label
for GY_ is defined as

N N N
e = ai-yi+ > cibij - yj)
=1

i=1j=1
N N N (3)
JOQ ai+ > > cijbig)
i=1 i=1j=1
=(a'y +(CoB,1y")r)/(a"1+(C, B)p),
where o denotes Hadamard product, y = [y1,...,yn] ",

and C' = {Cij}NXN.

Note that we do not need to avoid multiple graphs to ensure
linearity in Eq. 2, due to the high dimensionality of graph
structure. In this context, a' G denotes splicing multiple
graphs together; while (B, 1G T —G1 ") denotes splicing
together multiple subtracted subgraphs. These definitions
enable structural linear extrapolation in the non-Euclidean
graph space.

3.3. Linear Extrapolation for OOD Generalization

In this subsection, we justify that linear extrapolation can
generate OOD samples respecting specific shifts while main-
taining causal validity, i.e., preserving underlying causal
mechanisms. First, we establish an assumption for struc-
tural linear extrapolation that combining causal structures
causes a sample with mixed label.
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Assumption 3.3 (Causal Additivity). Let (G1,y1), (G2, ¥y2)
and (G3, y3) be graph-label pairs. If G5 = G1iny + Gainy +
Geny, then y3 = ay1 + (1 — a)ys, where Gy is any combi-
nation of environmental subgraphs, and a € (0, 1).

This causal assumption holds valid in a wide range of graph
classification tasks, and we discuss its scope of application
in Appendix D. Next, we provide two definitions to establish
the conditions under which structural linear extrapolation
can cover certain global and local environment values.

Definition 3.4. [Global SLE Achievability] Given a N-
sample set of graphs D{G}, we say that a graph global
property gp(A, X, E) is achievable by global SLE if there
exists an N-dimension structural linear extrapolation G2},
on D{G},st. GN_ = (A, X ,E).

Definition 3.5. [Local SLE Achievability] Given a N-
sample set of graphs D{G}, we say that a substructure 5 is
achievable by local SLE if there exists an N-dimension struc-
tural linear extrapolation GYY_ on D{G}, s.t. (GY )eny = B.

sle

The following theorems assert that structural linear extrapo-
lation can create OOD samples covering at least two environ-
ments in opposite directions of the distribution, respecting
global/local shifts in size and base each, and ensure the
causal validity of these samples.

Theorem 3.6. Given an N-sample training dataset
D{G\,}, its N-dimension structural linear extrapolation
can generate sets D{G1} and D{G2} such that

VG”-, G17 G27 (Gl)env < (Gt'r‘)env < (GQ)enw

where < denotes “smaller in size” and “lower base com-
plexity” for size and base extrapolation.

Theorem 3.7. Given an N-sample training dataset D{G, }
and its true labeling function for the target classification
task f(G), if D{GN,} is a graph set sampled from N-
dimension structural linear extrapolation of D{G4,} and

Assumption 3.3 holds, then

V(Gé\l]evy) € D{Gé\l[e}v Y= f(Gi\l[e)

Proofs and further analysis are in Appendix G. These theo-
rems show that structural linear extrapolation has the capa-
bility to generate OOD samples that are both plausible and
diverse. The justification of feature linear extrapolation is
relatively straightforward and provided in Section 4.4. Thus
far, we have provided theoretical bases for the applicability
of linear extrapolation on graph OOD tasks.

4. G-Splice for Structural Linear
Extrapolation

In this section, we specify structural linear extrapolation as
a feasible augmentation method with detailed implemen-
tations, termed G-Splice. Using environment information,

the method extrapolates global structural features while pre-
serving structural information that causes the label. The
approach is underpinned by theoretical analysis for struc-
tural linear extrapolation, providing causally-valid OOD
samples that are tailored for specific shifts. The overall
model constructs diverse augmentation samples, as shown
in Figure 2. In the following subsections, we describe the
technical modules of splicing, component graph selection,
and post-sampling procedures separately.

4.1. Graph Splice

The action of splicing a group of component graphs is es-
sentially a conditional edge generation task, which we refer
to as “bridge” generation. We generate bridges of predicted
number along with corresponding edge attributes between
given component graphs to join multiple components into
a single graph. In this work, we use conditional variational
autoencoders (cVAE) (Kingma & Welling, 2013; Kipf &
Welling, 2016), though other generative models may also
be used. We adopt cVAE as the major bridge generator
for its adequate capability and high efficiency, as compared
with diffusion models (Ho et al., 2020) in Appendix J. The
bridge generator takes as input a group of component graphs,
denoted as

Gla' o 7Gf = (leAlaEl)v"' 7(Xf7Af7Ef)

The cVAE encoder produces a latent variable distribution.
Specifically, we construct the inference model as

W (ZIGr - G =[], ao(=lX5, 4. B)
izl @)

= [[V (=il diag(o?)),

i=1

where v; ~ G'; denotes that the i-th node v; belongs to com-
ponent graph G, p; and o; are the generated mean and
standard deviation vectors of the i-th latent distribution, and
n is the total number of nodes in all component graphs. The
encoder gy is parameterized by three-layer graph isomor-
phism networks (GIN) (Xu et al., 2019a). The generative
model produces the probability distribution for bridges A®
and corresponding attributes E°:

n n

po(A*, E*|Z) = [ T] po(A;. ef;12i. 2)),
i=1j=1

po(AY;, e);|zi, 2))

ifUi ~ Gsy/l}j ~ Gt7

s#t

MLPy(z;, 2;),
= s.t.

(0, None), otherwise

where AY; is the ij-th element of A® and e?; € E” is the
corresponding edge attribute vector. By sampling B times
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Figure 2. Architecture overview. Causal features are selected and then preserved along with graph topological structure, while extrapola-
tion on non-causal features spans their feature space to solve feature shifts. For structure shifts, diverse component graphs are extracted
with pair-learning approaches, selected and spliced with extrapolation strategies to achieve causally-valid structural OOD samples.

from py(A®, E®|Z), we sample B pairs of bridge-attribute
vectors to complete bridge generation. To train the bridge
generator, we optimize the variational lower bound £ w.r.t.
the variational parameters by

Loy =Eg, logpg(Ab\Z)
+ aky, logps(E®| Z) — BKL[g4||p(2)],

where KL[g(-)||p(-)] is the Kullback-Leibler divergence be-
tween ¢(-) and p(-). We take the Gaussian prior

p(2) = [[p(z) = [V (00 ).

&)

« and [ are hyperparameters regularizing bridge attribute
and KL divergence respectively. Note that we do not include
new nodes as part of the bridge, since we aim at preserving
the local structures of the component graphs and extrapo-
lating certain global features. More manually add-on graph
structures provide no extrapolation significance, while their
interpolation influence are not proven beneficial, which is
reflected in Appendix J.

Bridge number prediction. To predict the number of
prospective bridges between a set of component graphs, a
pre-trained GNN parameterized by 7 produces probabilities
for the bridge number B,

pn(B) = GNNW(X1,A17E1W" 7XfaAf7Ef)'

When generating bridges, we first sample the number B with
the predicted probabilities from the categorical distribution.

4.2. Component Graph Selection

Whole graphs. Corresponding to a’ G in Eq. 2, we use
whole graphs from the training data as a category of compo-
nent graphs, which possesses computational simplicity and
enables extrapolation.

Causal subgraphs and environmental subgraphs. The
part of (B,1G" — G17)p in Eq. 2 requires the operation
of subtracting the largest isomorphic subgraph, which is
practically unfeasible. In this case, using target and envi-
ronment label information, we approximate (G; — G;) for
particular graph pairs. Specifically, (G; — Gi) = Gjiny
for G, G; with different labels but the same environment,
and (G; — Gi) = Gjeny for G, G; with the same label
but different environments. Therefore, we can use ex-
tracted causal/environmental subgraphs as (G; — G;). We
perform pair-wise similarity matching on label-invariant
graphs to extract causal subgraphs, and on environment-
invariant graphs to extract environmental subgraphs, fol-
lowing Sec. 3.1. Since environment for test data remains
unknown and these subgraphs are inaccessible during test,
using these subgraphs in data augmentation for training can
be an optimum strategy. Let G and G’ be two graphs with
the same label y; but different environments €1 and 5. We
identify G,y as the subgraph shared by both graphs that ex-
hibits the highest similarity. The theorem below establishes
that this identification approach unveils the causal subgraph
Giny by definition under certain causal assumptions.
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Theorem 4.1. Given the causal graph (Figure 1) and as-
suming a bijective causal mapping between C and'Y, for
G and G', let G4 represent potential subgraphs. If I(-)
measures cosine similarity in the graph embedding space
and f, : G — RS is a feature mapping that reversely infers
hidden features, then:

(1) It follows that the similarity of the invariant subgraphs
of Gand G', I(f.(Giny), f-(G'iny)), reaches its maximal 1;

(2) Given a subgraph set
G, = {G:[3Gs.LI(f:(Gs), £2(GY)) = 1},

the invariant subgraph G, can be obtained as G, =
argmaxg cq, |Gsl-

Discussions and proofs are provided in Appendix G. For-
mally, the algorithmic procedure to identify Gy, has opti-
mization objective

Giny = argmax |G|,
G:€Gs

where the set of subgraphs

G. = { G| angmax I(£(6.). £(6) .

Note that considering the injected noises of Gj,, in real
world, though generally much smaller than S; and S5, we
adopt a relaxed version of G4. We use label-invariant and
environment-variant graph pairs to pre-train a causal sub-
graph extraction network, which is optimized by the sam-
pled causal subgraphs predicting the label Y solely. There-
fore, the outer training objective of f, is

fz* = argfminé(y; fc(fz(Ginv))>

where f, is the classifier. More algorithmic details are in
Appendix C. Similarly, environment-invariant and label-
variant graph pairs are used to pre-train the environmental
subgraph extraction network using the environment label.

4.3. Post-sampling Procedure

To enable structural linear extrapolation, we need to make
selections of component graphs and sample bridges accord-
ingly, as well as assign the labels and environments. Since
linear extrapolation has infinite choices of a and b, to enable
training, we simplify the augmentation into three options:
1.single causal subgraphs Gj,y, 2.causal and environmental
subgraphs spliced Giny + f + Geny, 3.whole graphs spliced
f - G. With the pre-trained component graph extractors
and bridge generator, we apply these strategies to augment
graph data in OOD classification tasks. The actual number
of component graphs f is set as a hyperparameter, tuned and

determined through OOD validation during training. The
augmentation selections are also tuned as a hyperparameter,
with at least one option applied. We label the generated
graphs following the definition of structural linear extrapo-
lation. Considering extrapolation in environments, for size
OOD tasks, we create up to three new environments with
the three options according to the size distribution of the
augmented graphs. For base/scaffold OOD tasks, we create
up to two new environments, one for Gjy,y, the other for
Giny + f - Geny and f - G, since the former option construct
graphs without base/scaffolds, and the latter options graphs
with multiple base/scaffolds combined. All original graphs
and augmentation graphs then form the augmented training
distribution with add-on environments. To make adequate
use of the augmented environment information for OOD
generalization, we optionally apply an invariant regulariza-
tion (Krueger et al., 2021) during learning, reaching our
final objective,

¢* = argmin E(q ) oo c eoe o P LW fir(G))]
¥ (6)
+yVaree (gugay [E(Gy)~p (s fi(G))]

where £ 4 are the augmented environments, f; is the predic-
tion network for OOD tasks, £(-) calculates cross-entropy
loss, and Var|-| calculates variance.

