Supplementary material

A Evaluation criteria

In the following, we first replicate the definition of two commonly used, scale-free evaluation
metrics, i.e., the symmetric mean absolute percentage error (sMAPE) and the mean absolute scaled
error (MASE), see [Manuscript, Section 4.1]. These scale-free metrics are standard in the practice
of forecasting and used across all experiments in the manuscript. Subsequently, we define the
overall weighted average (OWA), i.e., a M4 competition specific performance measure used to rank
competition entries. We also provide a toy calculation example.
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with m depending on the observation frequency. In the M4 competition [28], the frequencies per
subgroup are: 12 for monthly, four for quarterly, 24 for hourly and one for yearly / weekly / daily
data. To obtain the OWA of a given forecast method, say Forecast, we compute [28]
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Thus, if Forecast displays a MASE of 1.63 and a sMAPE of 12.65% across the 100k time series of
M4, while Naive2 displays a MASE of 1.91 and a sMAPE of 13.56%, the relative MASE and sMAPE of
Forecast would be 1.63/1.91 = 0.85 and 12.65/13.56 = 0.93, respectively, resulting in an OWA of
(0.93 + 0.85)/2 = 0.89. According to [28], this indicates that, on average, Forecast is about 11%
more accurate than Naive2, taking into account both sMAPE and MASE.

Performance criteria for single time series experiments. In our single time series experiments
of [Manuscript, Section 4.2], we use the sMAPE as an underlying evaluation measure and compute
the following two statistics: first, the average rank (©» Rank) of each method based on the rank on
each single time series in car-parts and electricity (both datasets are treated separately); and,
second, the average percentual difference (% Diff) to the best approach per time series. A calculation
example, for four hypothetical models and three time series (TSg, TS1, TS»), is listed in Table 5.

Table 5: Example calculation of the average rank (» Rank) and the average percentual difference (% Diff), as
reported in [Manuscript, Table 1]. In this calculation example, lower scores are better. For instance, on TS,
the rank of Model Cis 3 and the percentual difference to the best performing model on TS; (i.e., Model A4)is
(1.0 — 11.8/12.2) x 100 = 3.28.

TSy TS, TS, @ Rank % Diff
Model A 144 (3,9.66) 11.8(1,0.00) 10.5(2,3.81)  2.00 4.49
Model B 14.3(2,8.39) 12.1(2,2.48) 10.8 (3, 6.48) 2.33 5.78
Model C 13.1(1,0.00) 12.2(3,3.28) 11.1(4,9.01) 2.67 4.09
Model D 14.5(4,9.66) 13.1(4,9.92) 10.1(1,0.00)  3.00 6.52
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B Dataset details

For completeness, Table 6 replicates [29, Table 2], providing an overview of the key statistics for the
M4 competition dataset. For all results listed in the main manuscript, the subgroups Weekly, Daily
and Hourly are aggregated into Others, accounting for 5,000 time series overall.

Table 6: Description / Statistics for the M4 competition dataset.

Frequency / Horizon

Type Yearly /6 Quarterly /8 Monthly /18 Weekly /13 Daily/ 14 Hourly /48 Total
Demographic 1,088 1,858 5,728 24 10 0 8,708
Finance 6,519 5,305 10,987 164 1,559 0 24,534
Industry 3,716 4,637 10,017 6 422 0 18,798
Macro 3,903 5,315 10,016 41 127 0 19,402
Micro 6,538 6,020 10,975 112 1,476 0 25,121
Other 1,236 865 277 12 633 414 3,437
Total | 23,000 24,000 48,000 359 4,227 414 100,000
Min. Length 19 24 60 93 107 748
Max. Length 841 874 2812 2610 9933 1008
Mean Length 37.3 100.2 234.3 1035.0 23714 901.9
SD Length 24.5 51.1 137.4 707.1 1756.6 127.9
% Smooth 82% 89% 94% 84% 98% 83%
% Erratic 18% 11% 6% 16% 2% 17%

Table 7 lists key statistics for the car-parts and the electricity time series we use in
[Manuscript, Section 4.2]. Notably, there are no time series categorized into the erratic cate-
gory, according to Syntetos et al. [37]. As car-parts is proprietary, Fig. 3 additionally shows a
visualization of all observations from the four spare part demand time series.

Table 7: Description / Statistics for the car-parts and electricity time series.

car-parts electricity

Frequency / Horizon Daily / 1 7Hourly / 1
Total 4 107
Min. Length 4507 3762
Max. Length 4783 3762
Mean Length 3644 3762
SD Length 137 0

% Smooth 75% 70%

% Lumpy 25% 30%

In reference to [12], time series IDs are: MT s for i € {14,127,130, 183,238,271, 318, 332, 333, 353}.
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Figure 3: Visualization of the four proprietary car-parts time series.
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C Additional results

Table 8 replicates [Manuscript, Table 3], listing sMAPE / OWA statistics on M4, as well as the
corresponding MASE / OWA statistics®. Table 9 lists results, split by time series domains.

