
A Algorithmic details

A.1 Problem formulation for model repairment

This section extends the discussion on the problem formulation of model repairment. Specifically, under
the modelling assumptions presented in the main text, the goals for model repairment are the following:

• For a set of “failure cases” F = {zf = (x,y)} where the model with (Bayesian) predictive
inference makes wrong predictions, repair the model to make correct predictions on F and
similar cases.

• For a set of “benchmark cases” B={zb=(x,y)}, maintain a given level of prediction accuracy
after model repairment.

There are further considerations for executing and evaluating model repairment in practice.

Generalisation and efficiency of model repairment In practice the number of failure cases might
be large or even infinite. For example, an image classification model that fails on a test input with
Gaussian noise may also fail on all the other inputs with such level of noise. So we need to consider both,
generalisation and efficiency aspects of model repairment. Here, good generalisation means that the failure
is fixed, not only for observed failure cases but also for future cases for which the model would make
the same type of failure before fixes. On the other hand, efficiency of repairment considers the number
of failure examples required for the model repairment method to fix a particular type of failure.

To describe both concepts in more details, in addition to a set of known/observed failure examples F
collected by the users, we need to define the set of unknown/unobserved failure examples FU . If examples
in F and FU are similar, then good generalisation of a model repairment algorithm means that a model
repaired by such method using information from F should produce correct predictions for instances in
FU . On the other hand, a model repairment method is efficient if it only needs a small set F of collected
failure cases to achieve good generalisation of repairment.

Specificity of model repairment Furthermore, there may be multiple different scenarios in which the
model fails, and therefore the set of failure cases may consist of several groups, i.e.,

F=⊔M
m=1F(m), FU =⊔M

m=1F
(m)
U , (18)

where F(m) denotes the observed failure cases of failure type m and F(m)
U represents unobserved failure

cases of the same type. Targeting a specific type of mistake and repairing it one at a time may be desirable
in practice. One type of mistake might incur more costs than others (e.g., in medical applications, false
negative is generally more costly than false positive), so users might have different priorities for different
types of errors to be fixed. This is especially the case when there exists a trade-off between fixing different
types of errors, again the false negative vs false positive trade-off is a prevalent example.

Repairment by identifying and removing detrimental training data There can be many different
reasons for a model with Bayesian predictive inference making wrong predictions on F. In this work, we
assume that the main reason is due to the existence of detrimental datapoints in D. Our hypothesis is that,
by removing/correcting these detrimental datapoints and adapting the model with them, the model can be
repaired to return correct labels for datapoints in F. Base on the above hypothesis, the model repairment
process contains the following steps:

1. Cause identification: Identify a set of detrimental data points C in the training data D that
contributed the most to the failure set F.

2. Treatment: Given the set of failure causes C, adapt the model to predict correctly on the failure set
F , while maintaining performance on other examples which were correctly predicted previously.

A.2 The “predictive approach” for cause identification

We use the following function to describe the contribution of a subset C ⊂D to the model failures on
examples in F:

r(C)=log

(
p(F|D\C)
p(F|D)

)
. (19)
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A naive approach would compute p(θ|D\C) for all subsets of D with all possible correction methods,
which is prohibitively expensive. Instead we present a “predictive” approach that removes this
computational burden. First, notice that we make the i.i.d. modelling assumption which means that one
can write the likelihood term as follows:

p(D|θ)=p(D\C|θ)p(C|θ), ∀C⊂D. (20)

This allows us to expand the log evidence logp(F|D\C) as

logp(F|D\C)=log

∫
p(F|θ)p(θ|D\C)dθ

=log

∫
p(F|θ)p(D\C|θ)p(θ)

p(D\C)
dθ (Bayes’ rule)

=log

∫
p(F|θ) p(D|θ)p(θ)

p(C|θ)p(D\C)
dθ (by Eq. (20))

=log

∫
p(D)

p(D\C)
·p(F|θ)
p(C|θ)

·p(D,θ)

p(D)
dθ (multiplying

p(D)

p(D)
and rearranging terms)

=log

∫
p(F|θ)
p(C|θ)

p(θ|D)dθ+log
p(D)

p(D\C)
. (Bayes’ rule)

Then we can rewrite the log density ratio as

r(C)=log

(
p(F|D\C)
p(F|D)

)
=log

∫
p(F|θ)
p(C|θ)

p(θ|D)dθ−logp(F|D)+logp(D)−log

∫
p(D\C|θ)p(θ)dθ

(by definition of marginal distributions)

=log

∫
1

p(C|θ)
p(F|θ)p(θ|D)

p(F|D)
dθ−log

∫
p(D|θ)
p(C|θ)

p(θ)

p(D)
dθ

(by Eq. (20) and rearranging terms)