4.4. FeatX for Feature Linear Extrapolation

As an additional distribution shift consideration, we imple-
ment feature linear extrapolation as FeatX, a simple label-
invariant data augmentation strategy designed to further
improve OOD generalization for graph feature shifts, which
is applicable to both graph-level and node-level tasks, as
shown in Figure 2. Environment information is used to se-
lectively perturb non-causal features while causal features
determining the label are preserved. During the augmenta-
tion process, with knowledge of the domain range of the
node features, we span the feature space with extrapolation
for non-causal features. In contrast to Mixup which exclu-
sively interpolates, with knowledge of non-causal features
and their domain, FeatX covers extrapolation as well as in-
terpolation to advance in OOD generalization. We introduce
technical details in the following subsections and end with
theoretical support for the effectiveness of feature linear
extrapolation.

Non-Causal Feature Selection. Unlike graph structure,
features reside in a relatively low-dimensional space. Di-
rect extrapolation of node features that have causal rela-
tionships with the target may not yield beneficial outcomes
(Appendix J). Therefore, we only perturb the selected vari-
ant features &,. The selection of &, is implemented as
learning an invariance mask M € RP based on variance
score vector Sy € RP and threshold T'. The variance score
vector Sy, measures the variance of each feature element
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w.r.t. the target; high scores represents large variances and
therefore features of x.,,. Variance scores are learned us-
ing label and environment information. Label-invariant and
environment-variant samples should have similar invariant
features x;j,y while variant features x,,, vary majorly; thus
their feature variances increase the variance score vector
Sy . Conversely, feature variances of environment-invariant
label-variant samples reduce variance scores. The invari-
ance mask M selects xy,, and masks out other features by
applying threshold T on variance score vector Sy . For-
mally,

Sv = k1Eyey Varp [x] — kaEcce Varp, [z], @
M = [SV > T]7

where k = [k1, ko] and T are trainable parameters, and

Var p[x] calculates variance of node features for samples in

distribution P.

Node Feature Extrapolation. We apply the mask M and
perturb the non-causal node features to achieve extrapola-
tion w.r.t. Ty,, without altering the topological structure of
the graph. Let the domain for  be denoted as D, which is
assumed to be accessible. Valid extrapolations must gener-
ate augmented samples with node feature X 4 € D while
X4 ~ P®in(X) We ensure the validity of extrapolation
with the generalized modulo operation (Appendix G),

VX € RP, (X mod D) € D.

Given each pair of samples D.,, D., with the same label y
but different environments €; and 2, FeatX produces

X4p=M x ((1 —|—/\)AX61 — )\/:1352) mod D+ M x D
(AvE) = (AE17EE1)7

where A\, \ ~ N (a, b) is sampled for each data pair. Empir-
ically, we achieve favorable extrapolation performance and
faster convergence with A\’ = A € Rt ~ I'(a, b), which we
use in experiments, with the shape parameter a and scale pa-
rameter b of gamma distribution as hyperparameters. Note
that D, D.; can be both graph-level and node-level data
samples, and in the graph-level case ., C X., is the fea-
tures of a random node. The augmented samples form a new
environment. Replacing original node features in training
samples by the augmented ones, our optimization process is
formulated as

v = argmin B, . e [(fo(Xa, A, B), )

where f, is the prediction network for OOD tasks and £(-)
calculates cross-entropy loss.

Solving Feature-based Graph Distribution Shifts. FeatX
enables extrapolation w.r.t. the selected variant features,
while causal features are preserved, thereby transforming

OOD areas to ID. Theoretical analysis can evidence that our
extrapolation spans the feature space outside P""(X) for
Tyyr- We present the following theorem showing that, under
certain conditions, FeatX substantially solves feature shifts
on the selected variant features for node-level tasks. Let 1.4
be the number of samples FeatX generates and f,, be the
well-trained network with FeatX applied.

Theorem 4.2. If (1) 3(X1, -, X;) € P"" from at least
2 environments, s.t. (Xiyar, -, Xjvar) span R7, and
(2) VX1 # Xy, the GNN encoder of fy maps Gi =
(X1,A,E) and Gy = (Xo, A, E) to different embeddings,
thenwithj = fy,(X, A E), § 1L X, asng — oo.

Proof is provided in Appendix G. Theorem 4.2 states that,
given sufficient diversity in environment information and
expressiveness of GNN, FeatX can achieve invariant pre-
diction regarding the selected variant features. Therefore,
FeatX possesses the capability to generalize over distribu-
tion shifts on the selected variant features. Extending on
the accuracy of non-causal selection, if Tyy+ = Tyar, WE
achieve causally-invariant prediction in feature-OOD tasks.

5. Experimental Studies

We evaluate the effectiveness of our method on multiple
graph OOD classification tasks.

Setup. For all experiments, we select the best checkpoints
for OOD tests according to results on OOD validation sets;
ID validation and ID test are also used for comparison if
available. For fair comparisons, we use unified GNN back-
bones for all methods in each dataset, specifically, GIN-
Virtual (Xu et al., 2019a; Gilmer et al., 2017) and GCN (Kipf
& Welling, 2017) for graph-level and node-level tasks, re-
spectively. Experimental details and hyperparameters are
provided in Appendix H. Computational complexity analy-
sis are provided in Appendix B. ID validation and test results
as well as additional experiments and results are provided
in Appendix I.

Baselines. We compare our method with both OOD learn-
ing algorithms and graph data augmentation methods, as
well as the empirical risk minimization (ERM). OOD algo-
rithms include IRM (Arjovsky et al., 2019), VREx (Krueger
et al., 2021), DANN (Ganin et al., 2016), Deep Coral (Sun
& Saenko, 2016), GroupDRO (Sagawa et al., 2019), and
graph OOD methods DIR (Wu et al., 2022b), EERM (Wu
et al., 2022a), SRGNN (Zhu et al., 2021), GIL (Li et al.,
2022), CIGA (Chen et al., 2022b), and LiSA (Yu et al.,
2023). GDA methods include DropNode (Feng et al., 2020),
DropEdge (Rong et al., 2019), Feature Masking (Thakoor
etal., 2021), FLAG (Kong et al., 2022), Graph Mixup (Wang
et al., 2021), LISA (Yao et al., 2022), and G-Mixup (Han
et al., 2022). Note that DIR, DropNode, GIL, CIGA, and
G-Mixup only apply for graph-level tasks, while EERM and
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Table 1. Performances of 17 baselines and G-Splice on 8 datasets with structure shift. Values in this table are model out-of-distribution
performance. Higher values indicate better performance. All numerical results are averages across 3 random runs. Numbers in bold

represent the best results and underline the second best.

Method GOOD-HIV GOOD-SST2 Twitter GOOD-Motif DD NCI1
size scaffold length length size base size size
ERM 59.94+2.86 69.58+1.99  81.30+0.35  57.04£1.70 51.74+£2.27 68.66+3.43  0.15+0.11  0.16+0.10
IRM 59.94+1.59 67.97+2.46  79.91+1.97  57.72+1.03 53.68+4.11 70.65+3.18  0.06+0.08  0.11+0.07
VREXx 58.49+£2.22 70.77+£1.35  80.64+0.35  56.37+£0.76 54.47+3.42 7147275  0.14+0.10  0.22+0.12
GroupDRO 58.98+1.84 70.64+1.72  79.21£1.02  56.84+0.63 51.95+2.80 68.24+1.94  0.02+0.02  0.01+0.04
DANN 62.38+2.65 70.63x1.82  79.71%£1.35  55.71%£1.23 51.46+3.41 65.47+£5.35 0.12+0.09  0.15+0.07
Deep Coral 60.11+3.53  68.61+x1.70  79.81+0.22  56.14£1.76 53.71£2.75 68.88+3.61  0.11x0.15  0.09+0.02
DIR 57.67£1.43 67.47£2.61 77.65£1.93  56.81+0.91 50.41+£5.66 61.50+15.69 0.42+0.03  0.15+0.03
GIL 62.05£1.55 66.18+2.87  78.81£1.35  55.46+1.48 33.20+2.87 38.60+10.58 0.14+0.02  0.01+0.03
CIGA 62.56+1.76  71.47x1.29  81.20+0.75  57.19+1.15 45.36+4.35 45.59+6.44  0.30+0.05  0.23+0.06
LiSA 49.2842.89  69.71£1.05  79.05+£1.09  56.55+1.67 52.67+2.77 52.33£3.50  0.28+0.03  0.02+0.02
DropNode 58.5240.49 71.18+1.16  81.14+£1.73  56.76+£0.24 54.14+3.11  74.55%#5.56  -0.02+0.02  0.08+0.06
DropEdge 59.01£1.90 71.46+1.63  78.93+1.34  57.42+40.48 45424190 37.69+1.05 -0.02+0.03  0.12+0.05
MaskFeature  62.3+3.17  65.90£3.68  82.00+0.73  57.67+1.11 52.24+3.75 64.98+6.95 -0.02+0.02 0.03+0.02
FLAG 60.84+2.99 69.11+0.83  77.05£1.27  56.56+£0.56 50.85+0.53 66.17+2.87  0.02+0.06  0.06+0.02
Graph Mixup 59.03+3.07 68.88+2.40  80.88+0.60  55.97+1.67 51.48+3.35 70.08+2.06 -0.08+0.06 -0.02+0.06
LISA 61.50£2.05 71.94+1.31  80.67£0.43  56.14+0.88 53.68+2.65 75.58+0.75  0.20+0.02  0.05+0.03
G-Mixup 61.95+£3.15 70.13+2.40  80.28+1.49  56.05+£1.76 53.93£3.03 49.27+4.84 -0.02+0.02 0.07+0.04
G-Splice 64.46+1.38 72.82+1.16  82.31+0.59  58.02+0.40 86.53+2.66 79.86+13.00 0.45+0.09  0.37+0.08
G-Splice+R  65.56+0.34 73.28+0.16  82.34+0.24  58.34+0.58 85.07+4.50  83.96+7.38  0.45+0.04  0.40+0.03

Table 2. OOD performances of all methods on FSMotif. The shifts
are size-color and base-color.

Method FSMotif-S-Ct  FSMotif-B-C1
ERM 35.00+0.98 32.67+£2.83
IRM 33.00+0.98 36.78+5.67
VREXx 35.33+0.72 32.2242.20
GroupDRO 32.67+0.82 32.2242.20
DANN 33.22+0.42 31.89+1.73
Coral 32.66+0.94 30.89+0.31
DIR 33.33+£2.16 32.11£2.04
GIL 37.00+0.62 23.89+4.50
DropNode 30.44+1.64 43.44+9.75
DropEdge 32.11+1.40 32.2242.20
FLAG 34.89+1.23 30.67+0.88
GMixup 31.56+1.25 32.45+2.28
Mixup 31.67+1.41 34.78+5.81
Maskfeat 33.78+0.88 37.00£8.96
LISA 33.89£1.91 38.22+10.68
FeatX 35.89+4.69 40.83+6.22
G-Splice 72.11+6.18 50.67+6.40
G-Splice+FeatX 75.11+2.99 54.11+11.64

SRGNN only for node-level tasks.

5.1. OOD Performance on Structure Shifts

Datasets & Metrics. To evidence the generalization im-
provements of structure extrapolation, we evaluate G-Splice
on 8 graph-level OOD datasets with structure shifts. We
adopt 5 datasets from the GOOD benchmark (Gui et al.,

2022a), HIV-size, HIV-scaffold, SST2-length, Motif-size,
and Motif-base, where “-" denotes the shift domain. We con-
struct another natural language dataset Twitter-length (Yuan
et al., 2020) following the OOD split of GOOD. Addi-
tionally, we adopt protein dataset DD-size and molecular
dataset NCI1-size following Bevilacqua et al. (2021). All
datasets possess structure shifts, thus proper benchmarks for
structural OOD generalization. For evaluation, we report
ROC-AUC for GOODHIV, Matthews correlation coefficient
(MCC) for DD and NCI1, and accuracy in percentage for
all other datasets.

