
Single Loop Gaussian Homotopy Method for
Non-convex Optimization

Hidenori Iwakiri∗
The University of Tokyo, RIKEN AIP

iwakiri-hidenori2020@g.ecc.u-tokyo.ac.jp

Yuhang Wang∗
The University of Tokyo
utyuuhikou@gmail.com

Shinji Ito
NEC Corporation, RIKEN AIP

i-shinji@nec.com

Akiko Takeda
The University of Tokyo, RIKEN AIP
takeda@mist.i.u-tokyo.ac.jp

Abstract

The Gaussian homotopy (GH) method is a popular approach to finding better
stationary points for non-convex optimization problems by gradually reducing a
parameter value t, which changes the problem to be solved from an almost convex
one to the original target one. Existing GH-based methods repeatedly call an
iterative optimization solver to find a stationary point every time t is updated,
which incurs high computational costs. We propose a novel single loop framework
for GH methods (SLGH) that updates the parameter t and the optimization decision
variables at the same. Computational complexity analysis is performed on the
SLGH algorithm under various situations: either a gradient or gradient-free oracle
of a GH function can be obtained for both deterministic and stochastic settings. The
convergence rate of SLGH with a tuned hyperparameter becomes consistent with
the convergence rate of gradient descent, even though the problem to be solved is
gradually changed due to t. In numerical experiments, our SLGH algorithms show
faster convergence than an existing double loop GH method while outperforming
gradient descent-based methods in terms of finding a better solution.

1 Introduction

Let us consider the following non-convex optimization problem:

minimize
x∈Rd

f(x), (1)

where f : Rd → R is a non-convex function. Let us also consider the following stochastic setting:

f(x) := Eξ[f̄(x; ξ)], (2)

where ξ is the random variable following a probability distribution P from which i.i.d. samples can
be generated. Such optimization problems attract significant attention in machine learning, and at
the same time, the need for optimization algorithms that can find a stationary point with smaller
objective value is growing. For example, though it is often said that simple gradient methods can find
global minimizers for deep learning (parameter configurations with zero or near-zero training loss),
such beneficial behavior is not universal, as noted in [19]; the trainability of neural nets is highly
dependent on network architecture design choices, variable initialization, etc. There are also various
other highly non-convex optimization problems in machine learning (see e.g., [16]).

∗The first two authors contributed equally.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Table 1: Each theorem shows the iteration complexity of SLGH with respect to ε and the dimension
of input space d to reach an ε-stationary point in the corresponding problem setting. “const. γ” shows
the complexity when we treat the decreasing parameter γ as a constant. “tuned γ” shows the lowest
complexity of SLGH attained by updating t appropriately, which matches the complexity of the
standard first- or zeroth-order methods (see e.g., Theorem 3.4). We also consider two cases of a
zeroth-order setting: “exact f”, in which we can query the exact or stochastic function value, and
“err. f”, in which we can only access the function value with bounded error.

1) first-order zeroth-order
2) exact f 3) err. f

a) deterministic Thm. 3.4 Thm. 4.1 Thm. C.1
const. γ O

(
d3/2

ε2

)
O
(
d2

ε2

)
O
(
d3

ε2

)
tuned γ O

(
1
ε2

)
O
(
d
ε2

)
O
(
d
ε2

)
b) stochastic Thm. 3.5 Thm. 4.2 Thm. C.2

const. γ O
(
d
ε4 + d3/2

ε2

)
O
(
d2

ε4

)
O
(
d2

ε4 + d3

ε2

)
tuned γ O

(
1
ε4

)
O
(
d
ε4

)
O
(
d
ε4

)
The Gaussian homotopy (GH) method is designed to avoid poor stationary points by building a
sequence of successively smoother approximations of the original objective function f , and it is
expected to find a good stationary point with a small objective value for a non-convex problem. More
precisely, using the GH function F (x, t) with a parameter t ≥ 0 that satisfies F (x, 0) = f(x), the
method starts from solving an almost convex smoothed function F (x, t1) with some sufficiently
large t1 ≥ 0 and gradually changes the optimization problem F (x, t) to the original one f(x) while
decreasing the parameter t. The homotopy method developed so far, then, consists of a double loop
structure; the outer loop reduces t, and the inner loop solves minx F (x, t) for the fixed t.

Related research on the GH method The GH method is popular owing to its ease of implementa-
tion and the quality of its obtained stationary points, i.e., their function values. The nature of this
method was first proposed in [3], and it was then successfully applied in various fields, including
computer vision [29, 4, 5], physical sciences [15] and computation chemistry [35]. [14] introduces
machine learning applications for the GH method, and an application to tuning hyperparameters of
kernel ridge regression [30] has recently been introduced. Although there have been recent studies on
the GH function F (x, t) [23, 24, 14], all existing GH methods use the double loop approach noted
above. Moreover, to the best of our knowledge, there are no existing works that give theoretical
guarantee for the convergence rate except for [14]. It characterizes a family of non-convex functions
for which a GH algorithm converges to a global optimum and derives the convergence rate to an
ε-optimal solution. However, the family covers only a small part of non-convex functions, and it is
difficult to check whether the required conditions are satisfied for each function. See Appendix A for
more discussion on related work.

Motivation for this work This paper proposes novel deterministic and stochastic GH methods
employing a single loop structure in which the decision variables x and the smoothing parameter t
are updated at the same time using individual gradient/derivative information. Using a well-known
fact in statistical physics on the relationship between the heat equation and Gaussian convolution of
f , together with the maximum principle (e.g., [12]) for the heat equation, we can see that a solution
(x∗, t∗) minimizing the GH function F (x, t) satisfies t∗ = 0; thus, x∗ is also a solution for (1). This
observation leads us to a single loop GH method (SLGH, in short), which updates the current point
(xk, tk) simultaneously for minx∈Rd,t≥0 F (x, t). The resulting SLGH method can be regarded as an
application of the steepest descent method to the optimization problem, with (x, t) as a variable. We
are then able to investigate the convergence rate of our SLGH method so as to achieve an ε-stationary
point of (1) and (2) by following existing theoretical complexity analyses.