=log

∫
p(θ|D,F)

p(C|θ)
dθ−log

∫
p(θ|D)

p(C|θ)
dθ. (Bayes’ rule)

(21)
By doing so, instead of computing p(θ |D \C) for every possible subset C, the “predictive approach”
only requires computing p(θ|D,F) once. As shown in the main text, with (approximations of) the two
posteriors p(θ|D) and p(θ|D,F) at hand, the log density ratio r(C) can be efficiently approximated by
Monte Carlo and/or further approximations described in the main text that employ Taylor expansions.
This approach is “predictive” in the sense that the influence of candidate set C is evaluated by computing
“predictions” p(C|θ)−1 on them using the two posterior distributions, which is different from existing
approaches that compute predictions on F using approximations to the modified posterior p(θ|D\C).

A.3 Objective for EWC-influence

Recall in the main text the first-order Taylor series approximation to r(C) is

r(C)≈
∑
z∈C

r̂(z), r̂(z)=Ep(θ|D)[logp(z|θ)]−Ep(θ|D,F)[logp(z|θ)].

Therefore the “predictive approach” for computing r(C) as well as the approximated form require the
computation of (approximate) posteriors p(θ|D) and p(θ|D,F). This can be achieved using continual
learning: we assume the model has been trained on D and an approximation q(θ)≈ p(θ|D) has been
obtained. Then the current task for continual learning is to adapt the trained model on the failure cases
F, which leads to an adapted approximation q+F(θ)≈p(θ|D,F).

Elastic Weight Consolidation (EWC) [10] is a continual learning algorithm that can be interpreted as
updating the maximum a posteriori (MAP) approximation to the posterior given new tasks. To see this, first
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in this approach the q posteriors are assumed to be delta measures. In other words, q(θ)=δ(θ−θ̂) where
θ̂ is the parameters of the trained model, and q+F(θ)= δ(θ− θ̂+F) where as we shall see θ̂+F is the
parameter obtained by running EWC using F. With these assumptions, the EWC-influence is defined as:

r(C)≈
∑
z∈C

r̂(z)≈
∑
z∈C

r̃(z), r̃(z)=logp(z|θ̂)−logp(z|θ̂+F).

It remains to discuss the optimisation procedure for obtaining θ̂+F . As motivated, we consider MAP
approximations to the posterior, which seeks to find the maximum of the log posterior logp(θ|D,F).
Notice that by Bayes’ rule:

p(θ|D,F)∝p(F|θ)p(θ|D) ⇒ logp(θ|D,F)=logp(F|θ)+logp(θ|D)+constant.

Computing the first term logp(F|θ) in the MAP objective is straightforward given the i.i.d. modelling
assumption. For the second term, as logp(θ|D) is intractable, the EWC approach constructs a Laplace
approximation to it by assuming the trained model parameter θ̂ as a MAP point estimate of p(θ|D). In
detail, a Laplace approximation to the posterior is

logp(θ|D)≈ 1

2
(θ−θ̂)⊤H[logp(θ̂|D)](θ−θ̂)+constant. (22)

where H[f(θ)] denotes the Hessian matrix of a twice-differentiable function f(θ) with respect to
parameters θ. Further decomposing the Hessian term yields:

H[logp(θ̂|D)]=H[logp(D|θ̂)+logp(θ̂)−logp(D)] (23)

=H[logp(D|θ̂)]︸ ︷︷ ︸
≈−NF̂θ̂

+H[logp(θ̂)]︸ ︷︷ ︸
Prior term

(24)

where N is the total number of samples in D and F̂θ̂ is an empirical estimate of the Fisher information
matrix. Assuming the zero-mean isotropic Gaussian prior p(θ) with precision λI, the second term
becomes H[logp(θ̂)]=−λI. Substituting these results back into Eq. (22) gives us:

logp(θ|D)≈−N

2
(θ−θ̂)⊤F̂θ̂(θ−θ̂)−λ

2
||θ−θ̂||22+constant. (25)

Combining terms, the optimisation task for EWC adaptation using failure set is:

θ̂+F=argmax
θ

logp(F|θ)−N

2
(θ−θ̂)⊤F̂θ̂(θ−θ̂)−λ

2
||θ−θ̂||22, (26)

which is as presented in the main text. We further note that in the original EWC formulation, the empirical
Fisher information is further simplified to contain diagonal entries only — with millions of model
parameters as is typically the case with neural networks, as computing the full matrix is expensive.