Results. OOD performances of G-Splice and all baselines
on structure distribution shifts are shown in Table 1. As can
be observed, G-Splice consistently outperforms all other
methods in OOD test results, showing effectiveness in vari-
ous structural OOD tasks. On synthetic dataset GOODMo-
tif, G-Splice substantially outperforms most baselines by
60% for size domain and 20% for base domain in accuracy,
approaching ID performances, which evidences the general-
ization improvements achieved by our structural extrapola-
tion. With a VREXx-like regularization applied, G-Splice+R
achieve further performance gain on most datasets, implying
that combined use of augmented environment information
with both data extrapolation and invariance regularization is
beneficial. Furthermore, in contrast to OOD performances,
G-Splice does not always perform best in ID settings. Also,
G-Splice shows significant performance gain compared with
other graph data augmentation methods. This reveals that G-
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Splice enhances generalization abilities with extrapolation
strategies rather than overall progress in learning or simple
data augmentation. By guiding the model to extrapolate
with OOD samples, G-Splice extends the data distribution
and improves generalization for specific structure shifts. As
ablation studies, we evidence that certain extrapolation pro-
cedures specifically benefit size or base shifts, supporting
our theoretical analysis, which is detailed in Appendix J.

5.2. OOD Evaluation for Structure and Feature
Extrapolation

Structural and feature linear extrapolations can be performed
respectively targeting specific types of shifts, as well as
combined to solve comprehensive shifts. We demonstrate
the superiority of our methods when used concurrently on
graph tasks with multiple shifts of structure and feature.
Generally, existing OOD datasets construct splits based
on selected single shifts. To evaluate on complex graph
shifts covering both structure and feature, we create a new
dataset, FSMotif. FSMotif is a synthetic dataset where
each graph is generated by connecting a base graph and a
motif, with the label determined by the motif solely and all
nodes assigned color features. We design two complex shift
domains, the base graph type combined with color feature,
and the graph size combined with color feature. Dataset
details are in Appendix H. We report the OOD test accuracy
(with OOD validation) of all baselines, as well as G-Splice
and FeatX applied both separately and concurrently, across
3 random runs in Table 2. As shown, the combination of
G-Splice and FeatX performs evidently better over their
separate use and significantly over other baselines, with
nearly doubled accuracy on FSMotif-S-C. This strongly
evidences that our two strategies can combine to extrapolate
over comprehensive shifts, adding to the practicality of our
proposed method.

To further demonstrate the effectiveness of the feature ex-
trapolation in graph tasks, we provide comprehensive evalu-
ations with other typical baselines in Appendix I.

6. Discussion and Conclusion

Our work introduces an innovative GDA approach to solve
graph OOD generalization using linear extrapolation in
graph space. Our environment-aware framework, featur-
ing G-Splice and FeatX, improves over existing methods by
generating causally-valid OOD samples that enhance model
performance. Overall, our data-centric approach opens a
new direction in graph OOD studies. Currently, our method
depends on the quality of environment information and
GNN expressiveness. Also, our theoretical analysis focus
on linear extrapolation. Future works could explore optimiz-
ing environment information and incorporating non-linear
extrapolation studies.
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A. Background and Related Works

Out-of-Distribution (OOD) Generalization. Out-of-Distribution (OOD) Generalization (Shen et al., 2021; Duchi &
Namkoong, 2021; Shen et al., 2020; Liu et al., 2021a) addresses the challenge of adapting a model, trained on one distribution
(source), to effectively process unseen data from a potentially different distribution (target). It shares strong ties with various
areas such as transfer learning (Weiss et al., 2016; Torrey & Shavlik, 2010; Zhang et al., 2023; Zhuang et al., 2020), domain
adaptation (Wang & Deng, 2018), domain generalization (Wang et al., 2022), causality (Pearl, 2009; Peters et al., 2017), and
invariant learning (Arjovsky et al., 2019). As a form of transfer learning, OOD generalization is especially challenging when
the target distribution substantially differs from the source distribution. OOD generalization, also known as distribution or
dataset shift (Quifionero-Candela et al., 2008; Moreno-Torres et al., 2012), encapsulates several concepts including covariate
shift (Shimodaira, 2000), concept shift (Widmer & Kubat, 1996), and prior shift (Quifionero-Candela et al., 2008). Both
Domain Adaptation (DA) and Domain Generalization (DG) can be viewed as specific instances of OOD, each with its own
unique assumptions and challenges.

Domain Generalization (DG). DG (Wang et al., 2022; Li et al., 2017; Muandet et al., 2013; Deshmukh et al., 2019; Gui
et al., 2020) strives to predict samples from unseen domains without the need for pre-collected target samples, making it more
practical than DA in many circumstances. However, generalizing without additional information is logically implausible, a
conclusion also supported by the principles of causality (Pearl, 2009; Peters et al., 2017). As a result, contemporary DG
methods have proposed the use of domain partitions (Ganin et al., 2016; Zhang et al., 2022) to generate models that are
domain-invariant. Yet, due to the ambiguous definition of domain partitions, many DG methods lack robust theoretical
underpinning.

Causality & Invariant Learning. Causality (Peters et al., 2016; Pearl, 2009; Peters et al., 2017) and invariant learning (Ar-
jovsky et al., 2019; Rosenfeld et al., 2020; Ahuja et al., 2021) provide a theoretical foundation for the above concepts,
offering a framework to model various distribution shift scenarios as structural causal models (SCMs). SCMs, which
bear resemblance to Bayesian networks (Heckerman, 1998), are underpinned by the assumption of independent causal
mechanisms, a fundamental premise in causality. Intuitively, this supposition holds that causal correlations in SCMs are
stable, independent mechanisms akin to unchanging physical laws, rendering these causal mechanisms generalizable. An
assumption of a data-generating SCM equates to the presumption that data samples are generated through these universal
mechanisms. Hence, constructing a model with generalization ability requires the model to approximate these invariant
causal mechanisms. Given such a model, its performance is ensured when data obeys the underlying data generation
assumption. Peters et al. (2016) initially proposed optimal predictors invariant across all environments (or interventions).
Motivated by this work, Arjovsky et al. (2019) proposed framing this invariant prediction concept as an optimization process,
considering one of the most popular data generation assumptions, PIIF. Consequently, numerous subsequent works (Rosen-
feld et al., 2020; Ahuja et al., 2021; Chen et al., 2022a; Lu et al., 2021)—referred to as invariant learning—considered the
initial intervention-based environments (Peters et al., 2016) as an environment variable in SCMs. When these environment
variables are viewed as domain indicators, it becomes evident that this SCM also provides theoretical support for DG,
thereby aligning many invariant works with the DG setting. Besides PIIF, many works have considered FIIF and anti-causal
assumptions (Rosenfeld et al., 2020; Ahuja et al., 2021; Chen et al., 2022a), which makes these assumptions as popular
basics of causal theoretical analyses.

OOD generalization for graph. Extrapolating on non-Euclidean data has garnered increased attention, leading to a variety
of applications (Sanchez-Gonzalez et al., 2018; Barrett et al., 2018; Saxton et al., 2019; Battaglia et al., 2016; Tang et al.,
2020; Velickovi€ et al., 2019; Li et al., 2021; Xu et al., 2019b; Wu et al., 2021). Inspired by Xu et al. (2020), Yang et al.
(2022a) proposed that GNNss intrinsically possess superior generalization capability. Several prior works (Knyazev et al.,
2019; Yehudai et al., 2021; Bevilacqua et al., 2021) explored graph generalization in terms of graph sizes, with Bevilacqua
et al. (2021) being the first to study this issue using causal models. Recently, causality modeling-based methods have
been proposed for both graph-level tasks (Wu et al., 2022b; Miao et al., 2022; Chen et al., 2022b; Fan et al., 2022; Yang
et al., 2022b) and node-level tasks (Wu et al., 2022a). To solve OOD problems in graph, DIR (Wu et al., 2022b) selects
graph representations as causal rationales and conducts causal intervention to create multiple distributions. EERM (Wu
et al., 2022a) generates environments with REINFORCE algorithm to maximize loss variance between environments while
adversarially minimizing the loss. SRGNN (Zhu et al., 2021) aims at pushing biased training data to the given unbiased
distribution, performed through central moment discrepancy and kernel matching. To improve interpretation and prediction,
GSAT (Miao et al., 2022) learns task-relevant subgraphs by constraining information with stochasticity in attention weights.
CIGA (Chen et al., 2022b) models the graph generation process and learns subgraphs to maximally preserve invariant
intra-class information. GREA (Liu et al., 2022) performs rationale identification and environment replacement to augment
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virtual data examples. GIL (Li et al., 2022) proposes to identify invariant subgraphs and infer latent environment labels
for variant subgraphs through joint learning. However, except for CIGA (Chen et al., 2022b), their data assumptions are
less comprehensive compared to traditional OOD generalization. CIGA, while recognizing the importance of diverse
data generation assumptions (SCMs), attempts to fill the gap through non-trivial extra assumptions without environment
information. Additionally, environment inference methods have gained traction in graph tasks, including EERM (Wu et al.,
2022a), MRL (Yang et al., 2022b), and GIL (Li et al., 2022). However, these methods face two undeniable challenges.
First, their environment inference results require environment exploit methods for evaluation, but there are no such methods
that perform adequately on graph tasks according to the synthetic dataset results in GOOD benchmark (Gui et al., 2022a).
Second, environment inference is essentially a process of injecting human assumptions to generate environment partitions,
but these assumptions are not well compared.

Graph data augmentation for generalization. Some data augmentation methods, not limited to graph methods, empirically
show improvements in OOD generalization tasks. Mixup (Zhang et al., 2017), which augments samples by interpolating
two labeled training samples, is reported to benefit generalization. LISA (Yao et al., 2022) selectively interpolates intra-label
or intra-domain samples to further improve OOD robustness. In the graph area, following Mixup, Graph Mixup (Wang et al.,
2021) mixes the hidden representations in each GNN layer, while ifMixup (Guo & Mao, 2021) directly applies Mixup on
the graph data instead of the latent space. Graph Transplant (Park et al., 2022) employs node saliency information to select a
substructure from each graph as units to mix. G-Mixup (Han et al., 2022) interpolates the graph generator of each class
and mixes on class-level to improve GNN robustness. DPS (Yu et al., 2022) extracts multiple label-invariant subgraphs
with a set of subgraph generators to train an invariant GNN predictor. However, few works target OOD problems, and no
prior work generates OOD samples that can provably generalize over graph distribution shifts. In contrast, we offer a graph
augmentation method to extrapolate in structure and feature for OOD generalization.

