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Abstract—Integrating robotic manipulators into everyday
households faces the significant challenge of allowing them to
be taught skills in a natural and humanly understandable way.
Although learning-from-demonstration (LFD) shows promise, its
reliance on quality data and cumbersome demonstration methods
limits its broader application. This paper presents a comparison
study on the performance of machine learning models, trained
using task demonstration carried out via two traditional methods,
two traditional methods augmented with augmented reality (AR),
and one augmented reality based method. We compare the
performance of these input methods against three ML models and
two input data modalities. The results demonstrate the advantage
of using AR augmented methods in data collection for LFD
and the pure AR method nearly matches the performance of
the highest performing AR augmented traditional method while
having no drawbacks of the traditional methods.

Index Terms—AR, LFD, ROS, HRI

I. INTRODUCTION

Learning from Demonstration (LfD) seeks to capture and
replicate the skills or behaviours shown by humans or ma-
chines. Although LfD algorithms excel at mastering short-
horizon tasks, they require large amounts of data, and their
reliance on expert demonstrations which are considered to
be high-quality data poses a challenge. Research suggests
that the effectiveness of learned policies is directly related
to the quality of the input data, based on the underlying
assumption of LFD, that demonstrations represent optimal
solutions. However, this assumption often falls short in real-
world scenarios. Gathering expert demonstrations is inherently
resource intensive and requires significant domain expertise
and extensive time investment. This is especially true for
tasks involving robotic manipulators with high degrees of
freedom (DOFs), where human control of the system presents
substantial difficulties even for expert demonstrations due to
repeated cognitive and physical demands and constrains.

Current demonstration techniques such as teleoperation[16,
8], passive observation [1], and kinesthetic teaching[5] intro-
duce complexities to the demonstration process, which in turn
results in sub-optimal demonstrations[17]. The influence of the
human teacher’s proficiency on the quality of demonstration
data was empirically examined in [10]. As task complexity
increases, the demand for precise physical guidance escalates,
often exceeding the capabilities of novice human teachers and
reducing repeated accuracy of expert teachers.

Augmented Reality (AR) has the potential to reduce the
cognitive and physical burden in the demonstration process
for LFD [19, 20, 14, 7, 11, 15] as it fundamentally allows

Fig. 1. Architecture: Augmented reality & Real robot blended manipulation
teaching environment

to blend the virtual world with the real world seamlessly.
AR enables more efficient, accurate, and user-friendly avenues
for controlling robots. Specifically, AR has been utilized for
reliable visual feedback which reduces the cognitive demand
and AR interactive holograms and hologram augmented robots
have been used to reduce the physical demand of controlling
robots via reducing the forces required and integration of AR
supported intuitive high level controllers.

Studies have shown that LFD policy performance can be
significantly improved through high quality data which are
distinctly characterized by their smother jerk free trajectories
and overall and intermediate error free nature. AR based robot
arm control methods have shown that they indeed produce
trajectories with these qualities thus showing the potential of
using AR as an effective tool for generating quality data for
LFD policy training demonstrations.

Apart from these, the additional sensing modalities that
come with these AR techniques, such as spatial awareness



and egocentric sensing, could become the key enablers that
solve long-standing issues with LfD techniques.

While existing literature suggests that AR-based demon-
stration interfaces offer more intuitive, user-friendly, and less
cognitively demanding experiences for human demonstrators,
there remains a notable gap in empirical research directly com-
paring LfD performance trained with data collected through
various AR enabled input modalities. This comparison is
critical, as the effectiveness of LfD systems often hinges on
the inherent characteristics of demonstrations, which can vary
significantly between these varies input methods.

Moreover data collection methods both traditional and AR
powered must be further combined and optimized to address
key challenges, including ensuring clarity and ease of demon-
stration, accommodating higher DOFs without compromising
usability, and simplifying the mapping process between the
demonstration and the target task. Addressing these challenges
is essential to fully leverage the potential of AR and LFD
for facilitating the generation of high-quality demonstrations
for effective real world applicable AR, LFD and robotic
manipulation.

