Supplementary material

A Evaluation criteria

In the following, we first replicate the definition of two commonly used, scale-free evaluation metrics, i.e., the *symmetric mean absolute percentage error* (sMAPE) and the *mean absolute scaled error* (MASE), see [Manuscript, Section 4.1]. These scale-free metrics are standard in the practice of forecasting and used across all experiments in the manuscript. Subsequently, we define the *overall weighted average* (OWA), i.e., a M4 competition specific performance measure used to rank competition entries. We also provide a toy calculation example.

Letting $\hat{\boldsymbol{y}} = (\hat{x}_{T+1}, \dots, \hat{x}_{T+H})^{\top}$ denote the length-*H* forecast, $\boldsymbol{y} = (x_{T+1}, \dots, x_{T+H})^{\top}$ the true observations and $\boldsymbol{x} = (x_1, \dots, x_T)^{\top}$ the length-*T* history of input observations, both metrics are defined as [28]

$$\mathsf{sMAPE}(\boldsymbol{y}, \hat{\boldsymbol{y}}) = \frac{200}{H} \sum_{i=1}^{H} \frac{|x_{T+i} - \hat{x}_{T+i}|}{|x_{T+i}| + |\hat{x}_{T+i}|}, \ \mathsf{MASE}(\boldsymbol{x}, \boldsymbol{y}, \hat{\boldsymbol{y}}) = \frac{1}{H} \frac{\sum_{i=1}^{H} |x_{T+i} - \hat{x}_{T+i}|}{\frac{1}{T-m} \sum_{i=m+1}^{T} |x_i - x_{i-m}|}$$
(12)

with m depending on the observation frequency. In the M4 competition [28], the frequencies per subgroup are: 12 for monthly, four for quarterly, 24 for hourly and one for yearly / weekly / daily data. To obtain the OWA of a given forecast method, say Forecast, we compute [28]

$$\mathsf{OWA}_{\mathsf{Forecast}} = \frac{1}{2} \left[\frac{\mathsf{sMAPE}_{\mathsf{Forecast}}}{\mathsf{sMAPE}_{\mathsf{Naive2}}} + \frac{\mathsf{MASE}_{\mathsf{Forecast}}}{\mathsf{MASE}_{\mathsf{Naive2}}} \right] \,. \tag{13}$$

Thus, if Forecast displays a MASE of 1.63 and a sMAPE of 12.65% across the 100k time series of M4, while Naive2 displays a MASE of 1.91 and a sMAPE of 13.56%, the relative MASE and sMAPE of Forecast would be 1.63/1.91 = 0.85 and 12.65/13.56 = 0.93, respectively, resulting in an OWA of (0.93 + 0.85)/2 = 0.89. According to [28], this indicates that, on average, Forecast is about 11% more accurate than Naive2, taking into account both sMAPE and MASE.

Performance criteria for single time series experiments. In our single time series experiments of **[Manuscript, Section 4.2]**, we use the sMAPE as an underlying evaluation measure and compute the following two statistics: first, the average rank (\oslash **Rank**) of each method based on the rank on each single time series in car-parts and electricity (both datasets are treated separately); and, second, the average percentual difference (% **Diff**) to the best approach per time series. A calculation example, for four *hypothetical* models and three time series (TS₀, TS₁, TS₂), is listed in Table 5.

Table 5: Example calculation of the *average rank* (\oslash **Rank**) and the *average percentual difference* (% **Diff**), as reported in [Manuscript, Table 1]. In this calculation example, <u>lower scores are better</u>. For instance, on TS₁, the rank of Model C is 3 and the percentual difference to the best performing model on TS₁ (i.e., Model A) is $(1.0 - 11.8/12.2) \times 100 = 3.28$.

	TS_0	TS_1	TS_2	⊘ Rank	% Diff
Model A	14.4 (3, 9.66)	11.8 (1, 0.00)	10.5 (2, 3.81)	2.00	4.49
Model B	14.3 (2, 8.39)	12.1 (2, 2.48)	10.8 (3, <u>6.48</u>)	2.33	5.78
Model C	13.1 (1, 0.00)	12.2 (3, 3.28)	11.1 (4, <mark>9.01</mark>)	2.67	4.09
Model D	14.5 (4, 9.66)	13.1 (4, 9.92)	10.1 (1, 0.00)	3.00	6.52

B Dataset details

For completeness, Table 6 replicates [29, Table 2], providing an overview of the key statistics for the M4 competition dataset. For all results listed in the main manuscript, the subgroups *Weekly*, *Daily* and *Hourly* are aggregated into **Others**, accounting for 5,000 time series overall.