Technical comparisons with prior methods. We discuss in detail the technical differences between existing works and ours.
DIR and GREA algorithms are much alike by design, identifying causal subgraphs and switching non-causal subgraphs
between graphs. With this localized strategy, their augmented environments can only cover local base shifts, leaving
the global structural extrapolation unexplored. EERM exclusively considers node-level tasks, and only performs edge
addition/deletion to cover minor shifts on graph base. GDA methods GMixup and Graph Transplant provide no guarantee for
solving OOD related tasks, and can not deal with global structure shifts such as size. LiSA (Yu et al., 2023) extracts multiple
subgraphs and AdvCA (Sui et al., 2022) masks certain nodes/edges from given graphs to generate graph augmentations.
SizeShiftReg (Buffelli et al., 2022) uses coarsening to extracts multiple subgraphs from given graphs, obtaining slightly
smaller augmented graphs (80% or 90% of the original graph in actual implementation). These strategies result in augmented
graphs that only contain smaller substructures, restricting their potential extrapolation to one instead of both distribution
directions. In this case, a common test scenario where test graphs are larger than the training graphs is not covered. Mixup
and ExtraMix (Kwon et al., 2022) apply strategies on feature levels without designs for graph structure. In contrast, we study
non-Euclidean space extrapolation in a far more systematic way. Our method considers the completeness of achieving both
feature and structural extrapolation, and further cover structural global/local extrapolation (or size/base shifts by example) in
both distribution directions. This substantially sets the difference between our method and the existing works. Moreover,
our novel theoretical contributions include proposing non-Euclidean space linear extrapolation with definitions, analyses,
and guarantees. Considering techniques, our design of graph splice serves global extrapolation and avoids add-on nodes
to preserve graph structures, divergent from linker design approaches for molecules (Huang et al., 2022; Igashov et al.,
2022). In addition, we design subgraph extraction by label-environment-aware pair learning, a novel technique over previous
studies.

B. Computational Complexity Analysis

We provide the theoretical analysis regarding the time and space computational complexity as follows. For computation, we
generally use one NVIDIA GeForce RTX 2080 Ti for each single experiment.

The time complexity of our G-Splice is O((|V|?d + |V'|d?)| B|), where |V| denotes the number of nodes, |B| is the batch
size, and d is the dimensionality of the representations. The time complexity of our FeatX is O((|E|d + |V |d?)|B]),
where |E| denotes the number of edges. Specifically, message-passing GNNs has a complexity of O((|E|d + |V'|d?)|B|),
which we adopt to instantiate our GNN components. For G-Splice, the time complexity of obtaining GNN representations
is O((|E|d + |V|d?)|B|), and that of pair-wise similarity matching and bridge generation are both O(|V|?d| B|). Since
O(|E]) < O(]V]?), the overall time complexity of G-Splice is O((|E|d + |V'|?d + |V'|d?)| B|)=0((|V|?d + |V'|d?)| B|).
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For FeatX, the time complexity of non-causal feature selection and feature extrapolation are both O(|V'|dy| B|), where dy
is the node feature dimension, which is far smaller than the time complexity of GNN representations. In comparison, the
time complexity of most GNN-based graph representation methods are O(|E|d + |V'|d?), including simple algorithms like
ERM, IRM, and VRex implemented with GNNs. More complicated graph methods such as CIGA has time complexity
O((|V|2d + |V |d?)| B|), which is also the case for G-Splice. Therefore, the time complexity of our proposed methods is on
par with the existing methods.

The space complexity of G-Splice and FeatX is O(|V|dL + | E|d), where L is the number of GNN layers. This is the space
complexity of the message-passing GNNs we use, as well as the space complexity of most GNN-based methods.

C. Technical Details

We complete the technical details of causal and environmental subgraph extractions here. Let G, and G, be two graphs
with the same label y; but different environments ; and 5. As we have discussed, G,y should be the subgraph both
graphs contain and have most in common. Since graph neural networks aggregate information of an ego graph, i.e., the
local subgraph within k-hop of a node, to the embedding of that node through message passing, nodes with similar ego
graphs should have similar embeddings. Therefore, in the node embedding space, nodes from G., and G, with similar
representations should be a part of Gj,,. We encode both graphs into node embeddings with a GNN and calculate their
weighted similarity matrix §", each element of which is the weighted cosine similarity of a pair of nodes from G, and
Ge,,i.e.,

Sif = wx Sc(zi, 25), for v ~ Gy, v ~ Ge,, ®)

where w is a trainable parameter and S..(+) is the cosine similarity calculation. The scores in the weighted similarity matrix
S are considered as probabilities to sample the causal subgraph from either G., or G.,. We use label-invariant and
environment-variant graph pairs to pre-train a causal subgraph searching network, which is optimized for the sampled causal
subgraphs to be capable of predicting the label Y solely.

Similarly, we perform similarity matching for environment-invariant graph pairs to extract environmental subgraphs Geyy
that are determined by the environment £. Graphs from the same environment should contain similar subgraphs, and we
aim at extracting these environmental subgraphs. Environment-invariant and label-variant graph pairs are used to pre-train
the environmental subgraph searching network. We calculate the weighted similarity scores from embeddings and sample
subgraphs with probabilities. The network is optimized using the environment label € for the sampled subgraphs to predict
the environment.

D. Further Discussions
D.1. Connections between SLE and FLE

The connection between feature extrapolation and structural extrapolation is implicitly described in Sec 2’s Graph structure
and feature distribution shifts and Sec 3. Firstly, Linear Extrapolation, which constructs samples beyond the known range
while maintaining the same direction and magnitude of known sample differences, is a central concept in our approach. Graph
data are complex in that it contains features as well as topological structures. We propose to define Linear Extrapolation
for both feature and structure (Sec 3.2), and together they form the complete definition of Graph Linear Extrapolation.
Though their definition have different variables, the formulas share the common form of mathematical organization as linear
extrapolations. Secondly, graph distribution shifts can happen on both features and structures, which possesses different
properties and should be handled separately. While feature extrapolation and structural extrapolation can be used to solve
respective shifts, when combined they can address complex feature-structure shifts. Therefore, they complement each other
in a systematic solution of graph OOD problems. Thirdly, feature and structural extrapolation share similar logic in causal
analyses and theoretical justification. Combined causal analyses are given in Sec 3.1. In Sec 3.3, we provide theoretical
guarantees that structural linear extrapolation has the capability to generate OOD samples that are both plausible and diverse,
while the justification of feature linear extrapolation is relatively straightforward and provided in Section 4.4.

D.2. Intuitive Explanations of SLE in G-Splice

Structural linear extrapolation defines the linear calculations ‘addition’ and ‘subtraction’ for graph structures, and enables
linear extrapolation as Eq. 2. Specifically, a” G denotes splicing multiple graphs together while (B, 1G T —G1T) £ denotes
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splicing multiple subtracted subgraphs. G-splice closely follows this, and essentially implements graph ‘addition’ and
‘subtraction’. Addition and subtraction, defined as union and intersection operations on graph edge sets, are essentially
splicing graphs and extracting subgraphs. Intuitively, structural ‘addition’ splices multiple graphs by generating edges
among them (conditional generation). Structural ‘subtraction’ extracts a causal (or environmental) subgraph by performing
node-wise similarity matching between a pair of graphs with different labels (or environments) but same environments (or
labels). Please refer to Appendix C for label-environment-aware pair learning details.

With these two operations, G-splice can generate OOD samples by extrapolating outside the training distribution. We reason
in Sec 3.3 that linear extrapolation can reach graph samples outside the distribution respecting both size and base/scaffold,
the two common graph structural distribution shifts. By splicing whole graphs and extracting single causal subgraphs, we
create larger and smaller graphs than the training graphs respectively. Also, we can construct graphs without base/scaffold,
and graphs with multiple bases/scaffolds, achieving extrapolation with new bases/scaffolds introduced.

D.3. Applicability of the Causal Additivity assumption

Our work builds upon the principle of Causal Additivity, a causal assumption widely applicable in graph classification tasks.
This assumption can be subjectively verified through the logic for common natural language sentimental analysis datasets
such as SST2 and Twitter, as well as synthetic dataset GOOD-Motif, where labels are determined by certain structures.
The spliced graph contains combined causal structures; therefore, it forms a causally valid sample when given the mixed
label of all component graphs. For molecule/protein datasets with chemical property tasks, the assumption is strongly
underpinned by experimental results, as evidenced by the improved or comparable results even when whole samples are
randomly combined in Appendix J.1.1. Although we acknowledge that our assumption may not encompass all cases, it
does make headway in addressing a substantial class of problems. As graph OOD generalization is a complex issue in
practice, different techniques are required for varying domains and problems. No single method can be expected to resolve
all unknown cases, and our future work aims to expand the scope of tasks addressed.

D.4. Strengths of linear extrapolation over interpolation

Techniques are very different for graph interpolation and extrapolation. Graph interpolation like G-Mixup or Graph-Mixup
use the weighted sum of two graph’s features/representations as new samples. Our linear extrapolation method is distinct
from those, containing structural ‘addition’ and ‘subtraction’ operations. Structural ‘addition’ splices multiple graphs by
generating edges among them, while structural ‘subtraction’ extracts causal/environment subgraphs by label-environment-
aware pair learning. Graph interpolation and extrapolation also have different objectives. As previous described, we
can extrapolate to graphs that are guaranteed to be larger/smaller/more complex/simpler, thus ensuring OOD regarding
global/local structures. In contrast, graph interpolation cannot generate graphs that are beyond certain structure boundaries,
like the size range of training graphs.

Data augmentation methods can introduce additional samples not covered by the training database to benefit model learning.
Since we focus on tasks that are out-of-distribution instead of in-distribution, models are expected to extrapolate instead of
interpolate to make predictions outside the training range. However, the distribution area where models cannot generalize to
is also hardly reachable when generating augmentation samples using traditional interpolation techniques. Interpolation
methods cannot provide any guarantees regarding solving graph distribution shifts. In contrast, theoretical and empirical
analyses show that linear extrapolation can generalize over certain shifts. Specifically, it can be reasoned based on our
theoretical studies. Theorem 4.2 establishes that feature linear extrapolation can achieve invariant prediction and generalize
over distribution shifts regarding selected variant features under certain environment conditions. Theorem 3.6 establishes
that structural linear extrapolation can create OOD samples covering at least two environments in opposite directions of the
distribution, respecting size and base shifts each. Contrarily, in the case of interpolation, the constructions in the proofs
would not hold, thus failing to build these guarantees.

D.5. Method applicability when the distribution shift type is unknown

Firstly, as we have evidenced, our two strategies for feature and structure can be combined to solve comprehensive shifts.
Also, our proposed method is applicable when OOD knowledge of a dataset is not fully known, since we are able to
choose the techniques as hyperparameter selection. This allows the framework to automatically decide on using either
method separately or combined, thus covering OOD tasks with structural, feature or complex shifts. Secondly, although
we use specific expressions of base and size shifts in theoretical studies of structural shifts, discussions for base and
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size extrapolation are actually applicable to general local and global structural extrapolation, respectively, in the field of
graph. Therefore, G-Splice can cover both local and global structural shifts, making it applicable towards various unknown
distribution shifts. One potential evidence is that it performs favorably on multiple real-world datasets, which inevitably
contain natural and unknown distribution shifts.

E. Broader Impacts

Addressing out-of-distribution (OOD) generalization presents a formidable challenge, particularly in the realm of graph
learning. This issue is acutely exacerbated when conducting scientific experiments becomes cost-prohibitive or impractical.
In many real-world scenarios, data collection is confined to certain domains, yet extrapolating this knowledge to broader
areas, where experiment conduction proves difficult, is crucial. In focusing on a data-centric approach to the OOD
generalization problem, we pave the way for the integration of graph data augmentation with graph OOD, a strategy with
substantial potential for broad societal and scientific impact.

Our research adheres strictly to ethical guidelines and does not raise any ethical issues. It neither involves human subjects
nor gives rise to potential negative social impacts or privacy and fairness issues. Furthermore, we foresee no potential for
malicious or unintended usage of our work. Nonetheless, we acknowledge that all technological progress inherently carries
risks. Consequently, we advocate for ongoing evaluation of the broader implications of our methodology across a range of
contexts.