We introduce an AR assisted data collection platform that
allows users to collect task demonstrations through 1) conven-
tional methods (kinesthetic, joystick) via visual observation
from a display. 2) AR-enabled holographic visual feedback
for conventional methods (AR augmented traditional) and 3)
AR and impedance control enabled method (AR-live).The
system is supported by a popular robotic policy bench mark
simulator, Real robotic arm control middle ware, holographic
client generating digital twin of the simulation environment
and robot in AR and a high speed communication back-end
aligning all above subsystems with precision and low latency.

The main contributions of this paper are;

• Demonstration collection system supported by a ma-
nipulation benchmark simulator (robosuite) and robot
operating system (ROS) based robotic manipulator con-
trol backend that streams a holographic digital twin
of the simulation tied to a real robotic arm, to a
client’s AR headset using low-latency communication
protocols.Resulting platform is intuitive to use and ties
simulation to the real robotic manipulator facilitating
realistic benchmark task related evaluations.

• We conduct a study comparing the performance of
machine learning models trained using data collected
through two traditional, two AR augmented traditional
and one novel AR and impedance control facilitated robot
arm control method (AR-live), on simulated benchmark
object lifting task with task randomization. The intro-
duced novel method performs similarly to augmented tra-
ditional methods and significantly outperforms traditional
methods.

• We investigates effects of policy selection in relation to
these data using three LFD and batch offline RL models
and Low dimentional vs image input data.

II. RELATED WORK

End-User Robot Programming Using Mixed Reality evalu-
ated the performance of a Mixed Reality (MR)-based interface
for robot programming [3]. The study found that participants
were able to program a robot arm to perform pick-and-place
tasks more quickly, accurately, and easily using the MR inter-
face than with a traditional 2D interface. The study measured
the participants’ task completion time, strain, naturalness, and
usability, MR interface was found to be significantly better
than the 2D interface in terms of all the above criteria. The MR
interface was also more usable than the 2D interface. However,
the study did not address the generalisation challenges or skill
acquisitions combined with MR technologies.

Human-robot interaction for robotic manipulator program-
ming in Mixed Reality (ICRA 2020) present an AR-based
robot manipulator trajectory generation system[13, 18, 12,
15]. The system allowed users to define start and end points
and use key poses for the robot’s trajectory, it also includes
path scaling, end effector(EEF) obstacle avoidance, and safety
zone visualization[2]. The system features a communication
infrastructure built to bridge ROS and unity, where ROS move-
it-based manipulator control and unity-based holograms were
utilized to define user-friendly, effective manipulator action.
The study highlights the potential of combining LFD with the
AR control interface introduced as potential future work to
address the current skills-learning limitation of the proposed
system.

ARC-LfD: Using Augmented Reality for Interactive Long-
Term Robot Skill Maintenance via Constrained Learning from
Demonstration [9] introduces a kinesthetic teaching-based sys-
tem augmented by AR that allows users to maintain, update,
and adapt learned skills through interaction with the key-
frames of learned skills using AR. Users can visualize key
frames of the skill, edit them in real-time, and define virtual
constraints to guide the robot’s relearning process. This, in
turn, provides an alternate way to define complex temporal
relationships within a demonstration to allow performance
enhancement of LDF algorithms. However, the use of kines-
thetic teaching for skill acquisition imposes demonstration
complexities and requirement for expert demonstrators and the
requirement for updating key poses for every environmental
change makes system less effective in practical robotic ma-
nipulation.

The Benefits of Immersive Demonstrations for Teaching
Robots [6] explore the potential of virtual reality (VR) to
revolutionize Learning-from-Demonstration (LFD) for robots.
The paper demonstrates that VR environments offer an intu-
itive and efficient way for humans to demonstrate complex
tasks, leading to smoother and efficient demonstrations. The
study also demonstrates these quality demonstrations results
in better performing LFD ML models. The paper compares
teleoperation-generated data against VR-generated data over 3
manipulation tasks and concludes the VR data were smoother
and shorter, which resulted in learned policies that generated
smoother efficient trajectories while requiring fewer data.