	Frequency / Horizon							
Туре	Yearly / 6	Quarterly / 8	Monthly / 18	Weekly / 13	Daily / 14	Hourly / 48	Total	
Demographic	1,088	1,858	5,728	24	10	0	8,708	
Finance	6,519	5,305	10,987	164	1,559	0	24,534	
Industry	3,716	4,637	10,017	6	422	0	18,798	
Macro	3,903	5,315	10,016	41	127	0	19,402	
Micro	6,538	6,020	10,975	112	1,476	0	25,121	
Other	1,236	865	277	12	633	414	3,437	
Total	23,000	24,000	48,000	359	4,227	414	100,000	
Min. Length	19	24	60	93	107	748		
Max. Length	841	874	2812	2610	9933	1008		
Mean Length	37.3	100.2	234.3	1035.0	2371.4	901.9		
SD Length	24.5	51.1	137.4	707.1	1756.6	127.9		
% Smooth	82%	89%	94%	84%	98%	83%		
% Erratic	18%	11%	6%	16%	2%	17%		

Table 6: Description / Statistics for the M4 competition dataset.

Table 7 lists key statistics for the car-parts and the electricity time series we use in [Manuscript, Section 4.2]. Notably, there are no time series categorized into the *erratic* category, according to Syntetos et al. [37]. As car-parts is proprietary, Fig. 3 additionally shows a visualization of all observations from the four spare part demand time series.

Table 7: Description / Statistics for the car-parts and electricity time series.

	car-parts	electricity
Frequency / Horizon	Daily / 1	7Hourly / 1
Total	4	107
Min. Length	4507	3762
Max. Length	4783	3762
Mean Length	3644	3762
SD Length	137	0
% Smooth	75%	70%
% Lumpy	25%	30%

⁷In reference to [12], time series IDs are: MT_*i* for $i \in \{14, 127, 130, 183, 238, 271, 318, 332, 333, 353\}$.

Figure 3: Visualization of the four proprietary car-parts time series.

C Additional results

Table 8 replicates [Manuscript, Table 3], listing sMAPE / OWA statistics on M4, as well as the corresponding MASE / OWA statistics⁸. Table 9 lists results, split by time series **domains**.

Table 8: Performance comparison on the M4 benchmark in terms of (a) sMAPE / OWA and (b) MASE / OWA, listed by subgroup. N-BEATS and N-BEATS+TopAttn denote an ensemble formed by training multiple models, varying T from 2H to 5H and randomly initializing each model ten times (i.e., a total of 40 models per subgroup). Forecasts are obtained by taking the median over the point forecasts of all models. \dagger denotes results from [27, 28].

Granularity	Total	[†] Winner M4	[†] Benchmark	[†] Naive2	N-BEATS [29]	N-BEATS+TopAttn
Yearly	(23k)	13.176/0.778	14.848 / 0.867	16.342 / 1.000	13.149 / 0.776	13.063 / 0.771
Quarterly	(24k)	9.679 / 0.847	10.175 / 0.890	11.011 / 1.000	9.684 / 0.845	9.687 / 0.845
Monthly	(48k)	12.126 / 0.836	13.434 / 0.920	14.427 / 1.000	12.054 / 0.829	12.025 / 0.828
Weekly	(359)	7.817/0.851	8.944 / 0.926	9.191 / 1.000	6.447 / 0.703	6.361 / 0.699
Daily	(4, 227)	3.170 / 1.046	2.980 / 0.978	3.045 / 1.000	2.976 / 0.974	2.979 / 0.975
Hourly	(414)	9.328 / 0.440	22.053 / 1.556	18.383 / 1.000	10.040 / 0.464	10.271 / 0.483
Average	(100k)	11.374 / 0.821	12.555 / 0.898	13.564 / 1.000	11.324 / 0.814	11.291 / 0.811