We propose two variants of the SLGH method: SLGHd and SLGHr, which have different update rules
for t. SLGHd updates t using the derivative of F (x, t) in terms of t, based on the idea of viewing
F (x, t) as the objective function with respect to the variable (x, t). Though this approach is effective
in finding good solutions (as demonstrated in Appendix D.4), it requires additional computational
cost due to the calculation of ∂F

∂t . To avoid this additional computational cost, we also consider

2

SLGHr that uses fixed-rate update rule for t. We also show that both SLGHd and SLGHr have the
same theoretical guarantee.

Table 1 summarizes the convergence rate of our SLGH method to reach an ε-stationary point under a
number of problem settings. Since the convergence rate depends on the decreasing speed of t, we list
two kinds of complexity in the table; details are described in the caption.

We consider the three settings in which available oracles differ. In Case 1), the full (or stochastic)
gradient of F (x, t) in terms of x is available for the deterministic problem (1) (or stochastic problem
(2), respectively). However, in this setting, we have to calculate Gaussian convolution for deriving
GH functions and their gradient vectors, which becomes expensive, especially for high-dimensional
applications, unless closed-form expression of Gaussian convolution is possible. While [22] provides
closed-form expression for some specific functions f , such as polynomials, Gaussian RBFs, and
trigonometric functions, such problem examples are limited. As Case 2), we extend our deterministic
and stochastic GH methods to the zeroth-order setting, for which the convolution computation is
approximated using only the function values. Another zeroth-order setting, Case 3), is also considered
in this paper: the inexact function values (more precisely, the function value with bounded error) can
be queried similarly as in the setting in [17]. See Appendix C for more details.

Although no existing studies have analyzed the complexity of a double loop GH method to find an ε-
stationary point, we can see that its inner loop requires the same complexity as GD (gradient descent)
method up to constants. Furthermore, as noted above, the complexity of the SLGH method with a
tuned hyperparameter matches that of GD method. Thus, the SLGH method becomes faster than a
double loop GH method by around the number of outer loops. The SLGH method is also superior to
double loop GH methods from practical perspective, because in order to ensure convergence of their
inner loops, we have to set the stepsize conservatively, and furthermore a sufficiently tuned terminate
condition must be required.

Contributions We can summarize our contribution as follows:

(1) We propose novel deterministic and stochastic single loop GH (SLGH) algorithms and analyze
their convergence rates to an ε-stationary point. As far as we know, this is the first analysis of
convergence rates of GH methods for general non-convex problems (1) and (2). For non-convex
optimization, the convergence rate of SLGH with a tuned hyperparameter becomes consistent with
the convergence rate of gradient descent, even though the problem to be solved is gradually changed
due to t. At this time, the SLGH algorithms become faster than a double loop one by around its
number of outer loops.

(2) We propose zeroth-order SLGH (ZOSLGH) algorithms based on zeroth-order estimators of
gradient and Hessian values, which are useful when Gaussian smoothing convolution is difficult. We
also consider the possibly non-smooth case in which the accessible function contains error, and we
derive the upper bound of the error level for convergence guarantee.

(3) We empirically compare our proposed algorithm and other algorithms in experiments, including
artificial highly non-convex examples and black-box adversarial attacks. Results show that the
proposed algorithm converges much faster than an existing double loop GH method, while it is yet
able to find better solutions than are GD-based methods.

2 Standard Gaussian homotopy methods

Notation: For an integer N , let [N] := {1, ..., N}. We express χ[N] := {χ1, . . . , χN} for a set of
some vectors. We also express the range of the smoothing parameter t as T := [0, t1], where t1 is an
initial value of the smoothing parameter. Let ‖ · ‖ denote the Euclidean norm and N (0, Id) denote
the d-dimensional standard normal distribution.

Let us first define Gaussian smoothed function.

Definition 2.1. Gaussian smoothed function F (x, t) of f(x) is defined as follows:

F (x, t) := Eu∼N (0,Id)[f(x+ tu)] =

∫
f(x+ ty)k(y)dy, (3)

where k(y) = (2π)−d/2 exp (−‖y‖2/2) is referred to as the Gaussian kernel.

3

The idea of Gaussian smoothing is to take an expectation over the function value with a Gaussian
distributed random vector u. For any t > 0, the smoothed function F (x, t) is a C∞ function, and t
plays the role of a smoothing parameter that controls the level of smoothing.

Here, let us show the link between Gaussian smoothing and the heat equation [34]. The Gaussian
smoothing convolution is basically the solution of the heat equation [34].

∂

∂t
û = ∆xû, û(·, 0) = f(·), (4)

where ∆x denotes the Laplacian. The solution of the heat equation is û(x, t) =

(1
4πt)

d
2

∫
f(y)e−

‖x−y‖2
4t dy. This can be made the same as the Gaussian smoothing function F (x, t)

by scaling its coefficient, which only changes the speed of progression.

Corollary 9 in [25] shows a sufficient condition for ensuring that f has the asymptotic strict convexity
in which the smoothed function F (x, t) becomes convex if a sufficiently large smoothing parameter
t is chosen. On this basis, the standard GH method, Algorithm 1, starts with a (almost) convex
optimization problem F (x, t) with large parameter value t ∈ R and gradually changes the problem
toward the target non-convex f(·) = F (·, 0) by decreasing t gradually. [14] reduces t by multiplying
by a factor of 1/2 for each iteration k. [24] focuses more on theoretical work w.r.t. the general setting
and do not discuss the update rule for t.