A.4 Objective for EWC-deletion

Assuming that the detrimental datapoints C⊂D have been identified, the next step for model repairment
is treatment where we seek to remove the influence of C to the model. This is done by computing (an
approximation to) p(θ|D\C) which can also be done via continue learning. To see this, we can show
by using Bayes’ rule and Eq. (20) again,

logp(θ|D\C)=log
p(D\C|θ)p(θ)

p(D\C)
=log

1

p(C|θ)
+log

p(D|θ)p(θ)
p(D)︸ ︷︷ ︸

=p(θ|D)

+log
p(D)

p(D\C)
. (27)

This means that finding the MAP estimate of p(θ | D \ C) is equivalent to maximising
− log p(C | θ) + log p(θ | D) w.r.t. θ. With further approximation to the posterior p(θ | D) using
the Laplace method as discussed in section A.3, one can write the optimisation task for EWC-deletion
as presented in the main text, namely:

θ̂−C=argmax
θ

−logp(C|θ)−N

2
(θ−θ̂)⊤F̂θ̂(θ−θ̂)−λ

2
||θ−θ̂||22. (28)
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B Additional Results

B.1 Sample Efficiency of Cause Identification

Fig. 6 compares the sample efficiency of different approaches for cause identification on MNIST and
CIFAR-10 datasets with annotation noise. More specifically, we want to understand how many failure
cases in the query set Fq we need to see for cause identification to work, i.e., how performance of each
approach varies as we reduce the size of the query set. Here, all detrimental examples i.e., r̃(z)<0 are
removed from the training data and the corresponding metrics are measured. EWC-influence approach
performs the best in terms of precision, recall, and accuracy on holdout failure set Fh even as we decrease
the size of the query set. All approaches exhibit a stable behavior w.r.t the size of query set. The biggest
drop occurs in accuracy on the remaining test set T \F: EWC-influence presents a stronger degradation in
small sample regimes (around 5% of the original failure set) but without dropping below other approaches.

For the failure accuracy on MNIST, even when the query set is as small as 5% of the original one (≈20
examples), all approaches display improvement over the semi-oracle that is trained after removing all
instances of annotation errors: this means that all methods, in a sample-efficient manner, not only correct
the synthetically added annotation errors, but they also remove other harmful examples that are naturally
present to begin with.

Fraction of Query Set Fraction of Query Set Fraction of Query Set Fraction of Query Set

Figure 6: Comparison of sample efficiency for cause identification performance on (top) MNIST and (bottom)
CIFAR-10 datasets with class-dependent annotation noise. On the x-axis of each sub-figure, we vary the size of the
query failure setFq used for cause identification. From left to right, (a) precision, (b) recall, (c) accuracy on holdout
failure setFh, and (d) accuracy on the remaining test set.
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B.2 Speed Comparison

Table 1 shows the total computation time of the proposed EWC-influence and other baselines for cause
identification on a single Tesla K80 GPU with 12GB of RAM. Note that we rely on the publicly available
implementation of SGD-influence3, and that we have implemented our own version of linear influence
functions in Pytorch. Overall, EWC-Influence is either as fast or faster as other baselines, achieving
one order of magnitude speed boost compared to SGD-influence in all cases. For CIFAR10 where a
considerably larger base model is used, EWC-influence is consistently faster than other approaches, around
twice faster than linear influence methods. For MNIST, EWC-influence attains similar computation time
as linear influence approaches.

Table 1: Comparison of total computation time for cause identification.

Experiment Method Time (s) Time (s)
( MNIST ) (CIFAR10)

Linear Influence (SA) 16.4 1322.4
Label Noise Linear Influence (GD) 11.2 996.2

SGD-Influence 185.1 8301.1
EWC-Influence (Ours) 9.8 496.3
Linear Influence (SA) 10.8 1141.1

Random Linear Influence (GD) 15.7 978.4
Input Noise SGD-Influence 188.2 8285.6

EWC-Influence (Ours) 11.0 527.5
Linear Influence (SA) 14.3 1312.0

Adversarial Linear Influence (GD) 10.0 984.2
Poisoning SGD-Influence 177.29 7803.7

EWC-Influence (Ours) 14.5 528.9

B.3 Qualitative Results

Annotation noise. In the main text, Fig. 2(d) shows examples with annotation noise ranked as most
harmful according to EWC-influence. Similarly, Fig. 7 shows examples ranked as least harmful according
to EWC-influence. All of these examples correspond to non-corrupted examples with correct labels.

(a) (b) 

Figure 7: Examples of 16 least harmful examples for MNIST and CIFAR-10 with annotation noise as ranked by
EWC-influence. None of the selected examples were corrupted with annotation noise.