F. Limitations

Our work builds upon the principle of Causal Additivity, a causal assumption widely applicable in graph classification tasks.
This assumption can be verified theoretically and experimentally for a variety of graph classification tasks. However, we
acknowledge that our assumption may not encompass all cases. As graph OOD generalization is a complex issue in practice,
different domains and problems may required varying techniques and our method might not resolve all unknown cases. Our
future work aims to expand the scope of tasks addressed.

For another, our work discusses shifts on both graph structure and feature. By respective considerations, while G-splice
can solve structure shifts, it augments structural OOD samples, which creates additional shift when facing feature-OOD
situations. FeatX stands in the similar situation, introducing extra shifts for structural OOD problems. When combined,
G-Splice and FeatX can solve both types of shifts and is suitable for addressing complex OOD situations. As "all medicine
has its side effects”, their concurrent use would create extra shifts if the problem does not involve both shifts. Given that an
OOD dataset only contain one type between structure/feature shifts, the performance gain might not be so ideal when using
two methods concurrently. However, this does not impair their applicability when OOD knowledge of the dataset is not fully
known, since we are able to choose the techniques similarly as hyperparameter selection.

In addition, our current work does not discuss link prediction, which is an important task in graph learning. Thus our future
work aims to expand the scope of tasks addressed. Furthermore, the proposed methods are designed to cover complex shifts
of multiple types, therefore the hyperparameter selections including selection of techniques require certain amounts of
pre-computation, which sets prerequisites in computational resources.

G. Theoretical Proofs

This section presents comprehensive proofs for all the theorems mentioned in this paper, along with the derivation of key
intermediate results and necessary discussions.

Theorem 3.6 Given an N-sample training dataset D{GY,.}, its N-dimension structural linear extrapolation can generate
sets D{G1} and D{Gs} s.t. (G1)enw < (Gtr)ew < (G2)emy for VGyy, G1, Ga, where < denotes “less in size” for size
extrapolation and “lower base complexity” for base extrapolation.

Proof. Considering size extrapolation, we prove that 1.sets D{G} and D{G2} contain graph sizes achievable by N-
dimension structural linear extrapolation; 2.| X |¢, < |X|g,,. < |X|q, holds for VG, G1, Gs.
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For N-dimension structural linear extrapolation on training data D{G}, }, we have Eq. 2:

GN. = Za, G+ZZb” (G; —G)=a"G+ (B,1GT —G1")p

i=1 j=1

Let the largest and smallest graph G,,,, and G,,; in D{G/,-} be indexed ¢ = ma and ¢ = mi. We generate D{G>} using
Eq. 2 with the condition that a,,, = 1 and Zfil a; > 2. We generate D{G;} with the condition that ZZI\LI a; = 0,
ZZN:1 Zjvzl bij = 1 and b(,,,;y; = 1. By Definition 3.4, D{G1} and D{G} contain graph sizes achievable by N-dimension
structural linear extrapolation.

For VG5 € D{G>}, since a,,, = 1 and Zf\; a; > 2, G5 contains multiple graphs spliced together; then we have
(Xl > |1 X|cpn. =1 X]a., )

for VG € D{G }. For VG; € D{G;}, since Zfil a; =0, Zf\il Zjvzl bij = 1 and b(y,;); = 1, G contains only one
single subgraph extracted from G,,,; and another graph; then we have

|X|G1 < |X

<[ Xle,, (10)

mi

for VGy, € D{Gy,}. Therefore, | X|q, < |X|a,, < |X|g, holds for VG4, G1, Ga.

Considering base extrapolation, we prove that 1.sets D{G;} and D{G>} contain graph bases achievable by N-dimension
structural linear extrapolation; 2.8g, < Bg,, < Bg, holds for VG, G, G2, where B denotes the base graph and “<”
denotes less complex in graph base. Note that graph bases can be numerically indexed for ordering and comparisons, such
as the Bemis-Murcko scaffold algorithm (Bemis & Murcko, 1996).

For N-dimension structural linear extrapolation on training data D{G/, }, following Eq. 2, let the graphs with the most and
least complex graph base G, and G in D{G}, } be indexed i = mo and i = le. We generate D{G>} using Eq. 2 with the
condition that a,,, = 1 and 3.1 | a; > 2. We generate D{G } with the condition that "~ | a; = 0, YV | Zjvzl bij =1
and b(;ey; = 1, with (Gj — G;) being a causal graph extraction. By Definition 3.5, D{G} and D{G>} contain graph bases
achievable by N-dimension structural linear extrapolation.

For VG4 € D{G2}, since a,,, = 1 and Zf;l a; > 2, Gy contains multiple graphs spliced together including the most
complex base; then we have
Bg, > Ba,,, > Ba,. (11)

for VGy € D{G}4,}, adding upon Bg,,, to create more complex base graphs. For VG, € D{G;}, since sz\; a; =0,
Ziil Zjvzl bij = 1 and b,); = 1 with (G; — G;) being a causal graph extraction, G; contains only a single causal
subgraph extracted from G|.; then we have

mo

BG1 < BGle < BG” (12)

for VG4 € D{Gy,}, essentially creating structural linear extrapolations containing no base graphs. Therefore, Bg, <
Ba,, < Bg, holds for VG4, G1, Ga.

This completes the proof. O

Theorem 3.7 Given an N-sample training dataset D{G,} and its true labeling function for the target classification
task f(Q), if D{GN.} is a graph set sampled from the N-dimension structural linear extrapolation of D{G.} and
Assumption 3.3 holds, then for V(GY_,y) € D{G}_}, vy = f(GY,).

Proof By Definition 3.2, for N-dimension structural linear extrapolation on training data D{G}, }, for V(GL_, y) we have

GY

sle

N N
GN, = Zal Gi+Y > by (Gi—G)=a'G+(B,1G" —G1')p,
=1

=1 j=1
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and the label y for Gsle

Zaz yz+zzcz3 ij y] Zaz+zzczj ij

=1 j=1 =1 j=1

=(a'y+(CoB,1y")r)/(a"1+ (C,B)p).

a' G splices Zf\il a; graphs together, and since [G1, . . ., G y] are the N graphs from D{G}, }, each of G; contains one and
only one causal graph. Under the causal additivity of Assumption 3.3, given G’ = G1+G2, we have f(G') = ay1+(1—a)ys.
With a fair approximation of @ = 1 — a = 1/2, we can feasibly obtain f(G’) = (y; + y2)/2. Recursively, for a’ G we can

derive
N N
= O ai-y)/Qa). (13)
i=1 i=1

(B,1GT — G1T)p splices 31V, E;N:1 b;; extracted subgraphs together. Among them, 3 | Zjvzl cijb;; are causal
subgraphs, while the others are environmental subgraphs. Similarly, using the causal additivity of Assumption 3.3 in a
recursive manner, we can derive

N N
f((B,1GT —G1T)p) = ZZ% i v /O cijbij). (14)

i=1 j=1 i=1 j=1

Combining the results of Eq. 13 and Eq. 14, using Assumption 3.3 in a recursive manner, we can derive for a' G +
(B,1G" —G1")p

f@a'"G+(B,1G"T —G1")r Zal yl—i—zz% ij " Y5) Zaz—kzzcu ij (15)

i=1 j=1 i=1 j=1
By Definition 3.2, we have

F(G3e) :f( "G+ (B, 1GT—G1T> )

Zaz Zh"’ZZCzJ ij Z/y Zaz+zzcz] i

=1 j=1 =1 j=1

Therefore, for V(GY_,y) € D{GY,

sle

}, we have y = f(GN.).
This completes the proof. O

Theorem 4.1 Given the causal graph (Figure 1) and assuming a bijective causal mapping between C and Y, for two
same-class different-environment graphs G = Gy . and G' = G o1, let G C G and G'; C G’ represent the subgraphs of
Gand G'. Let I(-,-) € [0,1] a similarity function in the graph hidden feature space and f. : G — RY is a feature mapping
that reversely infers hidden features, e.g., C and S, then:

(1) Given the invariant subgraphs of G and G, G, and G';,,, the similarity of the subgraphs defined in the corresponding
graph feature space can be represented as I(f,(Gin), [-(G'iny)). It follows that the value of this similarity reaches its
maximum 1;

(2) Given a subgraph set G5 = {G;|3G%, I(f.(Gs), [-(G)) = 1}, the invariant subgraph Gin, of G can be obtained by
optimizing the objective: Gy, = argmaxg cq. |Gsl-
Proof. The invariant subgraphs Gij,y in the same class Y share the same features inferred by f, because of the bijective
causal mapping assumption. This implies that the similarity of invariant subgraphs in the same class is able to reach the
maximal value of 1. In contrast, subgraphs affected by S; and S5 do not have this property since S; and Ss are noises
fluctuating frequently, leading to diverse Gs; and G52 that are assumed not to be matched in different graphs. Concretely,
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this mismatching is caused by the differences in feature dimensions corresponding to S7 and So, which leads to similarities
strictly lower than 1, i.e., VG, 3G, C G4, G, £ 0 st. G, € G U Gso & VGL I(f.(Gs), f.(G))) < 1. Note that our
causal graph is the general case covering the common SCMs of covariate shift, FIIF, and PIIF assumptions when latent
variable S is not considered.

Proof of (1): According to the aforementioned assumption, since G and G’ have the same label, it follows that f, (G ) =
f2(G'iny), which directly results in I(f,(Giny), f2(G'inv)) = 1

Proof of (2): First, given the subgraph set Gg, it follows that VG; € Gg,Gs C Gi,. Otherwise if G5 contains
subgraphs of Gepny, Gs1, or Ggo (Figure 1), the different G, caused by ¢, ¢’ and the fluctuations in S, Sy will lead to
I(f(Gy), f(GY)) < 1 as discussed above. Therefore, I(f(Gy), f(G.)) = 1 = G5 C Giny. In addition, according to
(1), Giny is also included in the set G since I(f,(Gin), f-(G'iny)) = 1, which satisfies the definition of G. Therefore,
the solution for both "VG, € G, Gs C Gipy" and "Gy € G" reveals that Gy, is the largest subgraph in Gg, i.e.,
Ginv = argmaxg _cq. |Gsl- O

Theorem 4.2 [f (1) 3(X1, -+, X;) € P™" from at least 2 environments, s.t. (X1var, -+, Xjvar) span R7, and (2)
VX1 # Xo, the GNN encoder of fy, maps G1 = (X1, A, E) and Gy = (X, A, E) to different embeddings, then with
9= fo(X,AE),§ 1l X5 asng — 0.

We theoretically prove the statements and Theorem 4.2 for FeatX. We propose to learn and apply a mask M and perturb the
non-causal node features to achieve extrapolation w.r.t. ,,, without altering the topological structure of the graph. Let the
domain for & be denoted as D, which is assumed to be accessible. Valid extrapolations must generate augmented samples
with node feature X 4 € D while X 4 ~ Pwin(X)  Since x is a vector, D is also a vector, in which each element gives the
domain of an element in . We ensure the validity of extrapolation with the generalized modulo operation mod, which we
define as

X mod D = X +ixabs(D),s.t.X mod D € D, (16)

where i is any integer and abs(D) calculates the range length of D. Therefore, VX € RP, (X mod D) € D. Given each
pair of samples D,,, D., with the same label y but different environments €; and 2, FeatX produces
Xa=Mx((1+NX., —Nz,) mod D+ M x X,,,
(A, E) = (A, Ec,),
where A\, X' ~ N (a,b) is sampled for each data pair. During the process, the augmented samples form a new environment.

