
Published as a conference paper at ICLR 2021

Python Javascript Go Ruby

Python 1.00 0.43 0.42 0.79
Javascript 0.43 1.00 0.84 0.39

Go 0.43 0.84 1.00 0.38
Ruby 0.79 0.39 0.38 1.00

Table 5: Pairwise cosine similarities of the learned language embeddings of the CODE TRANS-
FORMER.

ACKNOWLEDGEMENTS

We are grateful to Dylan Bourgeois for having paved the way to this research contribution with
his thesis work (Bourgeois, 2019). We further thank Simon Geisler for his helpful suggestions and
proofreading the paper, as well as the anonymous reviewers for their constructive feedback and
fruitful discussions.

This research was supported by the TUM International Graduate School of Science and Engineering
(IGSSE). Stanford University is supported by DARPA under Nos. N660011924033 (MCS); ARO
under Nos. W911NF-16-1- 0342 (MURI), W911NF-16-1-0171 (DURIP); NSF under Nos. OAC-
1835598 (CINES), OAC-1934578 (HDR), CCF-1918940 (Expeditions), IIS-2030477 (RAPID);
Stanford Data Science Initiative, Wu Tsai Neurosciences Institute, Chan Zuckerberg Biohub, Ama-
zon, JPMorgan Chase, Docomo, Hitachi, JD.com, KDDI, NVIDIA, Dell, Toshiba, Intel, and Unit-
edHealth Group. Jure Leskovec is a Chan Zuckerberg Biohub investigator.

A APPENDIX

A.1 DISTANCE ENCODING FUNCTION

For encoding scalar relation values via vectors we employ encoding functions � : R ! Rd, where d
is the model’s embedding dimension. We choose the popular sinusoidal encoding function presented
in Vaswani et al. (2017):

�(ri!j)2k = sin
⇣ ri!j

M2k/d

⌘
�(ri!j)2k+1 = cos

⇣ ri!j

M2k/d

⌘
,

where 1 k < d/2 is the position in the encoding vector and M is some constant; we adopt
M = 10, 000 as chosen by (Vaswani et al., 2017). Note that the distance encoding functions have
no trainable parameters.

A.2 MULTILINGUAL REPRESENTATION ANALYSIS

In Table 5, we show the pairwise cosine similarities of the learned language embeddings of the
CODE TRANSFORMER. We can see that the pairs Python-Ruby and Javascript-Go have similar
language embeddings. This aligns well with roots of language design and common use cases of the
languages.

Moreover, in Table 6, we show selected snippets starting with is, main, or load (left) and their
best embedding matches from other languages (right).

A.3 DATA PREPROCESSING

A.3.1 TEXTUAL CODE SNIPPET PREPROCESSING

1. Tokenize code snippets with Pygments language-specific tokenizer.
2. Remove comments (both multi-line, single-line and doc comments).

The comment token types. pygments.token.Comment and
pygments.token.Literal.String.Doc that are generated by Pygments are
used to identify comments.

14

Published as a conference paper at ICLR 2021

function _isEqualArray(a, b) {
if (a === b) {

return true;
}
if ((a === undefined) ||

(b === undefined)) {
return false;

}
var i = a.length;
if (i !== b.length){

return false;
}
while (i--) {

if (a[i] !== b[i]) {
return false;

}
}
return true;

}

func areSameFloat32Array(a, b []float32) bool {
if len(a) != len(b) {

return false
}
for i := 0; i < len(a); i++ {

if a[i] != b[i] {
return false

}
}
return true

}

function main() {
var rawData = $('.HeaderTexture[data-login-

user-email]').data();
if (rawData) {

me = {
name: rawData.loginUserName,
mail: rawData.loginUserEmail

};
getCartId(function (cart) {

me.cart = cart;
injectMenu();
refreshUsers(actions.updateUsers);
listenOnChanges(onChange);
listenOnOrderConfirm(onConfirm);