3https://github.com/sato9hara/sgd-influence
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Random input noise. Fig. 8 shows examples that are ranked highest (most harmful) by EWC-influence
for datasets contaminated with random input noise. Recall that the target classes of the input noise are
1, 6, 7, 9 for MNIST and plane, bird, cat, dog for CIFAR10, and the rest of the images are free of such
noise. First of all, we observe that the most detrimental examples belong to the non-target classes. As
shown in the main text, while the input noise itself may not harm the performance of the model by much,
the sample size of clean images in the target classes is still smaller as a result of noise injection—such
group imbalance can be rectified by sub-sampling the dominant group, for example, by removing those
identified detrimental data points. Secondly, many of them appear to be ambiguous instances in non-target
classes. It is worth noting that for MNIST, one of the identified examples is interestingly a real instance
of 3 that is incorrectly labelled as 5, which is also reported by Northcutt et al.[47].

(a) (b) 

Figure 8: Examples of 16 most harmful examples for MNIST and CIFAR-10 with random input noise as ranked
by EWC-influence. None of the selected examples were corrupted with random input noise.

B.4 Treating Models by Forgetting Detrimental Past and Learning from Present Mistakes

While the primary goal of this work is to investigate how many prediction errors can be remedied by
identifying harmful training data and removing them, one could alternatively use the labelled failure cases
directly to adapt the model. Fig. 9 shows our preliminary results where we compare the deletion based
methods to an approach that fine-tunes the model directly on the failure query set Fq with an L2-norm
based locality constraint ||θ−θ̂||22 [18] and its combination with the best deletion-based approach, that
is, fine-tuning on the corrected dataset D\C. As with other experiments, early stopping is performed based
on the loss on a portion of the query set Fq. We see that while fine-tuning on Fq (black points) leads
to a higher accuracy (on the holdout failure set Fh) than fine-tuning on D\C (yellow points), the accuracy
on the remaining test set T \F is worse, even with the weight constraint — by 6% on MNIST and 21% on
CIFAR-10. This issue of over-fitting to the failure cases is also reported in recent works such as [20, 19].
Importantly, by combining the two approaches (brown points), we can attain the best trade-off between the
failure and the maintenance accuracy, indicating the complementarity between the proposed data correction
methods and such fine-tuning approaches.
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(a) (b)
Figure 9: Comparison of deletion-based treatment methods and the direct fine-tuning on the failures on (a) MNIST
and (b) CIFAR-10 datasets with noisy annotations.

C Experimental Details

Datasets we perform our experiments on the MNIST digit classification task and the CIFAR-10 object
recognition task. The MNIST dataset consists of 60,000 training and 10,000 testing examples, all of which
are 28×28 grayscale images of digits from 0 to 9 (10 classes). The CIFAR-10 dataset consists of 50,000
training and 10,000 testing examples, all of which are 32×32 coloured natural images drawn from 10
classes. Both datasets are preprocessed by subtracting the mean, but no data augmentation is used. For
MNIST, to make the task more challenging, we randomly select 3000 examples from the training split
and train the base models while the entire test set is used for evaluation.

Architecture Details For MNIST, the base classifier was defined as a CNN architecture comprised
of 4 convolution layers, each with 3×3 kernels follower by Relu. The number of kernels in respective
layers are {32,32,64,64}. After the first two convolution layers, we perform 2×2 max-pooling, and after
the last one, we further down-sample the features with Global Average Pooling (GAP) prior to the final
fully connected layer. For CIFAR-10, we used a 50-layer ResNet [49].

Optimisation For all experiments, we employ the same training scheme unless otherwise stated.
We optimize parameters using Adam [46] with initial learning rate of 10−3 and β = [0.9,0.999], with
minibatches of size 64 and train for max 100 epochs with early stopping with a patience of 5, that is,
training is stopped after 5 epochs of no progress on the validation set (10% of the training set). For
computing both EWC-influence and EWC-deletion, we also employed the same training scheme but
applied early stopping based on the performance on a validation split (10%) of the failure query set Fq.

In Fig. 5 in Sec. 4.2, we present the performance of Newton update removal and EWC-deletion (ours)
with different hyper-parameter settings. For Newton-update deletion [9], we vary the step size γ > 0
of the gradient ascent by scaling the second term in Eq. (16). For EWC-deletion (our method), we vary
the amount of weight regularisation — the second term in Eq. (17) — by scaling it by 2/γN where N
denotes the number of training datapoints, and γ>0. We also set the strength of the prior term to λ=0.
We run both methods for different values of γ in the range [0.01,0.05].
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D Enlarged Figures
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