(a) sMAPE / OWA

(b) MASE / OWA								
Granularity	Total	[†] Winner M4	[†] Benchmark	[†] Naive2	N-BEATS [29]	N-BEATS+TopAttn		
Yearly	(23k)	2.980 / 0.778	3.280 / 0.867	3.974 / 1.000	2.972 / 0.776	2.950 / 0.771		
Quarterly	(24k)	1.118 / 0.847	1.173 / 0.890	1.371 / 1.000	1.111 / 0.845	1.112 / 0.845		
Monthly	(48k)	0.884 / 0.836	0.966 / 0.920	1.063 / 1.000	0.875 / 0.829	0.874 / 0.828		
Weekly	(359)	2.356 / 0.851	2.432 / 0.926	2.777 / 1.000	1.950 / 0.703	1.953 / 0.699		
Daily	(4, 227)	3.446 / 1.046	3.203 / 0.978	3.278 / 1.000	3.183 / 0.974	3.188 / 0.975		
Hourly	(414)	0.893 / 0.440	4.582 / 1.556	2.395 / 1.000	0.917 / 0.464	0.974 / 0.483		
Average	(100k)	1.536 / 0.821	1.663 / 0.898	1.912 / 1.000	1.516/0.814	1.511 / 0.811		

Table 9: Performance comparison on the M4 benchmark in terms of (a) $sMAPE_{N-BEATS} / sMAPE_{N-BEATS+TopAttn}$ and (b) $MASE_{N-BEATS} / MASE_{N-BEATS+TopAttn}$, listed by subgroup and **domain**. N-BEATS and N-BEATS+TopAttn denote the same models as in Table 8.

(a) $sMAPE_{N-BEATS} / sMAPE_{N-BEATS+TopAttn}$

Granularity	Demographic (8,7k)	Finance (24,5k)	Industry (18,8k)	Macro (19,4k)	Micro (25,1k)	Other (3,5k)
Yearly	9.640 / 9.694	14.029 / 13.879	16.645 / 16.523	13.450 / 13.400	10.700 / 10.654	13.094 / 13.000
Quarterly	9.908 / 9.933	11.158 / 11.161	8.822 / 8.832	9.182 / 9.178	9.919/ 9.922	6.222 / 6.173
Monthly	4.605 / 4.599	13.629 / 13.625	12.918 / 12.913	12.490 / 12.428	13.180 / 13.122	11.987 / 11.932
Weekly	1.401 / 1.403	7.598 / 7.516	2.563 / 2.548	11.303 / 10.837	3.658 / 3.681	12.204 / 12.112
Daily	6.300 / 6.313	3.442 / 3.446	3.831 / 3.832	2.532/ 2.532	2.288 / 2.291	2.901 / 2.901
Hourly						9.787 / 9.997
Average	6.358 / 6.367	12.513 / 12.472	12.437 / 12.413	11.709 / 11.665	11.070 / 11.034	8.997 / 8.971

(b) $MASE_{N-BEATS} / MASE_{N-BEATS+TopAttn}$

Granularity	Demographic (8,7k)	Finance (24,5k)	Industry (18,8k)	Macro (19,4k)	Micro (25,1k)	Other (3,5k)
Yearly	2.410/2.428	3.086 / 3.055	3.021 / 2.996	2.956 / 2.932	2.994 / 2.981	2.647 / 2.616
Quarterly	1.234 / 1.238	1.110/1.111	1.075 / 1.077	1.123 / 1.121	1.128 / 1.128	0.866 / 0.861
Monthly	0.864 / 0.862	0.912/0.912	0.936 / 0.935	0.878 / 0.876	0.790 / 0.788	0.780 / 0.778
Weekly	1.782 / 1.839	1.661 / 1.634	3.724 / 3.808	2.042 / 2.114	2.393 / 2.399	0.910 / 0.899
Daily	9.604 / 9.641	3.396 / 3.402	3.784 / 3.787	3.198 / 3.205	2.597 / 2.603	3.519 / 3.520
Hourly						0.903 / 0.971
Average	1.148 / 1.151	1.695 / 1.687	1.447 / 1.443	1.380 / 1.374	1.558 / 1.554	1.993 / 1.989

⁸Detailed results for *Weekly*, *Daily* and *Hourly* are not listed in [27, 28], but available here.