Fig. 2. System implementation: Augmented reality & Real robot blended manipulation teaching environment

However, the study focuses only on final end effector (EEF)
trajectories and fail to account for complexities and limitations
associated with added DOF and sim to real transfers associated
with deployment for real robots.

What Matters in Learning from Offline Human Demon-
strations for Robot Manipulation (CoRL 2021) presents a
comprehensive investigation into the performance of various
learning algorithms in the imitation learning and batch offline
learning domain[10, 17]. The study establishes a standardized
testing environment and algorithm implementations, paving
the way for fair and reproducible comparisons in diverse
manipulation tasks. The study compares performance of 6
imitation learning and batch offline RL algorithms over 8
manipulation tasks using demonstration datasets with varying
quality. The study concludes the importance of, models with
temporal abstractions, quality mistake void data, observation
space and the impact of model design on the performance of
learned policies through LFD and batch offline RL.

All these factors logically points at using AR based control
methods in the demonstration phase for LFD techniques which
not only naturally produces quality data without compromises
faced by traditional systems.

While several studies have explored the use of AR/VR as
a demonstration medium[7, 6], there remains a significant
gap in the literature regarding the integration of AR/VR-
generated demonstration data with real robotic manipulators
and Learning from Demonstration (LFD) algorithms within a
standardized robotic manipulation benchmark. This research
aims to address this gap by proposing a novel framework that
combines these elements, potentially advancing the field of

robotic manipulation and human-robot interaction.

III. TECHNICAL DESIGN: AUGMENTED REALITY & REAL
ROBOT BLENDED MANIPULATION TEACHING

ENVIRONMENT

Experimental setup shown in Fig. 1. and Fig. 2. mainly en-
compasses three systems operating in three stages of realism,
real world, augmented reality, and pure simulation, integrated
on a communication infrastructure built on ROS optimized for
precision. The systems can be used in isolation or combined
hybrid mode to study the effect of using each system for
learning from demonstration on manipulations tasks.

Kinova gen3 6 DOF robot arm equipped with robotiq 2f 85
gripper was used as the main manipulator for the experiment.
Majority of the control infrastructure of the manipulator was
based on the official ROS drivers provided by Kinova apart
from the impedance controller with was built in-house with
the use of data from the AR systems processed through a
proportional feedback controller with an exponential response
curve. Apart from these joystick control and motion through
force control(kinesthetic control) was managed by the internal
control system of the arm where ROS system kept track of the
state of the arm including joint angles, velocity, acceleration,
and torque.

HoloLens 2 was used as the untethered self-contained
Augmented reality holographic device. Unity 3d, Microsoft
Mixed reality toolkit and unity ROS-bridge was used for the
application development. The application which was devel-
oped based on the Microsoft project [4] architecture using
all available features of the device such as spatial computing,



spatial computing precision improvements based on QR codes,
spatial mapping, static and dynamic virtual models, hand
and eye tracking, voice recognition and natural gesture-based
hologram interactions.

MuJoco simulator based Robosuite simulation framework
[21] and Robomimic robot learning from demonstration frame-
work [10] was used as the primary data collection environment
and validation environment for LFD algorithms. This was due
to the environment already being established as a standard
bench-marking system for LFD algorithms, input mediums
and observation modalities. The environment runs on an
OpenAI gym like episodic loop which facilitates convenient
data collection and policy validation routines. It also carries
the additional advantage of having pre-built data collection
sub routines, data conversion functional modules and state of
art imitation learning and batch offline algorithm implemen-
tations.

Communication between the three systems were designed in
the following way. Communication between the ROS pc and
the robot arm is handled through standard Kinova supplied
move-it interface and hereafter considered as the robot arm
interface.

Augmented reality control of arm: Communication takes
place between the HoloLens and robot arm interface through
unity ROS bridge. Separate ROS service calls were imple-
mented for planning requests, execution requests, planned path
demonstrations, robot status updates, obstacle creation, update
and deletion, special map exports and homing arm.