Algorithm 1 Standard GH method ([24, 14])
Require: Objective function f , iteration number T , sequence {t1, . . . , tT } satisfying t1 > · · · > tT .

Find a solution x1 for minimizing F (x, t1).
for k = 1 to T do

Find a stationary point xk+1 of F (x, tk+1) with the initial solution xk.
end for
return xT

3 Single loop Gaussian homotopy algorithm

A function h(x) is L0-Lipschitz with a constant L0 if for any x, y ∈ Rd, |h(x)−h(y)| ≤ L0‖x−y‖
holds. In addition, h(x) is L1-smooth with a constant L1 if for any x, y ∈ Rd, ‖∇h(x)−∇h(y)‖ ≤
L1‖x− y‖ holds. Let us here list assumptions for developing algorithms with convergence guarantee.
Assumption A1.

(i) Objective function f satisfies supx∈Rd Eu[|f(x + tu)|] < ∞ (In the stochastic setting, f
satisfies supx∈Rd,ξ Eu[|f̄(x+ tu; ξ)|] <∞).

(ii) The optimization problem (1) has an optimal value f∗.

(iii) Objective function f(x) is L0-Lipschitz and L1-smooth on Rd (In the stochastic setting,
f̄(x; ξ) is L0-Lipschitz and L1-smooth on Rd in terms of x for any ξ).

Assumption (i) for making F (x, t) well-defined and enabling to exchange the order of differentiation
and integration, as well as Assumption (ii), is mandatory for theoretical analysis with the GH method.
Assumption (iii) is often imposed for gradient-based methods. This is a regular boundedness and
smoothness assumption in recent non-convex optimization analyses (see e.g., [2, 21, 10]).

In the remainder of this section, we consider the nature of the GH method and propose a more
efficient algorithm, a SLGH algorithm. We then provide theoretical analyses for our proposed SLGH
algorithm.

3.1 Motivation

The standard GH algorithm needs to solve an optimization problem for a given smoothing factor t in
each iteration and manually reduce t, e.g., by multiplying some decreasing factor. To simplify this
process, we consider an alternative problem as follows:

minimize
x∈Rd,t∈T

F (x, t), (5)

4

where F (x, t) is the Gaussian smoothed function of f(x). This single loop structure can reduce the
number of iterations by optimizing x and t at the same time.

The following theorem is a (almost) special case of Theorem 6 in [12],2 which is studied in statistical
physics but may not be well-known in machine learning and optimization communities. This theorem
shows that the optimal solution of (5) (x∗, t∗) satisfies t∗ = 0, and thus x∗ is also a solution for (1).
Therefore, we can regard F (x, t) as an objective function in the SLGH method.
Theorem 3.1. Suppose that Assumptions A1 (i) and (ii) are satisfied. Unless f is constant a.e., the
minimum of the GH function F (x, t) will be always found at t = 0, and the corresponding x will be
an optimal solution for (1).

We present a proof of this theorem in Appendix B.1. The proof becomes much easier than that in
[12] due to its considering a specific case.

Let us next introduce an update rule for t utilizing the derivative information. When we solve the
problem (5) using a gradient descent method, the update rule for t becomes tk+1 = tk − η ∂F∂t , where
η is a step size. The formula (4) in the heat equation implies that the derivative ∂F

∂t is equal to
the Laplacian ∆xF , i.e., ∂F∂t = tr(HF (x)), where HF (x) is the Hessian of F in terms of x. Since
tr(HF (x)) represents the sharpness of minima [11], this update rule can sometimes decrease t quickly
around a minimum and find a better solution. See Appendix D.4 for an example of such a problem.

3.2 SLGH algorithm

Let us next introduce our proposed SLGH algorithm, which has two variants with different update
rules for t: SLGH with a fixed-ratio update rule (SLGHr) and SLGH with a derivative update rule
(SLGHd). SLGHr updates t by multiplying a decreasing factor γ (e.g., 0.999) at each iteration.
In contrast to this, SLGHd updates t while using derivative information. Details are described in
Algorithm 2. Algorithm 2 transforms a double loop Algorithm 1 into a single loop algorithm. This
single loop structure can significantly reduce the number of iterations while ensuring the advantages
of the GH method.

Algorithm 2 Deterministic/Stochastic Single Loop GH algorithm (SLGH)
Require: Iteration number T , initial solution x1, initial smoothing parameter t1, step size β for x,

step size η for t, decreasing factor γ ∈ (0, 1), sufficient small positive value ε
for k = 1 to T do
xk+1 = xk − βĜx, Ĝx =

{
∇xF (xk, tk) (determ.)
∇xF̄ (xk, tk; ξk), ξk ∼ P (stoc.)

tk+1 =

{
γtk (SLGHr)

max{min{tk − ηĜt, γtk}, ε′} (SLGHd)
, Ĝt =

{
∂F (xk,tk)

∂t (determ.)
∂F̄ (xk,tk;ξk)

∂t , ξk ∼ P (stoc.)

end for

In the stochastic setting of (2), the gradient of F (x, t) in terms of x is approximated by ∇xF̄ (x, t; ξ)
with randomly chosen ξ, where F̄ (x, t; ξ) is the GH function of f̄(x; ξ). Likewise, the derivative of
F (x, t) in terms of t is approximated by ∂F̄ (x,t;ξ)

∂t . The stochastic algorithm in Algorithm 2 uses one
sample ξk. We can extend the stochastic approach to a minibatch one by approximating ∇xF (x, t)

by 1
M

∑M
i=1∇xF̄ (x, t; ξi) with samples {ξ1, . . . , ξM} of some batch size M , but for the sake of

simplicity, we here assume one sample in each iteration. In this setting, the gradient complexity
matches the iteration complexity; thus, we also use the term “iteration complexity” in the stochastic
setting. Other methods, such as momentum-accelerated method [33] and Adam [18] can also be
applied here. According to Theorem 3.1, the final smoothing parameter needs to be zero. Thus, we

2Although the assumptions in Theorem 3.1 are stronger than those in the theorem proved by Evans, the
statement of ours is also stronger than that of his theorem, in a sense that our theorem guarantees that all optimal
solutions satisfy t = 0.