We prove Theorem 4.2, showing that, under certain conditions, FeatX substantially solves feature shifts on the selected
variant features for node-level tasks. The proof also evidences that our extrapolation spans the feature space outside P""( X))
for @y, transforming OOD areas to ID. Let n 4 be the number of samples FeatX generates and f,, be the well-trained
network with FeatX applied.

Proof. Condition is given that

X1,y X)) € P™ (X, » Xjvar)spanR7. (17)
Therefore, by definition,
Vu € R, 3t = (ty,ta, -+ ,tj),t1,to, -+ t; ERI stuw =1 Xyyar + -+t Xjvar- (18)
The operation to generate X 4 gives
X4=Mx (1+N)X., —NX.,)modD+ M x X.,, (19)
so we have
Xavar = (1 +A) Xz, var — A Xepvar) mod D. (20)
For Vu, 3t = (t1,t2,+ -+ ,t;) and (X1, -, X;) € P™" from at least 2 environments. Without loss of generality, we

assume that X; and X, are from different environments £; and 2. With n4 — oo, there will exist an augmentation
sampled between X7 and X, and since A ~ N (a,b), X € R,

3XL st X v = (1 + X)X 1var — N Xoyar) mod D
= (1 + /\)lear - )\/X2var +ny * abS(D)7 14+ A=14, -\ = ta,
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where n; is an integer. Equivalently,
X,14var =11 X 1var + 12 Xoyar + 11 * abS(D)- (21)

The augmentation sample X} belongs to a new environment, thus in a different environment from X7, - - - , X;. Similarly,
with n4 — oo, there will exist an augmentation sampled between X }1 and X3,

IX3 st XAv = (1 4+ X)X v — N X3yar) mod D
= (14+ M) X hvar — N Xsyar + 12 % abs(D),A =0, -\ =13

where nj is an integer. Equivalently,
X,%lva.r = X}qvar + t3 X 3var + g * abS(D) =11 X var + 12 Xovar + 13X 3var + (nl + n2) * abs(D) (22)

The augmentation sample X 2 also belongs to the new environment.

Recursively, with n4 — oo, there will exist an augmentation
HXA_I S.t.Xi‘_lvar = thlvar + t2X2var + -4 th,jvar + (nl + Up) + -4 nj_l) * abs(D) (23)

Since for u, we have u = t1 Xyar + - - + £ X jvar, therefore, Xﬁflvar =u+ (n +ng+---+nj_1)*abs(D). With
u € R and Xi_lvar =((1+ )\)Xi_Qvar — N Xjvar) mod D € RY by the definition of modD, we have

(ny +ng + - +nj_1) *abs(D) = 0 and X%, '\o = u. (24)
Therefore, we prove that with n4 — oo,
Yu € R , there exists an augmentation sample X f;,_l s.t.X i;_lvar =u. (25)

That is, the extrapolation strategy of FeatX spans the feature space for @y,,.

With the above result, for the feature space of @x,, every data point is reachable. As n4 — oo, every data point of @y, is
reached at least once. Let a group of samples with selected and preserved causal features X i,y be M X Xy, + M X X iy,
where Xy < Vv € RJ. Since VX, # Xo, the GNN encoder maps G = (X1, A, E) and G5 = (X3, A, E) to
different embeddings, all different samples from M x X, + M x X+ are encoded into different embeddings, while all
having the same label y. For the well-trained network f;, the group of embeddings Z|(M x X, + M x X inv+) are all
predicted into class § = y. In this case,

VXVﬁrERj, g:fw(MXXvar+MXXinv*aA7E):ya (26)

therefore
g1l Xyar as nyg — oo. 27
This completes the proof. O

Theorem 4.2 states that, given sufficient diversity in environment information and expressiveness of GNN, FeatX can achieve
invariant prediction regarding the selected variant features. Therefore, FeatX possesses the capability to generalize over
distribution shifts on the selected variant features. Extending on the accuracy of non-causal selection, if Tyy+ = Tyar, We
achieve causally-invariant prediction in feature-based OOD tasks. Thus, FeatX possesses the potential to solve feature
distribution shifts.

H. Experimental Details

We further describe experimental details in the following sections.
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H.1. Dataset Details

To evidence the generalization improvements of structure extrapolation, we evaluate G-Splice on 8 graph-level OOD
datasets with structure shifts. We adopt 5 datasets from the GOOD benchmark (Gui et al., 2022a), GOODHIV-size,
GOODHIV-scaffold, GOODSST2-length, GOODMotif-size, and GOODMotif-base, using the covariate shift split from
GOOD. GOOD-HIV is a real-world molecular dataset with shift domains scaffold and size. The first one is Bemis-Murcko
scaffold (Bemis & Murcko, 1996) which is the two-dimensional structural base of a molecule. The second one is the
number of nodes in a molecular graph. GOOD-SST2 is a real-world natural language sentimental analysis dataset with
sentence lengths as domain, which is equivalent to the graph size. GOOD-Motif is a synthetic dataset specifically designed
for structure shifts. Each graph is generated by connecting a base graph and a motif, with the label determined by the
motif solely. The shift domains are the base graph type and the graph size. We construct another natural language dataset
Twitter (Yuan et al., 2020) following the OOD splitting process of GOOD, with length as the shift domain. In addition, we
adopt protein dataset DD and molecular dataset NCI1 following Bevilacqua et al. (2021), both with size as the shift domain.
All datasets possess structure shifts as we have discussed, thus proper benchmarks for structural OOD generalization.

To show the OOD the generalization improvements of feature extrapolation, we evaluate FeatX on 5 graph OOD datasets
with feature shifts. We adopt 5 datasets of the covariate shift split from the GOOD benchmark. GOOD-CMNIST is a
semi-artificial dataset designed for node feature shifts. It contains image-transformed graphs with color features manually
applied, thus the shift domain color is structure-irrelevant. The other 4 datasets are node-level. GOOD-Cora is a citation
network dataset with “word" shift, referring to the word diversity feature of a node. The input is a small-scale citation
network graph, in which nodes represent scientific publications and edges are citation links. The shift domain is word, the
word diversity defined by the selected-word-count of a publication. GOOD-Twitch is a gamer network dataset, with the node
feature “language"” as shift domain. The nodes represent gamers and the edge represents the friendship connection of gamers.
The binary classification task is to predict whether a user streams mature content. The shift domain of GOOD-Twitch is
user language. GOOD-WebKB is a university webpage network dataset. A node in the network represents a webpage, with
words appearing in the webpage as node features. Its 5-class prediction task is to predict the owner occupation of webpages,
and the shift domain is university, which is implied in the node features. GOOD-CBAS is a synthetic dataset. The input is a
graph created by attaching 80 house-like motifs to a 300-node Barabdsi—Albert base graph, and the task is to predict the role
of nodes. It includes colored features as in GOOD-CMNIST so that OOD algorithms need to tackle node color differences,
which is also typical as feature shift. All shift domains are structure-irrelevant and provide specific evaluation for feature
extrapolation.

Following prior works (Wu et al., 2022b; Gui et al., 2022a), we also create another synthetic dataset FSMotif. The GOOD
benchmark we use for major evaluation in the paper does not contain OOD datasets with shifts on both structure and feature,
which cannot provide evaluation for the combined effectiveness of FLE and SLE. We create FSMotif, with complex shifts
on both structure and feature, to prove the superiority of our methods when used concurrently. FSMotif is a synthetic dataset
where each graph is generated by connecting a base graph and a motif, with the label determined by the motif solely and all
nodes given color features. The shift domains are 1.the base graph type and the color feature, and 2.the graph size and the
color feature. Specifically, we generate graphs using seven colors, five label irrelevant base graphs (wheel, tree, ladder, star,
and path), and three label determining motifs (house, cycle, and crane).

H.2. Setup Details

We conduct experiments on 8 datasets with 17 baseline methods to evaluate G-Splice, and on 5 datasets with 16 baselines
for FeatX. As a common evaluation protocol, datasets for OOD tasks provides OOD validation/test sets (Gui et al., 2022a;
Bevilacqua et al., 2021) to evaluate the model’s OOD generalization abilities. Some datasets also provide ID validation/test
sets for comparison (Gui et al., 2022a). For all experiments, we select the best checkpoints for OOD tests according to
results on OOD validation sets; ID validation and ID test are also used for comparison if available. For graph prediction and
node prediction tasks, we respectively select strong and commonly acknowledged GNN backbones. For each dataset, we
use the same GNN backbone for all baseline methods for fair comparison. For graph prediction tasks, we use GIN-Virtual
Node (Xu et al., 2019a; Gilmer et al., 2017) as the GNN backbone. As an exception, for GOOD-Motif we adopt GIN (Xu
et al., 2019a) as the GNN backbone, since we observe from experiments that the global information provided by virtual
nodes would interrupt the training process here. For node prediction tasks, we adopt GraphSAINT (Zeng et al., 2020) and
use GCN (Kipf & Welling, 2017) as the GNN backbone. For all the experiments, we use the Adam optimizer, with a weight
decay tuned from the set {0, le-2, 1e-3, le-4} and a dropout rate of 0.5. The number of convolutional layers in GNN
models for each dataset is tuned from the set {3, 5}. We use mean global pooling and the RELU activation function, and the
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dimension of the hidden layer is 300. We select the maximum number of epochs from {100, 200, 500}, the initial learning
rate from {le-3, 3e-3, 5e-3, le-4}, and the batch size from {32, 64, 128} for graph-level and {1024, 4096} for node-level
tasks. All models are trained to converge in the training process. For computation, we generally use one NVIDIA GeForce
RTX 2080 Ti for each single experiment.

H.3. Hyperparameter Selection

In all experiments, we perform hyperparameter search to obtain experimental results that can well-reflect the performance
potential of models. For each dataset and method, we search from a hyperparameter set and select the optimal one based on
OOD validation metric scores.

For each baseline method, we tune one or two algorithm-specific hyperparameters. For IRM and Deep Coral, we tune the
weight for penalty loss from {le-1, 1, 1el, 1e2} and {1, le-1, le-2, 1le-3}, respectively. For VREx, we tune the weight for
VREX’s loss variance penalty from {1, lel, le2, 1e3}. For GroupDRO, we tune the step size from {1le-1, le-2, le-3}. For
DANN, we tune the weight for domain classification penalty loss from {1, le-1, le-2, 1e-3}. For Graph Mixup, we tune the
alpha value of its Beta function from {0.4, 1, 2}. The Beta function is used to randomize the lamda weight, which is the
weight for mixing two instances up. For DIR, we tune the causal ratio for selecting causal edges from {0.2, 0.4, 0.6, 0.8}
and loss control from {lel, 1, le-1, le-2}. For EERM, we tune the learning rate for reinforcement learning from {1e-2,
le-3, Se-3, le-4} and the beta value to trade off between mean and variance from {1, 2, 3}. For SRGNN, we tune the weight
for shift-robust loss calculated by central moment discrepancy from {le-4, le-5, 1le-6}. For DropNode, DropEdge and
MaskFeature, we tune the drop/mask percentage rate from {0.05, 0.1, 0.15, 0.2, 0.3}. For FLAG, we set the number of
ascending steps M = 3 and tune the ascent step size from the set {1e-2, le-3, Se-3, le-4}. For LISA, we tune the parameters
of the Beta function in the same way as Graph Mixup. For G-Mixup, we set the augmentation number to 10, tune the
augmentation ratio from {0.1, 0.2, 0.3} and the lambda range from {[0.1,0.2], [0.2,0.3]}. For GIL, we tune IGA lambda
value from {le-2, le-3, le-4} and set top ratio of subgraphs and number of environments by its originally reported optimum.
For CIGA, we tune the size ratio of the causal subgraphs from {0.4, 0.6, 0.8}, while contrastive loss and hinge loss weights
from {0.5, 1, 2}.

