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S1 Augmented shortcuts for MSA

In this section, we analyze the feature diversity in a model stacked by AugMSA modules and prove
Theorem 2 in the main paper.

Supposing zl is the vector satisfying the definition of diversity r(Zl) (Eq (4) in the main paper) in
the l-th layer, the diversity r(Tli(Zl)) of feature outputted by the augmented shortcut Tli(·) can be
bounded as:

r(Tli(Zl)) ≤
∥∥Tli(Zl)− Tli(1z>l )

∥∥ =
∥∥σ(ZlΘli)− σ(1z>l Θli)

∥∥ , (S.1)

where the inequality comes from the definition of feature diversity (Eq (4) in the main paper). Taking
advantage of Lipschitz continuity [3, 1] of the linear projection and non-linear activation function
(e.g., GLUE), the bound can be further written as:

r(Tli(Zl)) ≤ λ ‖Θli‖
∥∥Zl − 1z>l

∥∥ = λ ‖Θli‖ r(Zl), (S.2)

where λ is the Lipschitz constant of non-linear activation function and ‖Θli‖ is the norm of weight
matrix Θli. The above inequation shows that the diversity of output feature Tli(Zl) can be bounded
as that of input feature Zl. Combining it with a single head attention module (Lemma A.1 in [2]) and
the original identity shortcut, the diversity r(Zl+1) after the AugMSA module is bounded as:

r(Zl+1) ≤ γ′√
d
r(Zl−1)3 + (1 +

T∑
i=1

λ ‖Θli‖)r(Zl), (S.3)

where γ′ is a constant related to the weights in the MSA module. Considering that H heads exist in
the MSA module, the diversity r(Zl+1) becomes:

r(Zl+1) ≤ Hγ′√
d
r(Zl−1)3 +H(1 +

T∑
i=1

λ ‖Θli‖)r(Zl) ≤ max(
Hγ√
d
r(Zl−1)3, 2Hαlr(Zl−1)),

(S.4)
where αl = 1 +

∑T
i=1 λ‖Θli‖ and γ = 2γ′. The above inequation can be unrolled to reflect how

feature diversity varies in the whole model. From the input feature Z0 to the current feature Zl, one
of the two terms (i.e., Hγ√

d
r(Zl−1)3 and 2Hαlr(Zl−1)) will be selected as the maximum value in

each layer, and then we have

r(Zl) ≤ max
0≤m≤l

(
Hγ√
d

) 3m−1
2

(2Hαm)3
m(l−m)r(Z0)3

m

. (S.5)

The above inequation matches the statement of Theorem 2 in the main paper.
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S2 Augmented shortcuts for MLP

Following that original shortcut connections exist in both MSA and MLP modules, the proposed
augmented shortcuts are also embedded into the MLP module (Eq. 10 in the main paper). In this
section, we analyze how the feature diversity varies in the Aug-ViT model stacked by AugMSA and
AugMLP modules.

The intermediate features of the Aug-ViT model are denoted as Zl and Z ′l , which are the input feature
of MSA and MLP modules, respectively. Supposing z′l is the vector satisfying the definition of
diversity r(Z ′l) (Eq (4) in the main paper) in the l-th layer, the diversity r(Zl+1) after the AugMLP
module can be bounded as:

r(Zl+1) ≤
∥∥∥AugMLP(Z′

l)−AugMLP(1z′>
l )

∥∥∥ ≤ (δ + βl)
∥∥∥Z′

l − 1z′>
l

∥∥∥ = (δ + βl)r(Z
′
l), (S.6)

where the first inequality comes from the definition of diversity Zl+1 and the second is from Lipschitz
continuity of the AugMLP module. Considering that the AugMLP module composes of linear
projections and non-linear activation functions (e.g., GLUE), it satisfies the Lipschitz continuity [3, 1].
The Lipschitz constant can be approximated as (δ + βl), where δ is the Lipschitz constant of MLP
module and βl = 1 +

∑T
i=1 λ‖Θ′li‖ is related to the augmented shortcuts [3]. Combining the bound

of feature diversity in the AugMSA module (Eq. S.4), the diversity in a block of Aug-ViT model is:

r(Zl+1) ≤ (δ + βl) max

(
Hγ√
d
r(Zl−1)3, 2Hαlr(Zl−1)

)
. (S.7)

Then for the whole Aug-ViT model, we have the following theorem:
Theorem S.1 Given a Aug-ViT model, the diversity r(Zl) of feature in the l-th layer can be bounded
by that of input data Z0, i.e.,

r(Zl) ≤ max
0≤m≤l

(
Hγ(δ + βm)√

d

) 3m−1
2

(2Hαm(δ + βm))3
m(l−m)r(Z0)3

m

, (S.8)

where δ is the Lipschitz constant for the MLP module, and βm = 1 +
∑T
i=1 λ‖Θ′mi‖ is introduced

by the augmented shortcuts.

The above equation shows that paralleling the MLP module with the augmented shortcuts tend to
further improve the diversity, as (δ+βm) is usually larger than 1. Intuitively, the augmented shortcuts
enhance the representation ability of the MLP module and a more powerful MLP tends to produce
more diverse features for each patch, as MLP processes different patch independently. However,
it is indirect as the feature produced by the AugMLP module will still be aggregated by attention
mechanisms. Hence we use the augmented shortcuts for MSA as the main components and those for
MLP as assistants.
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