5

multiply γ by t even in SLGHd when the decrease of t is insufficient. We also assure that t is larger
than a sufficiently small positive value ε′ > 0 during an update to prevent t from becoming negative.

3.3 Convergence analysis for SLGH

Let us next analyze the worst-case iteration complexity for both deterministic and stochastic SLGHs,
but, before that, let us first show some properties for Gaussian smoothed function F (x, t) under
Assumption A1 for the original function f(x). In the complexity analyses in this paper, we always
assume that γ is bounded from above by a universal constant γ̄ < 1, which implies 1/(1−γ) = O(1).
Lemma 3.2. Let f(x) be a L0-Lipschitz function. Then, for any t > 0, its Gaussian smoothed
function F (x, t) will then also be L0-Lipschitz in terms of x. Let f(x) be a L1-smooth function.
Then, for any t > 0, F (x, t) will also be L1-smooth in terms of x.

Lemma 3.2 indicates that Assumption A1 given to the function f(x) also guarantees the same
properties for F (x, t). Below, we give some bounds between the smoothed function F (x, t) and the
original function f(x).

Lemma 3.3. Let f be a L0-Lipschitz function. Then, for any x ∈ Rd, F (x, t) is also L0

√
d-

Lipschitz in terms of t, i.e., for any x, smoothing parameter values t1, t2 > 0, we have |F (x, t1)−
F (x, t2)| ≤ L0

√
d|t1 − t2|.

On the basis of Lemmas 3.2 and 3.3, the convergence results of our deterministic and stochastic
SLGH algorithms can be given as in Theorems 3.4 and 3.5, respectively. Proofs of the following
theorems are given in Appendix B.2. Let us first deal with the deterministic setting.
Theorem 3.4 (Convergence of SLGH, Deterministic setting). Suppose Assumption A1 holds , and
let x̂ := xk′ , k

′ = argmink∈[T] ‖∇f(xk)‖. Set the stepsize for x as β = 1/L1. Then, for any setting
of the parameter γ, x̂ satisfies ‖∇f(x̂)‖ ≤ ε with the iteration complexity of T = O

(
d3/2/ε2

)
.

Further, if we choose γ ≤ d−Ω(ε2), the iteration complexity can be bounded as T = O(1/ε2).

This theorem indicates that if we choose γ close to 1, then the iteration complexity can beO
(
d3/2/ε2

)
,

which is O(d3/2) times larger than the O(1/ε2)-iteration complexity by the standard gradient descent
methods [27]. However, we can remove this dependency on d to obtain an iteration complexity
matching that of the standard gradient descent, by choosing γ ≤ d−Ω(ε2), as shown in Theorem 3.4.
Empirically, settings of γ close to 1, e.g., γ = 0.999, seem to work well enough, as demonstrated in
Section 5.

An inner loop of the double loop GH method using the standard GD requires the same complexity as
the standard GD method up to constants since the objective smoothed function of inner optimization
problem isL1-smooth function. By considering the above results, we can see that the SLGH algorithm
becomes faster than the double loop one by around the number of outer loops.

To provide theoretical analyses in the stochastic setting, we need additional standard assumptions.
Assumption A2.

(i) The stochastic function f̄(x; ξ) becomes an unbiased estimator of f(x). That is, for any
x ∈ Rd, f(x) = Eξ[f̄(x; ξ)] holds.

(ii) For any x ∈ Rd, the variance of the stochastic gradient oracle is bounded as
Eξ[‖∇xf̄(x; ξ) − ∇f(x)‖2] ≤ σ2. Here, the expectation is taken w.r.t. random vectors
{ξk}.

The following theorem shows the convergence rate in the stochastic setting.
Theorem 3.5 (Convergence of SLGH, Stochastic setting). Suppose Assumptions A1 and A2 hold.
Take k1 := Θ(1/ε4) and k2 := O

(
logγ min{d−1/2, d−3/2ε−2}

)
and define k0 = min{k1, k2}. Let

x̂ := xk′ , where k′ is chosen from a uniform distribution over {k0 + 1, k0 + 2, . . . , T}. Set the
stepsize for x as β = min

{
1/L1, 1/

√
T − k0

}
. Then, for any setting of the parameter γ, x̂ satisfies

E[‖∇f(x̂)‖] ≤ ε with the iteration complexity of T = O
(
d/ε4 + d3/2/ε2

)
where the expectation

is taken w.r.t. random vectors {ξk}. Further, if we choose γ ≤ (max{d1/2, d3/2ε2})−Ω(ε4), the
iteration complexity can be bounded as T = O(1/ε4).

6

We note that the iteration complexity of T = O(1/ε4) for sufficiently small γ matches that for the
standard stochastic gradient descent (SGD) shown, e.g., by [13].

4 Zeroth-order single loop Gaussian homotopy algorithm

In this section, we introduce a zeroth-order version of the SLGH algorithms. This ZOSLGH algorithm
is proposed for those optimization problems in which Gaussian smoothing convolution is difficult to
compute, or in which only function values can be queried.