D Hyperparameter settings

Hyperparameter settings for our single time series experiments of [Manuscript, Section 4.2] and the large-scale M4 experiments of [Manuscript, Section 4.3] are listed in Tables 10 and 11.

Parameters	car-parts Daily	electricity 7Hourly
Iterations	2k	1.5k
Loss	נ	MSE
H (Forecast horizon)		1
Lookback period(s), T	14H	- 244 <i>H</i>
Batch size		30
Attention heads		4
Barcode coordinate functions		32
Encoder-layers		1
Hidden dimension		128

Table 10: Single time series experiment hyperparameters for car-parts and electricity data.

As mentioned in the manuscript, for M4 experiments with N-BEATS (and N-BEATS+TopAttn), we closely follow the *generic* N-BEATS parameter configuration of Oreshkin et al. [29, Table 18]; any additional parameters (for our N-BEATS+TopAttn approach) are highlighted in red. Note that we also mark *Hidden dimension* in red, as this is not only the hidden dimension of the N-BEATS blocks ("width" in [29, Table 18]), but we equally use this setting for the hidden dimension of the transformer encoder layers.

Table 11: *Large-scale experiment* hyperparameters across all subsets of the M4 dataset. Parameters specific to N-BEATS+TopAttn are highlighted in red. For a detailed description of the N-BEATS parameters, we refer to [29, Section D.1].

Parameters	Yearly	Quarterly	Monthly	Weekly	Daily	Hourly		
H (Forecast horizon)	6	8	18	13	14	48		
L_H	1.5	1.5	1.5	10	10	10		
Iterations			5k					
Loss			sMAP	E				
Lookback period(s), T	2 <i>H</i> , 3 <i>H</i> , 4 <i>H</i> , 5 <i>H</i>							
Batch size			1024	ŀ				
Attention heads			4					
Barcode coordinate functions			64					
Encoder-layers			20					
Hidden dimension			128					
Double-residual blocks	1							
Block-layers			4					
Stacks			30					

E Sliding window configurations

Lets assume we have, at one point in training, a randomly extracted training portion of T + H consecutive observations from a length-N time series ($T \ll N$). We use the first T observations as (1) raw input signal x to our models and (2) for extraction of complementary *local topological properties*. The H consecutive observations, starting at T + 1, are used as target (to compute the mean-squared-error, or the sMAPE for instance).

Throughout all experiments, sliding windows are moved forward by one observation a time.

For extracting local topological properties from x (of length T) via persistent homology, two parameters are necessary: the parameter W determines the number of overlapping sliding windows and the parameter n determines the length of a single sliding window (i.e., n observations). For each sliding window, we obtain one barcode (or two, if -x is taken into account).

Single time series experiments [Manuscript, Section 4.2]. In this setting, H = 1, as we compute one-step forecasts. Since, typically, forecast models differ in their sensitivity to the length T of the input observations x, we cross-validate T (for all methods) using the sMAPE on the validation set.

The collection of different T's used for cross-validation is constructed based on the following consideration: first, for persistent homology computation, we need a reasonable amount, n, of observations in each sliding window; and, second, we need a reasonable amount, W, of sliding windows for self-attention. Hence, we choose (1) $W \ge 10$ and (2) $n \le 45$. As the sliding windows move forward by one observation at a time, for one specific choice of (W, n), we get T = W + n - 1. Varying $W \in \{5, 25, 45\}$ and $n \in \{10, 20, 50, 70, 100, 150, 200, 232\}$ thus determines the length, T, of the input vector x. For instance, setting (W, n) = (5, 10) gives a decomposition of x (of length 14), into 5 subsequent windows of length 10 for which persistent homology is computed. Overall, in the described setup, T ranges from 14 to 244.

Large-scale experiments [Manuscript, Section 4.3]. In this setting, H > 1. For comparability with N-BEATS, we stick to the original setup of considering input lengths as multiples of the forecast horizon (which is specific to each subgroup in M4). In particular, T ranges from 2H to 5H, see Table 11. As an example, on M4 *Yearly*, this yields a range of T from 12 to 30. As mentioned in [Manuscript, Section 4.3.2], we set the sliding window length $n = \lfloor 0.7 \cdot T \rfloor$ and the number, W, of such windows is thus determined by (T, n).