Simulated arm control: Controlling of the simulated arm
was carried out by designing a completely new input device
for the robosuite simulator which maps end effector position
of the move-it kinematic solver as the control signal from the
input device. This control signal which is compatible with all
existing control methods of robosuite then gets interpreted by
the selected controller for the simulator instance and moves
the arm accordingly.

Hologram updates: At each task two types of virtual object
updates are executed in parallel. Updates related to the digital
twin of the robot were handled through HoloLens and robot
arm interface whereas updates related to the task environment
are handled through robosuite and HoloLens. This method
has the added advantage of allowing real arm to interact with
virtual objects as all three systems, real arm, holographic arm,
and simulated arm are exactly mirroring the same action.

IV. IMPLEMENTATION AND INTERACTION

This part of the paper presents the basic functionality of the
system, which is necessary for robot programming and data
collection. Fig. 3 gives examples of main virtual objects in
our system.

A. Robot placement and status:

Robot hologram placement was conducted in two stages.
Initial placement and digital anchoring from MRTK QR code
recognition which also improves spatial tracking precision, and
fine tuning through an AR menu with millimeter precision. A

Fig. 3. AR components.

digital twin of the robot arm rendered from official URDF
was updated to mirror the robot status (joint angles) at every
update cycle to mirror current robot status which was also
used to preview intended motion plans.

B. Trajectory Execution:

Following robot placement finalization, users manipulate a
holographic end effector to define the desired end effector
path. This end effector mimics the real end effector (EEF)
of the robot, allowing for free movement in all six degrees
of freedom. while moving this virtual EEF, the impedance
controller generates a trajectory for the robot arms EEF to
closely follow the virtual EEF, The impedance controller
generates the output signal on an exponential curve to achieve
both responsiveness and precision. The gripper open/close and
initial pose reset options for both virtual and real EEF was
provided through AR menus.

C. Task environment:

For benchmarking models and input modalities, a digi-
tal twin of a standard Robosuite manipulation task (”Lift”)
was constructed in Augmented Reality (AR). A dedicated
rendering pipeline ensures in-sync updates between the AR
environment and the Robosuite simulation.

D. Dataset/Training subroutines:

Dataset creation was handles by a modified version of the
standard dataset creation module of robosuite which allowed
for the new input device and included triggers and reset
events for execution event from AR interface. Due to the
design of the input method, standard training modules were



compatible with the new datasets created by the proposed
methods thus allowing recreation of all available experiments
from the standard Robomimic environment for the selected
task.

V. METHODOLOGY

The aim of our study was to develop and evaluate per-
formance of LFD policies trained with data from AR based
demonstration methods, AR augmented conventional demon-
stration methods and conventional demonstration methods
against a standard robotic benchmark task. The developed
experimental setup (Fig1) was used to collect demonstrations,
pre-process and used for training with imitation learning
algorithms and offline reinforcement learning in the following
manner.

A. Data Collection

Data collection involves four steps as illustrated in Fig.4.
At each simulation instances the position of end effector, cube
position and z axis rotation were randomized. Data collection
was triggered at each new instance of a simulation. The end of
the simulation instance was triggered by either manual reset
triggered by user or a task succession. After each end of
instance, if the task was successful, the recorded data instance
was amended to a hdf5 file, the real robot arm automatically
send to the reset pose and the new object instance was rendered
relative to the real robot end effector pose. If the reset was
triggered by the user, the collected data instance was simply
discarded, and a similar reset routine was carried out.