});
} else {

callback('no user');
}

}

func TaskSayHello(t *tasking.T) {
username := t.Flags.String("name")
if username == "" {

user, _ := user.Current()
username = user.Name

}

if t.Flags.Bool("verbose") {
t.Logf("Hello %s, the time now is %s\n",

username, time.Now())
} else {

t.Logf("Hello %s\n", username)
}

}

def _load_rule_file(self, filename):

if not (os.path.exists(filename)):
sys.stderr.write(

"rflint: %s: No such file or "
"directory\n" % filename

)
return

try:
basename = os.path.basename(filename)
(name, ext) = os.path.splitext(basename)
imp.load_source(name, filename)

except Exception as e:
sys.stderr.write(

"rflint: %s: exception while "
"loading: %s\n" % (filename, str(e))

)

func Backup(filename string) error {

info, err := os.Stat(filename)
if err != nil {

if os.IsNotExist(err) {
return nil

}
return err

}
if info.Size() == 0 {

return nil
}

files, err := filepath.Glob(
filename + _BACKUP_SUFFIX

)
if err != nil {

return err
}

numBackup := byte(1)

if len(files) != 0 {
lastFile := files[len(files)-1]
numBackup = lastFile[len(lastFile)-2] + 1
if numBackup > '9' {

numBackup = '1'
}

} else {
numBackup = '1'

}

return Copy(filename,
fmt.Sprintf("%s+%s˜", filename,

string(numBackup)))
}

Table 6: Selected snippets starting with is, main, or load (left) and their best embedding matches
from other languages (right).

15

Published as a conference paper at ICLR 2021

Figure 6: Example snippet and its corresponding AST obtained from GitHub Semantic.

3. Empty lines are removed.

4. Hard coded strings and numbers are replaced with a special [MASK STRING] and
[MASK NUMBER] token.

5. Indentation style of the code snippet is detected and whitespace characters at the beginning
of a line are replaced with a single [INDENT] or [DEDENT] token when indentation
changes.

6. Tokens are further split into sub tokens, e.g., setBottomHeight �! [‘set’, ‘bottom’,
‘height’]. Throughout our experiments, we use 5 input sub tokens. If a token consists
of less than 5 sub tokens, the remaining spaces are filled with a special [PAD] token.

7. Any remaining tokens that only consist of white spaces are removed. The only white
space characters that are kept are line breaks ‘\n’.

8. Any code snippets where the Pygments tokenizer cannot parse a token are discarded.

A.3.2 STAGE 1 PREPROCESSING (GENERATION OF ASTS)

1. Stripped code snippets are used to generate language-specific ASTs. For Java, we use the
AST parser from the java-parser project. The ASTs contain node types and source ranges.
For Python, JavaScript, Ruby and Go, we use semantic.

2. Snippets that lead to an AST parse error are discarded.

3. We calculate a mapping between tokens and nodes in the AST. Every token is assigned
to the node in the AST with shortest source range that still encompasses the source range
of the token.
To find such a node, we originally intended to make use of the assumption that source
ranges of child nodes do not overlap. Then, one could easily find the node with smallest
encompassing source range by greedily selecting at every layer in the AST the child that
encompasses the token’s source range (there can only be at most one child that fulfills this).
However, this assumption does not hold for all ASTs (see Figure 6 for an example). As a
heuristic, we greedily select the child node with the shorter source range in case there were
multiple child nodes with encompassing source ranges. This approximation seems to be
sufficient in our case, and limits runtime as we do not have to consider multiple paths in
the AST. It is also sufficient to stop when no child node encompasses the source range of
the token, as in ASTs the source ranges of child nodes are always contained in the source
ranges of their parent.

16

Published as a conference paper at ICLR 2021

A.3.3 STAGE 2 PREPROCESSING (CALCULATION OF DISTANCE MATRICES)

1. Tokens are vocabularized. Any token occurring less than 100 times in the training set is
replaced by an <unk> token.

2. We calculate multiple pair-wise relations between nodes in the AST:
• Personalized Page Rank (PPR)

We interpret the negative logarithm of PPR as a distance. We use a teleport probability
of ↵ = 0.15 and a threshold of e�5, i.e., anything with � logPPR > 5 is considered
unreachable

• Shortest path length between two nodes
• Ancestor shortest paths (bidirectional). That is, the parent has an ancestor shortest

path distance of 1 to all its children and the child has a distance of -1 to its parents. We
consider nodes that are not ancestors or descendants of a node (i.e. not reachable by
following only parent or only child relations) as not connected in the ancestor shortest
paths relation. We encode this with a very large value in their distance; we have found
a value of 1, 000 to work well in practice.