For G-Splice, we tune the percentage of augmentation from {0.6, 0.8, 1.0}. The actual number of component graphs f is
tuned from {2, 3, 4}, and the augmentation selection is tuned as a 3-digit binary code representing the 3 options, with at
least one option applied. For the pre-training of the bridge generation, hyperparameters regularizing the bridge attribute and
KL divergence « and S are tuned from {1.5, 1, 0.5, 0.1}. When the additional VREx-like regularization is applied, we tune
the weight of loss variance penalty from {1, lel, 1e2}. For FeatX, we tune the the shape parameter a and scale parameter b
of the gamma function I'(a, b) from {2, 3, 5,7, 9} and {0.5, 1.0, 2.0}, respectively.

I. Supplimentary Experiment

First we provide additional results comparing ID and OOD performances of G-Splice and baseline methods as Table 3.
Note that ‘R’ means invariant regularization with G-Splice. Since we can generate add-on environments, to make adequate
use of the augmented environment information for OOD generalization, we optionally apply an invariant regularization.
The rationale behind incorporating it is to show our advantage as a data augmentation strategy, i.e., can be combined with
invariant regularizations in parallel to further boost performance.

To show the OOD effectiveness of feature extrapolation, we evaluate FeatX on 5 graph OOD datasets with feature shifts.
We adopt 5 datasets from the GOOD benchmark, CMNIST-color, Cora-word, Twitch-language, WebKB-university, and
CBAS-color, with more details in Appendix H. All shift domains are structure-irrelevant and provide specific evaluation on
features. We report accuracy in percentage for all 5 datasets.

OOD performances of FeatX and all baselines on feature shifts are shown in Table 4. We can observe that FeatX consistently
outperforms all other methods in OOD test results, showing its effectiveness in various feature OOD tasks. On GOODWebKB,
FeatX substantially outperforms most baselines by 100% in accuracy. On synthetic dataset GOODCBAS, FeatX outperforms
most baselines by 14% and achieves OOD results close to ID results, substantially solving the feature shift with feature
extrapolation. FeatX does not always outperform in ID settings; also, FeatX shows significant performance gain compared
with other graph data augmentation methods. This reveals that FeatX specifically enhances generalization abilities in feature
rather than making overall progress in learning with simple data augmentation. FeatX succeeds in selecting non-causal
features and lead the model to extrapolate with OOD samples spanning the selected feature space.
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Table 3. Performances of 16 baselines and G-Splice on 8 datasets with structure shift. 1 indicates higher values correspond to better
performance. IDip denotes ID test results with ID validations, while OODoop denotes OOD test results with OOD validations. All
numerical results are averages across 3+ random runs. Numbers in bold represent the best results and underline the second best.

structure GOOD-HIV-sizet GOOD-HIV-scaffoldt GOOD-SST2-lengthT Twitter-lengthT GOOD-Motif-sizet GOOD-Motif-base DD-sizeT  NCIl-sizeT
IDip 0OO0Doop IDip 0OO0Doop IDp 0OODoop IDip OO0Doop IDip OO0Doop IDip 0OO0Doop 0OO0Doop 0OO0Doop

ERM 83.72+1.06  59.94+2.86 82.79+1.10 69.58+1.99  89.82+0.01 81.30£0.35 65.70+1.21 57.04+1.70 92.2840.10 51.74£227 92.60£0.03  68.66+3.43  0.15+0.11  0.16%0.10
IRM 81.33+1.13  59.94£1.59 81.35+0.83 67.97+2.46 89.41+0.11 79.91£1.97 64.02+0.56 57.72+1.03  92.18+0.09 53.68+4.11  92.60+0.02  70.65+3.18  0.06+0.08  0.11+0.07
VREx 83.47+1.11 58.49+222 82.11x1.48 70.77+1.35 89.51+0.03 80.64+0.35 65.34+1.70 56.37+0.76  92.25+0.08 54.47+#3.42 92.60+0.03  71.47+2.75  0.14£0.10  0.22+0.12
GroupDRO 83.79+0.68 58.98+1.84 82.60+1.25 70.64+1.72 89.59+0.09 79.21#1.02 65.10£1.04 56.84+0.63  92.29+0.09 51.95+2.80 92.61£0.03  68.24+1.94  0.02£0.02  0.01+0.04

DANN 83.90+0.68  62.38+2.65 81.18+1.37 70.63+1.82 89.60+0.19 79.71£1.35 65.22+1.48 55.71£1.23  92.23+0.08 51.46+3.41 92.60£0.03 ~ 65.47+5.35  0.12+0.09  0.15£0.07
Deep Coral 84.70+1.17  60.1143.53  82.53£1.01 68.61+1.70  89.68+0.06 . 56.14£1.76  92.22+0.13  53.71£2.75 92.61+0.03  68.88+3.61 0.11£0.15  0.09+0.02
DIR 80.46+0.55 82.54+0.17  67.47+2.61 1+
82.1240.52  66.18+2.87  86.77£1.06

56.81£0.91  84.53£1.99 61.50+15.69  0.42+0.03 0.15+0.03

GIL 80.02+0.78 77+1. R 35 .05£1.03  55.46£1.48 83.67+1.54 38.60+10.58  0.14+0.02  0.01+0.03
CIGA 81.65+1.85 81.76£0.35  71.47£1.29  89.00£0.15 . 64.10£1.67  57.19£1.15  90.33+0.97 45.59+6.44  0.30+0.05 0.23+0.06
DropNode 84.09+0.36  58.52+0.49  83.55£1.07 71.18+1.16 90.19+0.21  81.14+£1.73  64.56£0.17 56.76+0.24  91.22+0.11  54.14+3.11  92.41£0.09  74.55+5.56  -0.02+0.02  0.08+0.06
DropEdge 83.73+0.41  59.01£1.90 81.63£0.92 71.46x1.63 90.30+0.18 78.93+1.34  63.72£0.51 57.42+0.48 90.07+0.14 45424190 82.98+0.99  37.69+1.05 -0.02+0.03  0.12+0.05
MaskFeature ~ 83.444+2.58  62.3%3.17  83.30£0.45 65.90+3.68 89.83+0.24 82.00£0.73 64.92+1.45 57.67+1.11 92.18+0.01 52244375 92.60+£0.02  64.9846.95  -0.02+0.02  0.03+0.02
FLAG 85.37+0.24  60.8442.99 82.02+0.67 69.11+0.83 89.87+0.26 77.05£1.27 64.74£1.10  56.56£0.56 92.39£0.04 50.85+£0.53  92.70+0.07  66.17+2.87  0.02+0.06  0.06+0.02
Graph Mixup ~ 83.16+1.12  59.03£3.07 82.29+1.34 68.88+2.40 89.78+0.20 80.88+0.60 63.54%1.35 55.97£1.67 92.02+0.10 51.48+3.35 92.68+0.05  70.0842.06  -0.08+0.06  -0.02+0.06
LISA 83.79+1.04  61.50£2.05 82.82+1.00 71.94x1.31 89.36x0.16 80.67+0.43 63.84+2.15 56.14+0.88 92.27#0.11 53.68£2.65 92.71x0.01  75.58+0.75  0.20£0.02  0.05£0.03
G-Mixup 84.21+1.53  61.95+£3.15 82.83£0.53  70.13x2.40 89.75%0.17 80.28+1.49  65.10£1.90 56.05x1.76 ~ 92.19+0.07 53.93%3.03  92.60+£0.00  49.27+4.84  -0.02+0.02  0.07x0.04
G-Splice 84.75+0.18  64.46+1.38  83.23%0.97 72.82+1.16 89.71+0.67 82.31+0.59 64.80£0.92 58.02+0.40 92.15£1.02 86.53£2.66 91.92+0.09 79.86+13.00  0.45+0.09  0.37+0.08

G-Splice+R 84.85+0.19  65.56+0.34 83.36+0.40 73.28+0.16 89.10+0.81 82.34+0.24 64.68+1.15 58.34+0.58 91.93+0.21  85.07+4.50 92.14+£0.29  83.96+7.38  0.45+0.04  0.40+0.03

Table 4. Performances of 16 baselines and FeatX on 5 datasets with feature shift. GOODCMNIST is graph-level while others are
node-level datasets. “—" denotes the method does not apply on the task.

feature GOOD-CMNIST-color GOOD-Cora-word GOOD-Twitch-language?  GOOD-WebKB-university T GOOD-CBAS-colort
IDip OODoop IDip OODoop IDip OODoop IDip OODoop IDp OODoop
ERM 77.96+£0.34  28.60+2.01 70.43+0.47 64.86+0.38 70.66+0.17 48.95+3.19 38.25+0.68 14294324  89.29+£3.16  76.00+3.00
IRM 77.92+0.30 27.83%1.84 70.27+0.33 64.77£0.36  69.75+0.80 47.21£0.98  39.34+2.04 13.49+0.75  91.00+£1.28  76.00+3.39
VREx 77.98+0.32 28.48+2.08 70.47+0.40 64.80+0.28 70.66+0.18 48.99+3.20 39.34+1.34 14.29+43.24  91.14+2.72  77.14+1.43
GroupDRO 77.98+0.38  29.07£2.62 70.41£0.46 64.72+0.34 70.84+0.51 47.20+0.44 39.89+1.57 17.20£0.76  90.86+2.92  76.14+1.78
DANN 78.00£0.43  29.14+2.93 70.66+£0.36 64.77£0.42 70.67+0.18 48.98+3.22 39.89+1.03 15.08+0.37  90.14+3.16  77.57+2.86

Deep Coral 78.64+0.48  29.05+2.19 70.47+£0.37 64.72+0.36 70.67+0.28  49.64+2.44  38.25+1.43 13.76x1.30  91.14+2.02  75.86+3.06
DIR 31.09+£5.92  20.60+4.26 - - - - - - - -

EERM - - 68.79+0.34 61.98+0.10 73.87+0.07 51.34+1.41 46.99+1.69  24.61+4.86  67.62+4.08 52.86+13.75
SRGNN - - 70.27£0.23  64.66+£0.21  70.58+0.53 47.30£1.43  39.89+1.36 13.23£2.93  77.62+1.84  74.29+4.10

DropNode 83.51+0.13  33.01+0.12 - - - - - - - -
DropEdge 79.51£0.22  26.83+0.81 71.03+0.15 65.55+0.29 70.66+0.10 47.94+3.42 38.79+0.77 14.28+2.34  84.29+1.16  77.62+3.37
MaskFeature ~ 78.32+0.63  44.85+2.42  70.99+0.22  64.42+0.35 70.58+0.80 48.61+3.95 39.89+0.77 15.08+1.30  90.48+7.50  77.62%1.35

FLAG 79.05+0.41 37.74+7.88 70.59+0.11 64.95+0.41 70.54+0.62 45.66x1.17 37.70+4.01 12.70+2.33 91.90£2.69 81.43+1.17

Graph Mixup  77.40+0.22 26.47+£1.73 71.54+0.63 65.23+0.56 71.30+0.14 52.27+0.78 54.65+3.41 17.46+1.94 73.57+8.72 70.57+7.41

LISA 76.75+0.46  29.63+2.82  70.15+0.20 64.96+0.17 71.09+0.53 45.55+0.55 37.70+0.00 16.40+2.62 94.29+1.16 83.34+1.35

G-Mixup 77.58+0.29  26.40+1.47 - - - - - - - -

FeatX 69.54+1.51 62.49+2.12 70.39+0.36 66.12+0.54 70.94+0.37 52.76+0.23  50.82+0.00 32.54+8.98 92.86%+1.17 87.62+2.43
J. Ablation Studies

J.1. Bridge Generation Studies for G-Splice
J.1.1. VAE AS BRIDGE GENERATOR

In this work, we adopt conditional VAE (Kingma & Welling, 2013; Kipf & Welling, 2016; Sohn et al., 2015) as the major
bridge generator for G-Splice due to its adequate capability and high efficiency. We show empirically that VAEs are well
suitable for our task.