4.1 ZOSLGH algorithm

For cases in which only function values are accessible, approximations for the gradient in terms of x
and derivative in terms of t are needed. [28] has shown that the gradient of the smoothed function
F (x, t) can be represented as

∇xF (x, t) =
1

t
Eu([f(x+ tu)− f(x)]u), u ∼ N (0, Id). (6)

Thus, the gradient∇xF (x, t) can be approximated by an unbiased estimator g̃x(x, t;u) as

g̃x(x, t;u) :=
1

t
(f(x+ tu)− f(x))u, u ∼ N (0, Id). (7)

The derivative ∂F
∂t is equal to the trace of the Hessian of F (x, t) because the Gaussian smoothed

function is the solution of the heat equation ∂F
∂t = tr(HF (x)). We can estimate tr(HF (x)) on the

basis of the second order Stein’s identity [32] as follows:

HF (x) ≈ (vv> − Id)

t2
(f(x+ tv)− f(x)), v ∼ N (0, Id). (8)

Thus, the estimator for derivative can be written as:

g̃t(x, t; v) :=
(v>v − d)(f(x+ tv)− f(x))

t2
, v ∼ N (0, Id). (9)

As for the stochastic setting, f(x) in (7) and (9) is replaced by the stochastic function f̄(x; ξ) with
some randomly chosen sample ξ. The gradient ∇xF̄ (x, t; ξ) of its GH function F̄ (x, t; ξ) can then
be approximated by G̃x(x, t; ξ, u) := f̄(x+tu;ξ)−f̄(x;ξ)

t u, and the derivative ∂F̄
∂t can be approximated

by G̃t(x, t; ξ, v) := (v>v−d)(f̄(x+tv;ξ)−f̄(x;ξ))
t2 (see Algorithm 3 for more details).

Algorithm 3 Deterministic/Stochastic Zeroth-Order Single Loop GH algorithm (ZOSLGH)
Require: Iteration number T , initial solution x1, initial smoothing parameter t1, step size β for x,

step size η for t, decreasing factor γ ∈ (0, 1), sufficient small positive value ε
for k = 1 to T do

Sample uk from N (0, Id)

xk+1 = xk − βḠx,u, Ḡx,u =

{
g̃x(xk, tk;uk) (determ.)
G̃x(xk, tk; ξk, uk), ξk ∼ P (stoc.)

Sample vk from N (0, Id)

tk+1 =

{
γtk (SLGHr)
max{min{tk − ηḠt,v, γtk}, ε′} (SLGHd)

, Ḡt,v =

{
g̃t(xk, tk; vk) (determ.)
G̃t(xk, tk; ξk, vk), ξk ∼ P (stoc.)

end for

4.2 Convergence analysis for ZOSLGH

We can analyze the convergence results using concepts similar to those used with the first-order SLGH
algorithm. Below are the convergence results for ZOSLGH in both the deterministic and stochastic

7

settings. Proofs of the following theorems are given in Appendix B.3, and the definitions of x̂ are
provided in the proofs. We start from the deterministic setting, which is aimed at the deterministic
problem (1).

Theorem 4.1 (Convergence of ZOSLGH, Deterministic setting). Suppose Assumption A1 holds.
Take k1 := Θ(d/ε2) and k2 := O

(
logγ d

−1/2
)
, and define k0 = min{k1, k2}. Let x̂ := xk′ , where

k′ is chosen from a uniform distribution over {k0 + 1, k0 + 2, . . . , T}. Set the stepsize for x as
β = 1/(2(d + 4)L1). Then, for any setting of the parameter γ, x̂ satisfies E[‖∇f(x̂)‖] ≤ ε with
the iteration complexity of T = O(d2/ε2), where the expectation is taken w.r.t. random vectors
{uk} and {vk}. Further, if we choose γ ≤ d−Ω(ε2/d), the iteration complexity can be bounded as
T = O(d/ε2).

This complexity of O(d/ε2) for γ ≤ d−Ω(ε2/d) matches that of zeroth-order GD (ZOGD) [28].

Let us next introduce the convergence result for the stochastic setting. As shown in [13], if we take
the expectation for our stochastic zeroth-order gradient oracle with respect to both ξ and u, under
Assumption A2 (i), we will have

Eξ,u[G̃x(x, t; ξ, u)] = Eu[Eξ[G̃x(x, t; ξ, u)|u]] = ∇xF (x, t).

Therefore, ζk := (ξk, uk) behaves similarly to uk in the deterministic setting.

Theorem 4.2 (Convergence of ZOSLGH, Stochastic setting). Suppose Assumptions A1 and A2
hold. Take k1 := Θ(d/ε4) and k2 := O

(
logγ d

−1/2
)
, and define k0 = min{k1, k2}. Let x̂ := xk′ ,

where k′ is chosen from a uniform distribution over {k0 + 1, k0 + 2, . . . , T}. Set the stepsize for
x as β = min{ 1

2(d+4)L1
, 1√

(T−k0)(d+4)
}. Then, for any setting of the parameter γ, x̂ satisfies

E[‖∇f(x̂)‖] ≤ ε with the iteration complexity of T = O(d2/ε4), where the expectation is taken
w.r.t. random vectors {uk}, {vk}, and {ξk}. Further, if we choose γ ≤ d−Ω(ε4/d), the iteration
complexity can be bounded as T = O(d/ε4).

This complexity of O(d/ε4) for γ ≤ d−Ω(ε4/d) also matches that of ZOSGD [13].

5 Experiments

In this section, we present our experimental results. We conducted two experiments. The first was
to compare the performance of several algorithms including the proposed ones, using test functions
for optimization. We were able to confirm the effectiveness and versatility of our SLGH methods
for highly non-convex functions. We also created a toy problem in which ZOSLGHd, which utilizes
the derivative information ∂F

∂t for the update of t, can decrease t quickly around a minimum and
find a better solution than that with ZOSLGHr. The second experiment was to generate examples
for a black-box adversarial attack with different zeroth-order algorithms. The target models were
well-trained DNNS for CIFAR-10 and MNIST, respectively. All experiments were conducted using
Python and Tensorflow on Intel Xeon CPU and NVIDIA Tesla P100 GPU. We show the results of
only the adversarial attacks due to the space limitations; other results are given in Appendix D.