• Next sibling shortest paths (bidirectional, analogous to the ancestor shortest paths)
Note that the ancestor shortest paths and next sibling shortest paths are required because
treating the AST as a normal graph leads to ambiguity. In a graph, the neighbors of a node
have no ordering; however in the AST, the order of the children of a node reflects their
order in the code. Therefore, we explicitly include the next sibling shortest paths. The
ancestor shortest paths would not be required if we treated the AST as a directed graph; in
this case, however, a leaf node could not reach any other node in the AST, and therefore
both PPR and shortest path length are not useful in this case. Therefore, we model the AST
as undirected and inject the ancestor / child edges to avoid ambiguity.

3. Distance values are binned into 32 bins using area-based exponential binning with a
growth factor of 1.3, i.e., the area of a bin’s rectangle (x: bin range, y: number of val-
ues in bin) will be approximately 1.3 times bigger for the next bin (going away from the
bin that contains the zero value). Additionally, for discrete distance measures (such as se-
quence distance or shortest path length), we hard-code 9 values around 0 to have their own
bins. For instance, on the sequence distance the values �4,�3, . . . , 4 have their individual
bins, and around those values we employ the exponential binning.

4. Punctuation tokens (such as points or brackets) are removed from the input sequence, as
experiments showed that their presence does not improve performance but slows down
training due to bigger input sizes.

5. Snippets that are longer than MAX NUM TOKENS after punctuation tokens are removed are
discarded from the training set. Throughout our experiments, we use MAX NUM TOKENS
= 512. During evaluation on the test set, we use MAX NUM TOKENS = 1000.

A.4 INPUT EMBEDDINGS TO THE MODEL

Besides its five subtokens (e.g., [‘get’, ‘data’, ‘[PAD]’, ‘[PAD]’, ‘[PAD]’]),
each input token has a token type (coming from the Pygments tokenizer) and an AST node type.
The AST node type is the type of the node assigned to each respective token, as described in Section
A.3.2. We concatenate the embeddings of the five subtokens, the token type, and the AST node
type. Then, we apply a linear layer (without activation function) to project down to the model’s
embedding dimension.

A.5 INPUT TO THE GREAT BASELINE

As mentioned in the main text, we also compare with GREAT Hellendoorn et al. (2020). Since
their preprocessing pipeline is proprietary and could not be shared with us even after contacting the
authors, we provide to GREAT the same AST distances as our model. Since GREAT uses edges in-
stead of distances to encode relations in the Structure, we essentially threshold the ancestor, sibling,
and shortest-paths distances and provide the edges where the distances are equal to 1 (including their
edge types) to the model.

17

Published as a conference paper at ICLR 2021

(a) CODE TRANSFORMER

Hyperparameter Value

Activation GELU
Input Nonlinearity tanh
Num. layers 3
d 1024
dFF 2048
pdropout 0.2
Num. heads 8

(b) GREAT (Hellendoorn et al.,
2020)

Hyperparameter Value

Activation GELU
Num. layers 3
d 1024
dFF 2048
pdropout 0.2
Num. heads 8

Table 7: Code Summarization hyperparameters

A.6 EXPERIMENTAL SETUP

Table 7 shows hyperparameters of our models for code summarization. For all our experiments, we
use a Transformer Decoder with one layer and teacher forcing to generate 6 output sub tokens. We
also employ label smoothing of 0.1. As optimizer, we use Adam with a learning rate of 8e�5 and
weight decay of 3e�5. Batch size during training is 8 with a simulated batch size of 128 achieved
by gradient accumulation.

Apart from comparing the CODE TRANSFORMER to baselines, we performed the following hyper-
parameter comparisons and ablation studies:

• CODE TRANSFORMER (structure-only)
Using only AST information as input, i.e., masking all tokens that do not correspond to a
leaf of the AST, and removing the token distance as a relation to be used by the model.
Further, token types are not fed into the model.

• CODE TRANSFORMER (context-only)
Here, we do not include any information on the AST (i.e. node types and distances on the
AST). This is effectively the XLNet backbone plus encoding of the token type returned by
the tokenizer.

• CODE TRANSFORMER (Max-Dist.)
Applying a Max Distance Mask of 5 to the shortest paths distance (i.e., model cannot see
a node that is more than 5 hops away no matter how small the other distances are). Early
results showed that, as expected, results deteriorate substantially when limiting our model’s
receptive field. Hence, we do not include these results in this work.