Table 8: Performance comparison on the M4 benchmark in terms of (a) sMAPE / OWA and (b) MASE / OWA, listed
by subgroup. N-BEATS and N-BEATS+TopAttn denote an ensemble formed by training multiple models, varying
T from 2H to 5H and randomly initializing each model ten times (i.e., a total of 40 models per subgroup).
Forecasts are obtained by taking the median over the point forecasts of all models. T denotes results from

[27, 28].

(a) sMAPE / OWA
Granularity  Total Winner M4  TBenchmark Naive2 | N-BEATS [29] N-BEATS+TopAttn
Yearly (23k) 13.176/0.778 14.848/0.867 16.342/1.000 | 13.149/0.776 13.063/0.771
Quarterly (24k) 9.679/0.847 10.175/0.890 11.011/1.000 9.684 / 0.845 9.687/0.845
Monthly (48k) 12.126/0.836  13.434/0.920 14.427/1.000 | 12.054/0.829 12.025/ 0.828
Weekly (359) 7.817/0.851  8.944/0.926  9.191/1.000 | 6.447/0.703 6.361/0.699
Daily (4,227)  3.170/1.046  2.980/0.978  3.045/1.000 | 2.976/0.974 2.979/0.975
Hourly (414)  9.328/0.440 22.053/1.556 18.383/1.000 | 10.040/0.464 10.271/0.483
Average (100k) 11.374/0.821 12.555/0.898 13.564/1.000 ‘ 11.324/0.814 11.291/0.811

(b) MASE / OWA
Granularity Total TWinner M4 Benchmark TNaive2 ‘ N-BEATS [29] N-BEATS+TopAttn
Yearly (23k) 2.980/0.778 3.280/0.867 3.974/1.000 | 2.972/0.776 2.950/0.771
Quarterly (24k) 1.118/0.847 1.173/0.890 1.371/1.000 | 1.111/0.845 1.112/0.845
Monthly (48k) 0.884/0.836 0.966/0.920 1.063/1.000 | 0.875/0.829 0.874 / 0.828
Weekly (359) 2.356/0.851 2.432/0.926 2.777/1.000 | 1.950/0.703 1.953/0.699
Daily (4,227) 3.446/1.046 3.203/0.978 3.278/1.000 | 3.183/0.974 3.188/0.975
Hourly (414) 0.893/0.440 4.582/1.556 2.395/1.000 | 0.917/0.464 0.974/0.483
Average (100k)  1.536/0.821  1.663/0.898 1.912/1.000 | 1.516/0.814 1.511/0.811

Table 9: Performance comparison on the M4 benchmark in terms of (a) sSMAPEy_ggats / SMAPEy_peaTs+Topatta and
(b) MASEy_eats / MASEN_BeaTS+Topattn, listed by subgroup and domain. N-BEATS and N-BEATS+TopAttn denote
the same models as in Table 8.

(a) sMAPEy_pears / SMAPEN_pEATS+TopAttn

Granularit Demographic Finance Industry Macro Micro Other
y (8,7k) (24,5k) (18,8k) (19,4k) (25,1k) (3,5k)

Yearly 9.640/9.694 14.029/13.879 16.645/16.523 13.450/13.400 10.700/10.654 13.094/13.000
Quarterly 9.908/9.933 11.158/11.161 8.822/ 8.832  9.182/ 9.178 9919/ 9922  6.222/ 6.173
Monthly 4.605/4.599 13.629/13.625 12.918/12913 12.490/12.428 13.180/13.122 11.987/11.932
Weekly 1.401/1.403 7.598/ 7.516 2.563/ 2.548 11.303/10.837 3.658/ 3.681 12.204/12.112
Daily 6.300/6.313  3.442/ 3446  3.831/ 3.832 2532/ 2532 2283/ 2291 2901/ 2.901
Hourly 9.787/ 9.997
Average 6.358/6.367 12.513/12.472 12.437/12.413 11.709/11.665 11.070/11.034 8.997/ 8.971

(b) MASEy.pears / MASEn_pEATS+TopAttn

Granularit Demographic Finance Industry Macro Micro Other
y (8,7k) (24,5k) (18,8k) (19,4k) (25,1k) (3.,5k)