Generation of per-image black-box adversarial attack example. Let us consider the unconstrained
black-box attack optimization problem in [9], which is given by

minimize
x∈Rd

f(x) :=λ`(0.5tanh(tanh−1(2a) + x)) + ‖0.5tanh(tanh−1(2a) + x)− a‖2,

where λ is a regularization parameter, a is the input image data, and tanh is the element-wise operator
which helps eliminate the constraint representing the range of adversarial examples. The first term
`(·) of f(x) is the loss function for the untargeted attack in [6], and the second term L2 distortion is
the adversarial perturbation (the lower the better). The goal of this problem is to find the perturbation
that makes the loss `(·) reach its minimum while keeping L2 distortion as small as possible. The
initial adversarial perturbation x0 was set to 0. We say a successful attack example has been generated
when the loss `(·) is lower than the attack confidence (e.g., 1e− 10).

Let us here compare our algorithms, ZOSLGHr and ZOSLGHd, to three zeroth-order algorithms:
ZOSGD [13], ZOAdaMM [9], and ZOGradOpt [14]. ZOGradOpt is a homotopy method with a

8

double loop structure. In contrast to this, ZOSGD and ZOAdaMM are SGD-based zeroth-order
methods and thus do not change the smoothing parameter during iterations.

Table 2 and Figure 1 show results for our experiment. We can see that SGD-based algorithms are able
to succeed in the first attack with far fewer iterations than our GH algorithms (e.g., Figure 1(a), Figure
1(d)). Accordingly, the value of L2 distortion decreases slightly more than GH methods. However,
SGD-based algorithms have lower success rates than do our SLGH algorithms. This is because
SGD-based algorithms remain around a local minimum x = 0 when it is difficult to attack, while
GH methods can escape the local minima due to sufficient smoothing (e.g., Figure 1(b), Figure 1(e)).
Thus, the SLGH algorithms are, on average, able to decrease total loss over that with SGD-based
algorithms. In a comparison within GH methods, ZOGradOpt requires more than 6500 iterations to
succeed in the first attack due to its double loop structure (e.g., Figure 1(c), Figure 1(f)). In contrast
to this, our SLGH algorithms achieve a high success rate with far fewer iterations. Please note that
SLGHd takes approximately twice the computational time per iteration than the other algorithms
because it needs additional queries for the computation of the derivative in terms of t. See Appendix
E for a more detailed presentation of the experimental setup and results.

Table 2: Performance of a per-image attack over 100 images of CIFAR-10 under T = 10000 iterations.
“Succ. rate” indicates the ratio of success attack, “Avg. iters to 1st succ.” is the average number of
iterations to reach the first successful attack , “Avg. L2 (succ.)” is the average of L2 distortion taken
among successful attacks, and “Avg. total loss” is the average of total loss f(x) over 100 samples.
Please note that the standard deviations are large since the attack difficulty varies considerably from
sample to sample.

Methods Succ. rate Avg. iters
to 1st succ.

Avg. L2

(succ.) Avg. total loss

SGD algo. ZOSGD 88% 835± 1238 0.076± 0.085 27.70± 74.80
ZOAdaMM 85% 3335± 2634 0.050± 0.055 20.24± 62.48

GH algo. ZOGradOpt 65% 6789± 1901 0.249± 0.159 41.45± 76.04
ZOSLGHr (γ = 0.999) 93% 4979± 756 0.246± 0.178 14.26± 54.61
ZOSLGHd (γ = 0.999) 92% 4436± 805 0.150± 0.084 16.49± 58.69

(a) CIFAR-10, Image ID = 56 (b) CIFAR-10, Image ID = 34 (c) CIFAR-10, Image ID = 102

(d) MNIST, Image ID = 32 (e) MNIST, Image ID = 45 (f) MNIST, Image ID = 95

Figure 1: Total loss for generating per-image black-box adversarial examples for different images
of CIFAR-10 and MNIST (log scale).

9

6 Summary and future work

We have presented here the deterministic/stochastic SLGH and ZOSLGH algorithms as well as their
convergence results. They have been designed for the purpose of finding better solutions with fewer
iterations by simplifying the homotopy process into a single loop. We consider this work to be a first
attempt to improve the standard GH method.

Although this study has considered the case in which the accessible function contains some error and
is possibly non-smooth, we assume the underlying objective function to be smooth. Further work
should be carried out to investigate the case in which the objective function itself is non-smooth.

Acknowledgements This work was supported by JSPS KAKENHI Grant Number 19H04069, JST
ACT-I Grant Number JPMJPR18U5, and JST ERATO Grant Number JPMJER1903.

10

References
[1] Neculai Andrei. An unconstrained optimization test functions collection. Advanced Modeling

and Optimization, 10(1):147–161, 2008.

[2] S. Aydore, T. Zhu, and D. P. Foster. Dynamic local regret for non-convex online forecasting. In
Advances in Neural Information Processing Systems, pages 7982–7991, 2019.

[3] A. Blake and A. Zisserman. Visual reconstruction. MIT press, 1987.

[4] T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion
estimation. IEEE transactions on pattern analysis and machine intelligence, 33(3):500–513,
2010.

[5] G. Bourmaud C. Zach. Descending, lifting or smoothing: Secrets of robust cost optimization.
In Proc. ECCV, volume 12, pages 558–574, 2018.

[6] N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In 2017 IEEE
Symposium on Security and Privacy, pages 39–57, 2017.

