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1 Appendix A: Limitation

Method / Shot Backbone Novel Split 1 Novel Split 2 Novel Split 3
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

LSTD [1] VGG-16 8.2 1.0 12.4 29.1 38.5 11.4 3.8 5.0 15.7 31.0 12.6 8.5 15.0 27.3 36.3

YOLOv2-ft [16]
YOLO V2

6.6 10.7 12.5 24.8 38.6 12.5 4.2 11.6 16.1 33.9 13.0 15.9 15.0 32.2 38.4
†FSRW [7] 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9
†MetaDet [16] 17.1 19.1 28.9 35.0 48.8 18.2 20.6 25.9 30.6 41.5 20.1 22.3 27.9 41.9 42.9
†RepMet [8] InceptionV3 26.1 32.9 34.4 38.6 41.3 17.2 22.1 23.4 28.3 35.8 27.5 31.1 31.5 34.4 37.2

FRCN-ft [16]

FRCN-R101

13.8 19.6 32.8 41.5 45.6 7.9 15.3 26.2 31.6 39.1 9.8 11.3 19.1 35.0 45.1
FRCN+FPN-ft [15] 8.2 20.3 29.0 40.1 45.5 13.4 20.6 28.6 32.4 38.8 19.6 20.8 28.7 42.2 42.1
†MetaDet [16] 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1
†Meta R-CNN [19] 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1

TFA w/ fc [15]

FRCN-R101

36.8 29.1 43.6 55.7 57.0 18.2 29.0 33.4 35.5 39.0 27.7 33.6 42.5 48.7 50.2
TFA w/ cos [15] 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
MPSR [17] 41.7 - 51.4 55.2 61.8 24.4 - 39.2 39.9 47.8 35.6 - 42.3 48.0 49.7
SRR-FSD [22] 47.8 50.5 51.3 55.2 56.8 32.5 35.3 39.1 40.8 43.8 40.1 41.5 44.3 46.9 46.4
FSCE [14] 44.2 43.8 51.4 61.9 63.4 27.3 29.5 43.5 44.2 50.2 37.2 41.9 47.5 54.6 58.5
FADI (Ours) 50.3 54.8 54.2 59.3 63.2 30.6 35.0 40.3 42.8 48.0 45.7 49.7 49.1 55.0 59.6

Table 1: Performance (novel AP50) on PASCAL VOC dataset. This table is the same to Table 1 in the paper. We
place it here for reading convenience.

base / novel aeroplane bottle cow horse sofa nAP50
1 2 3

semantic boat pottedplant sheep dog chair 30.6 35.0 40.3
shape bird pottedplant sheep dog chair 31.5 35.6 41.6

Table 2: Comparison of shape similarity and semantic similarity on Pascal VOC novel split2.

As shown in Table 1, FADI achieves new state-of-the-art performance on extremely few-shot scenarios,
i.e., K=1, 2, 3 on novel split 1 and 3. However, the performance of FADI is slightly less-than-
satisfactory on higher shot and novel split2. Here we analyze the possible reasons and summarize
them as two limitations.

Limitation of Feature Distribution Alignment As shown in Table 1, on novel split1 for K=5
and 10, FADI is 2.6, 0.2 lower than FSCE [14] that unfreezes more layers during finetuning when
shots grow. We conjecture one possible reason is that the imitated feature distribution in the Feature
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Distribution Alignment (Section 3.2 in paper) is not the real distribution of novel classes. Specifically,
by aligning the feature distribution with a well-learned base class, the Feature Distribution Alignment
effectively compacts the intra-class structure of novel classes, especially when the shot is low.
However, it ignores the distinctness between the novel classes and the assigned base classes, leading
to a distortion of real feature representation of novel classes. With enough novel data, by unfreezing
more layers in the feature extractor [14], the model learns a good feature representation for novel
classes, which can better uncover the real feature distribution than our association. However, it is not
available when the shot is low as the learned distribution will over-fit training samples.

Limitation of Semantic Similarity As mentioned in Section 4.4 (Paragraph: Superiority of Se-
mantic Similarity over Visual Similarity), the visual representation is not reliable under data-scarce
scenarios due to the existence of co-occurrence, thus we adopt semantic as similarity measurement,
which enables us to find a reasonable assigning scheme. However, it can not capture some other
cues that matter to the performance, e.g., shape similarity, which has been proved to be beneficial
to the knowledge generalization [4]. Here we investigate the superiority of integrating the shape
similarity together with semantic similarity. As shown in Table 2, by only changing one associated
pair, i.e., for the novel class ‘aeroplane’, its most semantically similar base class is ‘boat’, and we
manually change it to the base class ‘bird’. Empirically, ‘bird’ is more similar to ‘aeroplane’ from the
perspective of shape. Such a simple replacement brings substantial gains which demonstrates shape
similarity is better than semantic in some particular cases. We believe that a similarity measurement
that incorporates both semantic and shape cues will further boost the performance of FADI.

2 Appendix B: Implementation Details

We implement our methods based on MMDetection [2]. Faster-RCNN [13] with Feature Pyramid
Network [12] and ResNet-101 [5] are adopted as base model. To reduce the randomness of base
training, we convert the base model trained by TFA [15] with Detectron2 [18] to the format of
MMDetection. During the finetuning stage, we adopt the same training/testing configuration as TFA
[15] for both the association stage and discrimination stage. During training, two data augmentation
strategies are used, including horizontal flipping and random sizing. The network is optimized by
SGD with a learning rate of 0.001, momentum of 0.9 and weight decay of 0.0001. All models are
trained on 8 Titan-XP GPUs with batch size 16 (2 images per GPU). The training iteration is scaled as
the shot grows, specifically, the number of iterations is set to be 4000, 8000, 12000, 16000, 20000 for
K=1, 2, 3, 5, 10, respectively. All code will be published to ensure strict reproducibility to facilitate
future research.