Yearly 2.410/2.428 3.086/3.055 3.021/2.996 2.956/2.932 2.994/2.981 2.647/2.616
Quarterly 1.234/1.238 1.110/1.111 1.075/1.077 1.123/1.121 1.128/1.128 0.866/0.861
Monthly 0.864/0.862 0.912/0.912 0.936/0.935 0.878/0.876 0.790/0.788 0.780/0.778
Weekly 1.782/1.839 1.661/1.634 3.724/3.808 2.042/2.114 2.393/2.399 0.910/0.899
Daily 9.604/9.641 3.396/3.402 3.784/3.787 3.198/3.205 2.597/2.603 3.519/3.520
Hourly 0.903/70.971
Average 1.148/1.151 1.695/1.687 1.447/1.443 1.380/1.374 1.558/1.554 1.993/1.989

8Detailed results for Weekly, Daily and Hourly are not listed in [27, 28], but available here.
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D Hyperparameter settings

Hyperparameter settings for our single time series experiments of [Manuscript, Section 4.2] and the
large-scale M4 experiments of [Manuscript, Section 4.3] are listed in Tables 10 and 11.

Table 10: Single time series experiment hyperparameters for car-parts and electricity data.

car-parts electricity
Parameters Daily 7Hourly
Iterations 2k 1.5k
Loss MSE
H (Forecast horizon) 1
Lookback period(s), T' 14H -244H
Batch size 30
Attention heads 4
Barcode coordinate functions 32
Encoder-layers 1
Hidden dimension 128

As mentioned in the manuscript, for M4 experiments with N-BEATS (and N-BEATS+TopAttn), we
closely follow the generic N-BEATS parameter configuration of Oreshkin et al. [29, Table 18]; any
additional parameters (for our N-BEATS+TopAttn approach) are highlighted in red. Note that we
also mark Hidden dimension in red, as this is not only the hidden dimension of the N-BEATS blocks
(“width” in [29, Table 18]), but we equally use this setting for the hidden dimension of the transformer

encoder layers.

Table 11: Large-scale experiment hyperparameters across all subsets of the M4 dataset. Parameters specific to
N-BEATS+TopAttn are highlighted in red. For a detailed description of the N-BEATS parameters, we refer to

[29, Section D.1].

M4
Parameters Yearly Quarterly Monthly Weekly Daily Hourly
H (Forecast horizon) 6 8 18 13 14 48
Ly 1.5 1.5 1.5 10 10 10
Iterations 5k
Loss SMAPE
Lookback period(s), T’ 2H,3H,4H,5H
Batch size 1024
Attention heads 4
Barcode coordinate functions 64
Encoder-layers 20
Hidden dimension 128
Double-residual blocks 1
Block-layers 4
Stacks 30
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E Sliding window configurations

Lets assume we have, at one point in training, a randomly extracted training portion of 7' + H
consecutive observations from a length-N time series (7' < IN). We use the first T' observations
as (1) raw input signal x to our models and (2) for extraction of complementary local topological
properties. The H consecutive observations, starting at 7' + 1, are used as target (to compute the
mean-squared-error, or the sMAPE for instance).

Throughout all experiments, sliding windows are moved forward by one observation a time.

For extracting local topological properties from x (of length T") via persistent homology, two
parameters are necessary: the parameter W determines the number of overlapping sliding windows
and the parameter n determines the length of a single sliding window (i.e., n observations). For each
sliding window, we obtain one barcode (or two, if —z is taken into account).

Single time series experiments [Manuscript, Section 4.2]. In this setting, H = 1, as we compute
one-step forecasts. Since, typically, forecast models differ in their sensitivity to the length 7" of the
input observations x, we cross-validate 7" (for all methods) using the sMAPE on the validation set.

The collection of different 7”s used for cross-validation is constructed based on the following
consideration: first, for persistent homology computation, we need a reasonable amount, n, of
observations in each sliding window; and, second, we need a reasonable amount, W, of sliding
windows for self-attention. Hence, we choose (1) W > 10 and (2) n < 45. As the sliding windows
move forward by one observation at a time, for one specific choice of (W, n), we getT =W +n — 1.
Varying W € {5,25,45} and n € {10, 20, 50, 70, 100, 150, 200, 232} thus determines the length, 7',
of the input vector x. For instance, setting (W, n) = (5, 10) gives a decomposition of « (of length
14), into 5 subsequent windows of length 10 for which persistent homology is computed. Overall, in
the described setup, 7" ranges from 14 to 244.