• Using 16 and 64 bins instead of 32 bins. This had no noticeable effect on performance.

A.7 CODE SUMMARIZATION EXAMPLES

In the Tables 8, 9, 10, 11, 12, 13, 14 and 15 we present example functions from the Java-small
dataset along with the different models’ predictions for the function name.

18

Published as a conference paper at ICLR 2021

public Summation next() {
return parts[i++];

}

Model Prediction

GREAT get x map
code2seq get parts
Ours w/o structure get
CODE TRANSFORMER get next

Ground Truth next

Table 8: The CODE TRANSFORMER is the only model to correctly identify the notion of getting the
next entry.

private Path findCacheFile(Path[] cacheFiles, String fileName) {
if (cacheFiles != null && cacheFiles.length > 0) {

for (Path file : cacheFiles) {
if (file.getName().equals(fileName)) {

return file;
}

}
}
return null;

}

Model Prediction

GREAT get path
code2seq find file
Ours w/o structure get file
CODE TRANSFORMER find cache

Ground Truth find cache file

Table 9: The CODE TRANSFORMER is the only model to both recognize that the task is to find a file
as well as the fact that it is about the cache. However, it did not correctly predict the file part of the
method name.

public int compare(Pair<LoggedJob, JobTraceReader> p1,
Pair<LoggedJob, JobTraceReader> p2) {

LoggedJob j1 = p1.first();
LoggedJob j2 = p2.first();
return (j1.getSubmitTime() < j2.getSubmitTime()) ? -1

: (j1.getSubmitTime() == j2.getSubmitTime()) ? 0 : 1;
}

Model Prediction

GREAT run
code2seq get submit time
Ours w/o structure compare
CODE TRANSFORMER compare

Ground Truth compare

Table 10: The CODE TRANSFORMER and the its context-only variant are the only models correctly
recognizing the ‘compare’ template in the method body.

19

Published as a conference paper at ICLR 2021

public static MNTPROC fromValue(int value) {
if (value < 0 || value >= values().length) {

return null;
}
return values()[value];

}

Model Prediction

GREAT get value
code2seq get value
Ours w/o structure to
CODE TRANSFORMER from value

Ground Truth from value

Table 11: The CODE TRANSFORMER is the only model to recognize that the snippet is similar to a
static factory method which is often preceded with from.

private Iterable<ListBlobItem> listRootBlobs(String aPrefix,
boolean useFlatBlobListing,
EnumSet<BlobListingDetails> listingDetails,
BlobRequestOptions options,
OperationContext opContext)

throws StorageException, URISyntaxException {
CloudBlobDirectoryWrapper directory = this.container.getDirectoryReference(aPrefix);
return directory.listBlobs(null, useFlatBlobListing,

listingDetails, options, opContext);
}

Model Prediction

GREAT list blobs
code2seq list blobs
Ours w/o structure list blobs
CODE TRANSFORMER list blobs by prefix

Ground Truth list root blobs

Table 12: All models could correctly identify the listBlobs() call in the return statement. However,
the CODE TRANSFORMER additionally comprehended that the specified prefix is quite important.

private static void dumpOpCounts(EnumMap<FSEditLogOpCodes, Holder<Integer>> opCounts) {
StringBuilder sb = new StringBuilder();
sb.append("Summary of operations loaded from edit log:\n ");
Joiner.on("\n ").withKeyValueSeparator("=").appendTo(sb, opCounts);
FSImage.LOG.debug(sb.toString());

}

Model Prediction

GREAT append
code2seq add
Ours w/o structure log
CODE TRANSFORMER log op counts

Ground Truth dump op counts

Table 13: Only the CODE TRANSFORMER could correctly identify that it is the op counts that should
be logged.