B. Preprocessing

Each data instance contains a complete simulator snapshot
allowing exact conditions to be replayed, different views and
data streams to be rendered for different experiments such
as low dimensional data, image data, segmented image data
etc. Each dataset needs to be pre-processed in two stages to
be compatible with LFD algorithms. First each dataset was
converted to be compatible with Robomimic framework[10]
where metadata related to the task environment were added
to the dataset. Finally, another preprocessing step was carried
out to render required data from the simulated snapshots to
be fed into the LFD algorithm according to the learning run
executed

C. Problem formulation and Model design

The manipulation task was formulated as an infinite horizon
discrete time Markov Decision process (MDP)

M = (S,A, T,R) (1)

where 4-tuple represents state space, action space, transition
function, and reward function respectively. The goal was to
learn a policy π that enables to take an optimum action at
each state st,

at = π(st) (2)

An offline dataset of trajectories

D = {(si0, ai0, ri0, si1, . . . , sit)}Ni=1 (3)

where N is the number of demonstrations and t is the horizon
of the demonstration (during training and policy rollouts tmax

was 400 episodes), was provided for the models to learn
policy π. Each learned policy was tested periodically in the
simulation environment for task success rate. A binary reward
function,

R(s, a, s′) = I(s′ ∈ G) (4)

where G is task completion states, was provided for batch
offline reinforcement algorithms.

D. Training

Training was carried out using the Robomimic simulation
environments standard training pipeline. BC-RNN algorithm
was used for optimizing and comparing the input methods.
For initial comparisons following low dimensional data was
provided as the input for the model

• Cube position (cartesian) and orientation (quaternion)
• Cube position relative to robot end effector (cartesian)
• Robot proprioception data (six joint angles) and end

effector status
For image-based training runs, instead of ground truth cube
pose data from the simulator, images from the 3rd person view
and robot end effector view were used for training BC-RNN
with a ResNet-18 based network estimating the cube pose.

VI. EXPERIMENTS AND RESULTS

A. Effectiveness of proposed methods

Fifty demonstrations from each of the traditional, AR as-
sisted traditional and AR + motion planning methods were
collected for analysis. All datasets were trained using BC-
RNN model with same hyperparameters.

B. Impact of model selection on task success rate

Datasets with hundred demonstrations each were created
using traditional, AR assisted traditional and AR + motion
planning methods. Following models were used to train each
of the above datasets with same hyperparameters for training
runs from each model.

• Behavioral Cloning (BC)
• Behavioral Cloning with recurrent neural network (RNN)
• Batch-Constrained Q-Learning (BCQ)

C. Model performance with observation space.

Previous training runs were carried out using low dimen-
sional data where the proprioception data, gripper pose, cube
pose data obtained from the simulator and 6DOF input data
were used for training. Here instead of cube pose data from
simulator, images from the 3rd person view and robot end
effector view were used for training BC-RNN with a ResNet-
18 based network estimating the cube pose.



Fig. 4. Data collection flow for AR + impedance control input modality.

Fig. 5. Task success percentage per input modality.

Fig. 6. Effects of policy selection against input modalities(expert user). Fig. 7. BC-RNN model performance against low-dimensional data vs Image
data.



VII. DISCUSSION

A. Effectiveness of the input data modalities

The results Figure 5 and Figure 6 shows that ,Highest per-
forming policies at inference are trained from demonstrations
collected from traditional methods augmented with AR, where
kinesthetic teaching augmented with AR showing 100% task
success-rate.Apart from this the proposed AR + impedance
controller method(AR-live) nearly matches the effectiveness
of the kinesthetic teaching augmented with AR method while
having further advantages of uniformity across different ma-
nipulators, ability to operate with simulated manipulators,
demonstration via remote teleoperation, improved safety and
reduced physical strain.

B. Policy selection

The results (fig 6) shows that
• All methods shows improved task success rate with the

addition of 100% more data where kinesthetic teaching
augmented with AR being the only exception due to
task success rate already achieving maximum in the first
instance.

• On average across BC,BC-RNN,BCQ, Kinesthetic aug-
mented wih AR was the most successful method.

• BC-RNN on average has the highest task success rate
across all the input methods showing the importance of
models with temporal abstractions in learning manipula-
tion tasks.This results also agrees with the finding of[10]

C. Observation space

The results (fig 7) shows that the initial experimental
results using low dimensional data holds true with image base
experiments which shows possibility of sim to real transfer of
learned models with minimum modifications.
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