[7] B. Chen and P. T. Harker. A non-interior-point continuation method for linear complementarity
problems. SIAM Journal on Matrix Analysis and Applications, 14(4):1168–1190, 1993.

[8] X. Chen. Smoothing methods for nonsmooth, nonconvex minimization. Mathematical
programming, 134(1):71–99, 2012.

[9] X. Chen, S. Liu, K. Xu, X. Li, X. Lin, M. Hong, and D. Cox. Zo-adamm: Zeroth-order adaptive
momentum method for black-box optimization. In Advances in Neural Information Processing
Systems, pages 7204–7215, 2019.

[10] A. Cutkosky and F. Orabona. Momentum-based variance reduction in non-convex sgd. In
Advances in Neural Information Processing Systems, pages 15236–15245. Curran Associates,
Inc., 2019.

[11] Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
for deep nets. In Proceedings of the 34th International Conference on Machine Learning, pages
1019–1028. PMLR, 2017.

[12] L.C. Evans. Partial Differential Equations. American Mathematical Society, 2010.

[13] S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[14] E. Hazan, K. Y. Levy, and S. Shalev-Shwartz. On graduated optimization for stochastic non-
convex problems. In Proceedings of the 33rd International Conference on Machine Learning,
pages 1833–1841, 2016.

[15] A. A. Hemeda. Homotopy perturbation method for solving systems of nonlinear coupled
equations. Applied Mathematical Sciences, 6(93-96):4787–4800, 2012.

[16] P. Jain and P. Kar. Non-convex optimization for machine learning. Foundations and Trends in
Machine Learning, 10(3–4):142–336, 2017.

[17] C. Jin, L. T. Liu, R. Ge, and M. I. Jordan. On the local minima of the empirical risk. In
Proceedings of the 32nd International Conference on Neural Information Processing Systems,
pages 4901–4910, 2018.

[18] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In 3rd International
Conference on Learning Representations, 2015.

[19] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss landscape of neural
nets. In Advances in Neural Information Processing Systems, pages 6389–6399, 2017.

[20] S. Liu, B. Kailkhura, P. Y. Chen, P. S. Ting, S. Y. Chang, and L. Amini. Zeroth-order stochastic
variance reduction for nonconvex optimization. In Advances in Neural Information Processing
Systems, page 3727–3737, 2018.

11

[21] P. Mertikopoulos, N. Hallak, A. Kavis, and V. Cevher. On the almost sure convergence
of stochastic gradient descent in non-convex problems. In Advances in Neural Information
Processing Systems, pages 1117–1128. Curran Associates, Inc., 2020.

[22] H. Mobahi. Closed form for some gaussian convolutions. arXiv preprint arXiv:1602.05610,
2016.

[23] H. Mobahi and J. W. Fisher III. On the link between gaussian homotopy continuation and convex
envelopes. In Energy Minimization Methods in Computer Vision and Pattern Recognition,
pages 43–56, 2015.

[24] H. Mobahi and J. W. Fisher III. A theoretical analysis of optimization by gaussian continuation.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29, 2015.

[25] H. Mobahi and Y. Ma. Gaussian smoothing and asymptotic convexity. Technical report,
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, 2012.

[26] Marcin Molga and Czesław Smutnicki. Test functions for optimization needs. 2005.

[27] Y. Nesterov. Introductory Lectures on Convex Optimization: a basic course. Kluwer Academic
Publishers, 2004.

[28] Y. Nesterov and V. Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

[29] M. Nielsen. Graduated non-convexity by smoothness focusing. In Proceedings of the British
Machine Vision Conference, pages 60.1—-60.10. BMVA Press, 1993.

[30] W. J. Shao, C. Geißler, and F. Sivrikaya. Graduated optimization of black-box functions. arXiv
preprint arXiv:1906.01279, 2019.

[31] A. Sokolov, J. Kreutzer, S. Riezler, and C. Lo. Stochastic structured prediction under bandit
feedback. In Advances in neural information processing systems, pages 1489–1497, 2016.

[32] C. Stein. A bound for the error in the normal approximation to the distribution of a sum of de-
pendent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 2: Probability Theory. The Regents of the University of
California, 1972.

[33] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and
momentum in deep learning. In Proceedings of the 30th International Conference on Machine
Learning, pages 1139–1147. PMLR, 2013.

[34] D. V. Widder. The heat equation. Academic Press, 1976.

[35] Z. Wu. The effective energy transformation scheme as a special continuation approach to global
optimization with application to molecular conformation. SIAM Journal on Optimization,
6(3):748–768, 1996.

[36] Y. C. Xu, A. Joshi, A. Singh, and A. Dubrawski. Zeroth order non-convex optimization with
dueling-choice bandits. In Proceedings of the 36th Conference on Uncertainty in Artificial
Intelligence, pages 899–908. PMLR, 2020.

12

A Related work

Iteration complexity analysis for GH methods To the best of our knowledge, there are no existing
works that give theoretical guarantee for the convergence rate except for [14].3 It characterized a
parameterized family of non-convex functions referred to as “σ-nice”, for which a GH algorithm
converges to a global optimum. Moreover, it derived the convergence rate to an ε-optimal solution for
the σ-nice function. The framework of σ-nice imposes the two conditions: (i) the solution obtained
in each inner loop is located sufficiently close to an optimal solution of the optimization problem
in the next inner loop; (ii) the optimization problem in each inner loop is strongly convex around
its optimal solutions. Unfortunately, it is not obvious whether we can efficiently judge a function
is “σ-nice”, and we cannot apply the analysis results to general non-convex functions. On the other
hand, this work tackles a problem of different nature from [14] since it analyzes the convergence rate
to an ε-stationary point for general non-convex functions.