We reconstruct the generation process with diffusion model (Ho et al., 2020), a generative model with high capability and
favorable performances across multiple tasks. Diffusion models consist of a diffusion process which progressively distorts a
data point to noise, and a generative denoising process which approximates the reverse of the diffusion process. In our case,
the diffusion process adds Gaussian noise independently on each node and edge features encoded into one-hot vectors at
each time step. Then the denoising network is trained to predict the noises, and we minimize the error between the predicted
noise and the true noise computed in closed-form. During sampling, we iteratively sample bridge indexes and attribute
values, and then map them back to categorical values in order that we obtain a valid graph. We compare performances and
computational efficiency of the two generative models. As a baseline for bridge generation, we also present the results of
random bridges, where bridges of predicted number and corresponding attributes are randomly sampled from the group of
component graphs. Note that we do not apply the regularization in these experiments.

As can be observed in Table 5, OOD test results from the two generative models are comparable, both significantly improving
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Table 5. Comparison on bridge generation methods. G-Splice-Rand, G-Splice-VAE, and G-Splice-Diff show the performance of G-Splice
on GOODHIV with no bridge, random bridge, VAE generated bridge, diffusion model generated bridge, respectively. The train time ratio
presents the entire training duration of a method, including module pre-training time, divided by the training duration of G-Splice-Rand in
average.

Method GOOD-HIV-size? GOOD-HIV-scaffold Train time ratio
IDip 0OO0Doop IDip OODoop
ERM 83.72+1.06 59.94+2.86 82.79+1.10 69.58+1.99 0.57
G-Splice-No-Bridge  84.06£0.09 60.37+£0.20  83.50+0.55 69.36+1.87 1
G-Splice-Rand 83.25+0.96 62.36+2.25 84.33+0.69 71.89+2.80 1
G-Splice-VAE 84.75+0.18 64.46+£1.38 83.23+0.97 72.82+1.16 1.52
G-Splice-Diff 84.35£0.35 64.09+0.82 83.45+0.97 72.95+1.80 20.25

over G-Splice-Rand. The diffusion model may be slightly limited in performance gain due to the discreteness approximations
during sampling. The results implies the necessity of generative models in the splicing operation for overall structural
extrapolation. Meanwhile, this shows that VAE is capable of the bridge generation task. In contract, the training duration
of diffusion model is 13 times that of VAE due to the sampling processes through massive time steps. Overall, we obtain
comparable performances from the two generative models, while VAEs are much less expensive computationally. Therefore,
empirical results demonstrate that adopting VAE as our major bridge generator is well suitable.

J.1.2. BRIDGE GENERATION DESIGN

As we have introduced in Sec 4.1, we generate bridges of predicted number along with corresponding edge attributes
between given component graphs to splice graphs. We do not include new nodes as a part of the bridge, since we aim at
preserving the local structures of the component graphs and extrapolating certain global features. More manually add-on
graph structures provide no extrapolation significance, while their interpolation influence are not proven beneficial. We
evidence the effectiveness of our design with experiments. We additionally build a module to generate nodes in the bridges.
The number of nodes is predicted with a pre-trained predictive model and then a generative model generates the node
features. Moreover, we evaluate the results with fixed instead of generated bridge attributes. The performances with our
original bridge generator, node generation applied and edge attribute generation removed is summarized as follows. Note
that we do not apply the regularization in these experiments.

Table 6. Comparison of bridge generation designs. G-Splice orig, G-Splice + node, and G-Splice - attr show the performance of G-Splice
on GOODHIV with the original bridge generator, node generation applied and edge attribute generation removed, respectively.

Method GOOD-HIV-size? GOOD-HIV-scaffoldt
IDip OODoop IDip OODoop
ERM 83.7241.06 59.94+2.86 82.79+1.10 69.58+1.99

G-Splice orig 84.75+0.18 64.46+1.38  83.23+x0.97 72.82+1.16
G-Splice + node  83.14+0.82  62.65+2.67 84.67+0.48 71.76+1.76
G-Splice - attr 84.50+0.44 64.13+0.62 83.41+1.10 72.07+1.52

As can be observed in Table 6, OOD test performances from the original bridge generator remains the highest. Without
attribute generation, fixed bridge attributes degrades the overall performance due to the manual feature of the bridges, which
may mislead the model with spurious information. When we include nodes as a part of the bridge, similarly the manually
add-on graph structure may inject spurious information to the model and perturb the preservation of local structures, leading
to limited improvements. This evidences the effectiveness of our design for bridge generation.

J.2. Comparison of Extrapolation Procedures for G-Splice

We evidence that certain extrapolation procedures specifically benefit size or base/scaffold shifts, as our theoretical analysis
in Sec. 4 and 4.4. For size and base/scaffold shifts on GOODHIV and GOODMotif, we extrapolation with each of the three
augmentation options, Gy, Giny + f - Geny and f - G, individually and together, and compare the OOD performances. Note
that we apply the VREXx-like regularization in these experiments.

26



Graph Structure Extrapolation for Out-of-Distribution Generalization

Table 7. Comparison of extrapolation procedures for G-Splice. Performances of G-Splice on GOODHIV and GOODMotif with augmenta-
tion options single causal subgraph, causal and environmental subgraphs spliced, whole graphs spliced, and all three options applied.
Optimal show the performances with options selected after hyperparameter tuning.

G-Splice GOOD-HIV-sizet GOOD-HIV-scaffoldt GOOD-Motif-sizet GOOD-Motif-base
IDp OODoop IDp OODoop IDip OODoop IDip OODoop
Giny 83.90+0.40 63.04+2.40 83.19+0.69 72.04+£0.96 91.10+£0.10 76.95+4.52 92.12+0.14  69.59+3.67
Giv + f - Geny  85.40+0.82  62.65+2.16 83.97+0.57 72.83+1.86 91.08+0.63 72.10£5.43 92.01+0.23  73.92+5.44
-G 84.75+0.18 63.94+1.46 85.10+0.67 73.14+x1.05 91.93+0.21 85.07+4.50 92.12+0.15 76.19+10.99
All 85.09£0.61 63.16£1.38 83.47+0.45 72.39+0.52 92.00+0.30 82.86+2.53 92.01+0.16  80.09+12.10
Optimal 84.85+0.19 65.56+0.34 83.36+£0.40 73.28+0.16 91.93+0.21 85.07+4.50 92.14+0.29  83.96+7.38

Let the three augmentation options, Giyy, Giny + f * Geny and f - G be numbered 1, 2, and 3. The optimal augmentation
options for GOOD-HIV-size, GOOD-HIV-scaffold, GOOD-Motif-size, and GOOD-Motif-base after hyperparameter tuning
are 143, 2+3, 3, and 2+3, respectively. As can be observed from Table 7, Gj,y and f - G have advantages in size shifts,
while Giny + f - Geny and f - G are better for base/scaffold shifts. This matches our theoretical analysis of augmentation
procedures. For size distribution shifts, G,y and f - G environments enable size extrapolation by creating smaller and
larger graphs outside the training distribution, respectively. For base/scaffold distribution shifts, the two new environments
respectively construct graphs without base/scaffold, and graphs with f base/scaffolds, achieving base extrapolation with
new base/scaffolds introduced. Splicing whole graphs has the advantage of extrapolating to larger graphs, simplicity in
operation, and little loss in local structural information. Extracting subgraphs allows better flexibility for G-Splice, making
graphs smaller than the training size accessible. In addition, the performance gain from f - G shows the effectiveness of the
simple splicing strategy by itself.

J.3. Ablation Studies on FeatX

FeatX enables extrapolation w.r.t. the selected variant features. By generating causally valid samples with OOD node
features, FeatX essentially expands the training distribution range. Theoretical analysis evidences that our extrapolation
spans the feature space outside P""(X) for @, thereby transforming OOD areas to ID. We further show with experiments
that extrapolation substantially benefits feature shifts in OOD tasks compared with interpolation, which can also improve
generalization by boosting learning processes. In addition, we show that our invariance mask and variance score vectors
succeed in selecting non-causal features by comparisons between perturbation on selected features and all features.

Table 8. Performances w/o feature selection and extrapolation for FeatX. We show the performance comparisons of interpolating or
extrapolating the selected or all features on GOODCMNIST, GOODWebKB and GOODCBAS.

Feature Perturbation GOOD-CMNIST-colorf  GOOD-WebKB-university GOOD-CBAS-colort

IDp OODoop IDip OODoop IDp OODoop
ERM 77.96+0.34 28.60+2.01 38.25+0.68 14.294+3.24 89.29+3.16  76.00+3.00
All Interpolation 76.62+0.46  29.61+2.54 37.56+3.67 15.59+2.48 92.00£0.15 81.76%1.75
All Extrapolation  75.14+0.38  54.13+5.08 38.26+5.18 17.10+3.45 93.25+0.43  84.28+3.67

Selected Interpolation  78.15+0.30  31.65%5.02 43.15#1.42  26.16+2.50  90.10+2.14  80.37+1.35
Selected  Extrapolation  69.54+1.51 62.49+2.12 50.82+0.00  32.54+8.98  92.86+1.17 87.62+2.43

As can be observed from Table 8, whether selecting non-causal features and the choice between interpolation and extrapo-
lation both show significant influence on generalization performances. In all three datasets, extrapolation performances
exceed corresponding interpolation performances with a clear gap, demonstrating the benefits of extrapolation by generating
samples in OOD area that interpolation cannot reach. In GOODWebKB, perturbing selected non-causal features achieve
significant improvements over perturbing all features, regardless of interpolation and extrapolation. This evidences the
effectiveness of non-causal feature selection using variance score vectors, empirically supporting our design. In GOODCM-
NIST and GOODCBAS, since the features are manually added colors, the effect of feature selection is not as obvious as in
GOODWebKB, the real world dataset. Experimental results evidence the effectiveness of the strategies designed in FeatX.
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K. Metric Score and Loss Curves

We report the metric score curves and loss curves for part of the datasets in Figure 3-6. As can be observed from each pair
of curves, our proposed methods, G-Splice and FeatX, consistently achieve better metric scores and lower loss compared
with other baselines during the learning process. This evidences the substantial improvements achieved by structure and
feature extrapolation, which benefits OOD generalization in essence.
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0.66
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Figure 3. ROC-AUC score curve and loss curve for GOODHI V-size.
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Figure 4. Accuracy score curve and loss curve for GOODMotif-size.
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Figure 5. Accuracy score curve and loss curve for GOODCMNIST-color.
GOOD-CBAS-color ACC GOOD-CBAS-color Loss
0.9 3.5
--- ERM
304 --- IRM
0.8 ' --- VREx
--- DANN
% 251 -=-=-Coral
0.7 o — LISA
— 2.0 —— GroupDRO
0.6 I 1.5 — hee
: ol SRGNN
= —— FLAG
0.5 1.0 —— DropEdge
——— MaskFeat
0.51 —— Mixup
0.4 1 . . . . . . . . . . . . . . i . —— FeatX
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
Epoch Epoch

Figure 6. Accuracy score curve and loss curve for GOODCBAS-color.
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