20

Published as a conference paper at ICLR 2021

static String execCommand(File f, String... cmd) throws IOException {
String[] args = new String[cmd.length + 1];
System.arraycopy(cmd, 0, args, 0, cmd.length);
args[cmd.length] = f.getCanonicalPath();
String output = Shell.execCommand(args);
return output;

}

Model Prediction

GREAT get canonical path
code2seq exec
Ours w/o structure get output
CODE TRANSFORMER exec command

Ground Truth exec command

Table 14: Only the CODE TRANSFORMER and code2seq could identify that the relevant part of the
method is concerned with executing a command instead of returning something.

protected void subView(Class<? extends SubView> cls) {
indent(of(ENDTAG));
sb.setLength(0);
out.print(sb.append('[').append(cls.getName()).append(']').toString());
out.println();

}

Model Prediction

GREAT print
code2seq print
Ours w/o structure print
CODE TRANSFORMER print sub view

Ground Truth sub view

Table 15: Only the CODE TRANSFORMER was able to link the print functionality to the object that
should be printed, which can only be inferred from the object’s class in the method parameters.

21

Published as a conference paper at ICLR 2021

Figure 7: Share of tokens in the labels also occurring in the bodies of methods.

Model Python Javascript Ruby Go
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

code2seq - - - - - - - - - - - -
GREAT 34.93 31.12 31.61 29.69 24.24 25.55 25.69 21.49 22.18 48.38 45.97 45.71
Ours w/o structure 36.87 32.17 32.97 31.30 25.03 26.64 31.43 25.34 26.63 49.78 46.73 46.69
Ours w/o pointer net 38.77 31.72 33.27 32.70 25.50 27.33 32.12 30.17 29.36 53.09 48.70 49.26

Ours 36.68 33.86 33.84 33.36 27.55 29.02 31.53 24.72 26.43 52.00 47.35 47.93

code2seq (Multilanguage) - - - - - - - - - - - -
GREAT (Multilanguage) 35.73 30.81 31.74 31.49 26.17 27.41 29.72 24.20 25.43 50.32 47.94 47.66
Ours w/o structure (Mult.) 36.78 29.92 31.58 32.60 26.02 27.74 31.71 26.07 27.24 51.91 47.58 48.15
Ours w/o pointer (Mult.) 37.18 30.52 32.04 33.95 25.92 28.11 32.76 25.04 27.01 53.50 48.54 49.35
Ours (Multilanguage) 38.10 33.32 34.18 34.29 28.69 30.08 33.30 28.33 29.29 53.86 50.46 50.61

Ours (Mult. + Finetune) 38.29 32.41 33.65 34.43 28.28 29.91 32.89 27.15 28.49 53.85 50.85 50.81
Ours (Mult. + LM Pretrain) 38.97 34.77 35.34 35.23 30.26 31.38 33.73 29.15 29.94 55.31 52.03 52.13

Table 16: Code summarization results on the CSN dataset (sample-F1).

A.8 ESTIMATION OF POINTER NETWORK POTENTIAL

In Table 2 we observe that the pointer network improves the F1 score for all languages except Go,
where counterintuitively it leads to reduced performance as measured by F1 score on the test set
(while it improves by about 3 points on validation). To investigate this, in Figure 7 we plot the
share of tokens in the labels also occurring in the bodies of methods in the different languages.
Intuitively, this gives an indication on how much gain we can expect from using a pointer network.
If the share were zero, then no token in the labels ever occur in the bodies of the methods, so the
pointer network cannot improve the prediction by pointing at the input. We see that for Go, there is
a strong mismatch between the test partition and the train/validation partitions, which much fewer
tokens from the labels occurring in the bodies of methods on test compared to train/validation. Thus,
we attribute the drop in performance observed by adding a pointer network on Go to this apparent
violation of the i.i.d. assumption.

A.9 CODE SUMMARIZATION RESULTS ON THE CSN DATASET (SAMPLE-F1)

In Table 16, we present our results on the CSN dataset as measured by the sample-F1 score.

22

	Introduction
	Related work
	Integrating Structure and Context in the Code Transformer
	Integrating Source Code and AST Representations of Programs.
	Efficient relative attention computation.

	Experimental setup
	Results
	Monolingual code summarization
	Multilingual code summarization

	Conclusion
	Appendix
	Distance encoding function
	Multilingual representation analysis
	Data preprocessing
	Textual code snippet preprocessing
	Stage 1 Preprocessing (Generation of ASTs)
	Stage 2 Preprocessing (Calculation of distance matrices)

	Input embeddings to the model
	Input to the GREAT baseline
	Experimental setup
	Code summarization examples
	Estimation of Pointer Network Potential
	Code Summarization Results on the CSN dataset (sample-F1)