F Ensemble size

As described in [Manuscript, Section 4.3.2], we ensemble 40 models to obtain forecasts for each subgroup of the M4 dataset. One ensemble is formed per subgroup and consists of training N-BEATS, or N-BEATS+TopAttn, respectively, with 10 random initializations for four different values of T, i.e., 2H, 3H, 4H, 5H (where H denotes the specific forecast horizon prescribed per subgroup), using the sMAPE as a loss function. In case of *Yearly* for instance, H = 6, see Table 6. Fig. 4 shows a comparison of N-BEATS and N-BEATS+TopAttn over the ensemble size, illustrating that N-BEATS+TopAttn equally benefits from a larger ensemble.

Figure 4: Comparison of N-BEATS and N-BEATS+TopAttn in terms of varying the ensemble size. At the maximum ensemble size of 40, the OWA corresponds to the OWA reported in, e.g., Table 8. In the figure, the values on the x-axis correspond to ensembles formed from all random initializations of models trained with historical time horizons up to 2H, 3H, 4H, 5H.

Notably, in [29] the ensemble is larger, as, in addition to training models with the sMAPE as loss, the MAPE and MASE are used as well, and T scales up to 7H, resulting in 180 models in total. To rule out diminishing effects when further increasing the ensemble size, specifically by models trained with losses other than the sMAPE, we added 20 more models trained with the MASE for time horizons 2H and 3H. This gives an overall ensemble size of 60 (i.e., two more horizons and 10 random initializations each).

Figure 5: see Fig. 4, but with more models added to the ensemble, specifically 20 models trained using the MASE as a training criterion for historical time horizons 2H and 3H.

G Model details

In this section, we describe the details for the models used in the *single time series* experiments of **[Manuscript, Section 4.2]**.

Prophet. We use the publicly available Python implementation of Prophet⁹ with *default* parameter choices.

autoARIMA. We use the publicly available Python implementation of autoARIMA¹⁰. In terms of hyperparameters, the initial number of time lags of the auto-regressive ("AR") and the moving-average ("MA") model is set to 1, bounded by its maximum 6. The period for seasonal differencing is equal to 5; the order of first-differencing and of seasonal differencing is set to 2 and 0, respectively.

LSTM. We implement a LSTM model with hidden dimensionality 128, 8 recurrent layers and a dropout layer on the outputs of each LSTM layer with dropout probability of 0.3. Outputs of the LSTM are fed to a subsequent single-hidden-layer MLP with hidden dimensionality equal to 64, including batch normalization and ReLU activation. Initial learning rate and weight decay are set to 1e-3 and 1.25e-5, respectively. We minimize the mean-squared-error (MSE) via ADAM over 1.5k (electricity) and 2k (car-parts) iterations, respectively, using a batch size of 30. All learning rates are annealed following a cosine learning rate schedule.

For **DeepAR**, **MQ-CNN**, **MQ-RNN** and the **MLP** baseline, we use the publicly available GluonTS [2] implementations¹¹, mostly with *default* parameter choices. We only adjust the number of (maximum) training epochs to 20 (for comparability to our approach, where we count iterations), change the hidden dimensionality of the **MLP** to 64 and set the batch size to 30.

⁹https://facebook.github.io/prophet/

¹⁰https://alkaline-ml.com/pmdarima/

¹¹https://ts.gluon.ai

H System setup

All experiments were executed on an Ubuntu Linux 20.04 system, using PyTorch v1.7.0 (CUDA 10.1), 128 GB of RAM and 16 Intel(R) Core(TM) i9-10980XE CPUs.

I Persistent homology – Runtime study

To back up the "near-linear runtime" statement for 0-dimensional persistent homology computation in the proposed regime (see [Manuscript, Section 3.4]), Fig. 6 shows a runtime plot (using Ripser¹²) over 10,000 sliding window sizes, n, in the range [5,2000]. The system setup for these runtime experiments is given in Section H. Fig. 6 clearly corroborates the statement from the manuscript.

Figure 6: Runtime (in seconds) for 0-dimensional persistent homology computation from observations within a sliding window, varying in length, n, from [5, 2000].

¹²https://github.com/Ripser/ripser