3 Appendix C: Hyper-Parameter Study of Set-Specialized Margin Loss

β nAP50

0.0 44.9
0.5 49.7
1.0 50.0
2.0 49.8

(a) Parameter: β

γ nAP50

0.0 49.8
0.0001 49.8
0.001 50.2
0.01 49.4

(b) Parameter: γ

α/β nAP50

0.00 50.2
0.33 50.3
0.50 50.2
1.00 49.6

(c) Parameter: α

Table 3: Ablation experiments for parameters α, β, γ on Novel Split1 Shot1.

We study the hyper-parameters, i.e., α, β, γ adopted in set-specialized margin loss. α, β, γ control
the magnitude of base, novel and negative margin, respectively. We found the optimality of hyper-
parameters is related to the confusion level with models, hence we adopt ‘association + disentangling’
as the baseline framework here.

We first investigate the importance of each component in Table 3. The main performance gain comes
from the novel margin (Table 3a). A higher β can boost the classification score of novel classes, but it
also has a risk of increasing false positives. Hence we introduce the base margin and negative margin
to balance it. Higher α and γ can yield higher scores on base and negative classes, respectively.
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β nAP50

1.00 50.3
0.50 49.9
0.33 49.5
0.20 49.0

(a) K=1

β nAP50

1.00 53.7
0.50 54.0
0.33 54.2
0.20 53.7

(b) K=3

β nAP50

1.00 58.2
0.50 58.8
0.33 58.8
0.20 59.3

(c) K=5

Table 4: Ablation experiments for β on novel split1 for different shot K. We adopt α = 1
3
β, γ = 0.001 for all

shots here. 0.33 represents 1
3

.

On the contrary, it also has a suppression of novel classes. Through a coarse search, we adopt
β = 1.0, α = β/3, γ = 0.001 for K = 1, which obtains a total 5.4 gain on top of ‘association +
disentangling’.

Next, we explore the relation of β and shot K. Intuitively, the model is easier to learn a better
classifier when given more data, hence relying less on the margin loss. As shown in Table 4, when
shot grows, it prefers a lower K. And β = 1/K compares favorably to others. To this end, we adopt
β = 1/K,α = 1

3β and γ = 0.001 for different shot K.

4 Appendix D: Semantic Similarity Table on Pascal VOC

Novel Split1

novel bird bus cow motorbike sofa

assigned base dog train horse bicycle chair

Novel Split2

novel aeroplane bottle cow horse sofa

assigned base boat car sheep dog chair

Novel Split3

novel boat cat motorbike sheep sofa

assigned base aeroplane dog bicycle cow chair

Table 5: Complete assigning policies on Pascal VOC dataset.

5 Appendix E: Base Forgetting Property

Base forgetting comparison is illustrated in Table 6. As shown in this table, compared with the TFA
baseline, FADI significantly improves the novel performance with just a minor performance drop
on base classes. FADI outperforms MPSR (which also reports performance on both base and novel
classes) on both base and novel classes with a large margin.

Method Base AP50 Novel AP50
1 3 5 1 3 5

MPSR [17] 59.4 67.8 68.4 41.7 51.4 55.2
TFA [15] 79.6 79.1 79.3 39.8 44.7 55.7
FADI 78.3 78.9 79.2 50.3 54.2 59.3

Table 6: Comparison of base forgetting property on Pascal VOC novel split1.
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6 Appendix 7: Comparisons with More Co-current Methods

In the following table, we report the comparison with more co-current methods on Pascal VOC novel
split1. FADI compares favorably against all of these works, which confirms the effectiveness of
FADI.

Method / Shot Conference Novel Split 1
1 2 3 5 10

Zhang, Weilin, et al. [21] CVPR2021 45.1 44.0 44.7 55.0 55.9
Li, Yiting, et al. [11] CVPR2021 40.7 45.1 46.5 57.4 62.4
Fan, Zhibo, et al. [3] CVPR2021 42.4 45.8 45.9 53.7 56.1
Li, Aoxue, et al.∗ [9] CVPR2021 27.7 36.5 43.3 50.2 59.6
Zhang, Lu, et al. [20] CVPR2021 48.6 51.1 52.0 53.7 54.3
Hu, Hanzhe, et al.∗ [6] CVPR2021 33.9 37.4 43.7 51.1 59.6
Li, Bohao, et al. [10] CVPR2021 41.5 47.5 50.4 58.2 60.9
FADI (Ours) NeurIPS2021 50.3 54.8 54.2 59.3 63.2

Table 7: Performance (novel AP50) on PASCAL VOC dataset. ∗ denotes average over multiple runs.

7 Appendix G: Broader Impact

Object detection has achieved substantial progress in the last decade. However, the strong performance
heavily relies on a large amount of labeled training data. Hence a great interest is invoked to explore
the few-shot detection problem (FSOD). The proposed FADI shows a great performance superiority
on the current academic datasets of FSOD, but it may not be directly applicable to some realistic
scenes. On the one hand, like other FSOD algorithms, the generalized performance on the novel set
may be greatly affected by the concrete categories composition of the pre-training base set. Thus,
the data collecting process of the base set needs to be carefully considered before using our method.
On the other hand, as an emerging task, the current FSOD setting is still naive and imperfect, which
limits the generalizability for the current FSOD algorithms to be applied to a more complex scenario,
which may results in an unpredictable error and the degeneration of the performance.
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