Large-scale experiments [Manuscript, Section 4.3]. In this setting, > 1. For comparability
with N-BEATS, we stick to the original setup of considering input lengths as multiples of the forecast
horizon (which is specific to each subgroup in M4). In particular, 7" ranges from 2H to 5H, see
Table 11. As an example, on M4 Yearly, this yields a range of T' from 12 to 30. As mentioned in
[Manuscript, Section 4.3.2], we set the sliding window length n = |0.7 - T'| and the number, W, of
such windows is thus determined by (7', n).
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F Ensemble size

As described in [Manuscript, Section 4.3.2], we ensemble 40 models to obtain forecasts for each
subgroup of the M4 dataset. One ensemble is formed per subgroup and consists of training N-BEATS,
or N-BEATS+TopAttn, respectively, with 10 random initializations for four different values of T',
ie., 2H,3H,4H,5H (where H denotes the specific forecast horizon prescribed per subgroup),
using the sMAPE as a loss function. In case of Yearly for instance, H = 6, see Table 6. Fig. 4
shows a comparison of N-BEATS and N-BEATS+TopAttn over the ensemble size, illustrating that
N-BEATS+TopAttn equally benefits from a larger ensemble.

—— N-BEATS
0.826 ®— N-BEATS+TopAttn

10 20 30 40
Ensemble Size

Figure 4: Comparison of N-BEATS and N-BEATS+TopAttn in terms of varying the ensemble size. At the
maximum ensemble size of 40, the OWA corresponds to the OWA reported in, e.g., Table 8. In the figure, the values
on the z-axis correspond to ensembles formed from all random initializations of models trained with historical
time horizons up to 2H,3H,4H,5H.

Notably, in [29] the ensemble is larger, as, in addition to training models with the sMAPE as loss, the
MAPE and MASE are used as well, and 7" scales up to 7H, resulting in 180 models in total. To rule
out diminishing effects when further increasing the ensemble size, specifically by models trained
with losses other than the sMAPE, we added 20 more models trained with the MASE for time horizons
2H and 3H. This gives an overall ensemble size of 60 (i.e., two more horizons and 10 random
initializations each).

—— N-BEATS
0.826 —®— N-BEATS+TopAttn

Ensemble Size

Figure 5: see Fig. 4, but with more models added to the ensemble, specifically 20 models trained using the
MASE as a training criterion for historical time horizons 2H and 3H.
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G Model details

In this section, we describe the details for the models used in the single time series experiments of
[Manuscript, Section 4.2].

Prophet. We use the publicly available Python implementation of Prophet’ with default parameter
choices.

autoARIMA. We use the publicly available Python implementation of autoARIMA'?. In terms of
hyperparameters, the initial number of time lags of the auto-regressive (“AR”) and the moving-average
(“MA”) model is set to 1, bounded by its maximum 6. The period for seasonal differencing is equal
to 5; the order of first-differencing and of seasonal differencing is set to 2 and 0, respectively.

LSTM. We implement a LSTM model with hidden dimensionality 128, 8 recurrent layers and a
dropout layer on the outputs of each LSTM layer with dropout probability of 0.3. Outputs of the
LSTM are fed to a subsequent single-hidden-layer MLP with hidden dimensionality equal to 64,
including batch normalization and ReLU activation. Initial learning rate and weight decay are set to
le-3 and 1.25e-5, respectively. We minimize the mean-squared-error (MSE) via ADAM over 1.5k
(electricity) and 2k (car-parts) iterations, respectively, using a batch size of 30. All learning
rates are annealed following a cosine learning rate schedule.

For DeepAR, MQ-CNN, MQ-RNN and the MLP baseline, we use the publicly available GluonTS
[2] implementations'!, mostly with default parameter choices. We only adjust the number of
(maximum) training epochs to 20 (for comparability to our approach, where we count iterations),
change the hidden dimensionality of the MLP to 64 and set the batch size to 30.

*https://facebook.github.io/prophet/
Yhttps://alkaline-ml.com/pmdarima/
Uhttps://ts.gluon.ai
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H System setup

All experiments were executed on an Ubuntu Linux 20.04 system, using PyTorch v1.7.0 (CUDA
10.1), 128 GB of RAM and 16 Intel(R) Core(TM) i9-10980XE CPUs.

I Persistent homology — Runtime study

To back up the “near-linear runtime” statement for 0-dimensional persistent homology computation in
the proposed regime (see [Manuscript, Section 3.4]), Fig. 6 shows a runtime plot (using Ripser!'?)
over 10,000 sliding window sizes, n, in the range [5,2000]. The system setup for these runtime
experiments is given in Section H. Fig. 6 clearly corroborates the statement from the manuscript.
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Figure 6: Runtime (in seconds) for O-dimensional persistent homology computation from observations within a
sliding window, varying in length, n, from [5, 2000].

Zhttps://github.com/Ripser/ripser
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