Guarantee for the value of the objective function [24] provided an upper bound on the objective
value attained by a homotopy method. The bound was characterized by a quantity that they referred
to as “optimization complexity”, which can be analytically computed when the objective function is
expressed in some suitable basis functions such as Gaussian RBFs.

Other smoothing methods Smoothing methods other than Gaussian smoothing include [7, 8]. The
smoothing kernel in those works is simpler but restricted to specific problem settings. For example,
[8] constructs smoothing approximations for optimization problems that can be reformulated by using
the plus function (t)+ := max{0, t}.

Zeroth-order techniques In problem settings in which the explicit gradient of the objective function
cannot be calculated but the exact function values can be queried, zeroth-order optimization has
become increasingly popular due to its potential for wide application. Such a class of applications
appears in black-box adversarial attacks on deep neural networks [9], structured prediction [31], and
reinforcement learning [36]. Various zeroth-order methods (ZOSGD [13], ZOAdaMM [9], ZOSVRG
[20]) have been proposed for such black-box situations. All of them have been developed from
ZOGD in [28], which introduces random gradient-free oracles based on Gaussian smoothing with
fixed t. This trend also applies to research on the GH method. [14] developed a GH method in
the zeroth-order setting for which the objective is only accessible through a noisy value oracle.
[30] proposed a GH method for hyperparameter tuning based on [14] using two-point zeroth-order
estimators [28].

B Proofs for theorems and lemmas in Sections 3 and 4

Notation: We sometimes denote the expectation with respect to random variables
χS+1, . . . , χT (S, T ∈ N, T > S) as Eχ[·] for the sake of simplicity.

B.1 Theorem 3.1

Proof for Theorem 3.1: Since the optimization problem (1) has an optimal value f∗ by Assumption
A1 (ii), for any t ∈ T and for any x ∈ Rd, we have

F (x, t)− f∗ = Eu[f(x+ tu)− f∗] ≥ 0.

Together with the relationship F (x, 0) = f(x), for any x ∈ Rd, for any t ∈ T and for any optimal
solution x∗ ∈ Rd of the optimization problem (1), we have F (x, t)− F (x∗, 0) ≥ 0. Furthermore, if
we exclude cases where f(x) is constant (a.e.), for any (x, t) ∈ Rd × T \ {(x, 0) | f(x) = f(x∗)},
we obtain

F (x, t)− f∗ = Eu[f(x+ tu)− f∗] > 0.

3Their method is not exactly a GH method because it smooths the objective function using random variables
sampled from the unit ball (or the unit sphere in a zeroth-order setting) rather than Gaussian random variables.
However, for the sake of simplicity, we treat it as a GH method in this paper.

13

Therefore, a minimum of the optimization problem of the GH function minimize
x∈Rd,t∈T

F (x, t) holds only

at t = 0 and the corresponding x becomes an optimal solution of the original optimization problem
minimize
x∈Rd

f(x). �

B.2 First-order SLGH algorithm

At the beginning of the subsection, we introduce a lemma that gives upper bounds for moments of
Gaussian random variables, and then prove the two lemmas which appeared in the main paper.
Lemma B.1 (Lemma 1 in [28]). Let u ∈ Rd be a standard normal random variable. For p ∈ [0, 2],
we have Eu[‖u‖p] ≤ dp/2. If p ≥ 2, Eu[‖u‖p] ≤ (d+ p)p/2 holds.

Proof for Lemma 3.2: According to the definition of Gaussian smoothing in the main paper, we have

|F (x, t)− F (y, t)| =
∣∣∣∣∫ (f(x+ tz)k(z)− f(y + tz)k(z))dz

∣∣∣∣
≤
∫
|f(x+ tz)− f(y + tz)| k(z)dz

≤
∫
L0‖x− y‖k(z)dz

≤ L0‖x− y‖.
The proof of L1-smooth is similar to that of L0-Lipschitz:

|∇xF (x, t)−∇xF (y, t)| ≤
∫
|∇f(x+ tz)−∇f(y + tz)|k(z)dz

≤
∫
L1‖x− y‖k(z)dz

≤ L1‖x− y‖.
�

The lemma has proved that the Lipschitz constants of F (x, t) and∇xF (x, t) in terms of x are smaller
than those of f(x) and ∇f(x), respectively. Therefore we can use the Lipschitz constants L0 and L1

of f(x) and∇f(x) for F (x, t) and ∇xF (x, t).

Proof for Lemma 3.3:
|F (x, t1)− F (x, t2)| = |Eu[f(x+ t1u)− f(x+ t2u)]|

≤ Eu[|f(x+ t1u)− f(x+ t2u)|]
≤ Eu[L0|t1 − t2|‖u‖]

≤ L0|t1 − t2|
√
d,

where the last inequality holds due to Lemma B.1. �

Before going to the convergence theorems, we introduce an additional useful lemma to estimate the
gap between the gradient of the smoothed function and the true gradient.

Lemma B.2. Let f be a L1-smooth function.
(i) (Lemma 4 in [28]) For any x ∈ Rd and t > 0, we have

‖∇f(x)‖2 ≤ 2‖∇xF (x, t)‖2 +
t2

2
L2

1(d+ 6)3.

(ii) Further, if f is L0-Lipschitz, for any x ∈ Rd and t > 0, we have

‖∇f(x)‖2 ≤ ‖∇xF (x, t)‖2 + tL0L1(d+ 3)3/2.

Proof for (ii): We have
‖∇f(x)‖2 − ‖∇xF (x, t)‖2 = (‖∇f(x)‖+ ‖∇xF (x, t)‖)(‖∇f(x)‖ − ‖∇xF (x, t)‖)

≤ 2L0(‖∇f(x)‖ − ‖∇xF (x, t)‖)
≤ 2L0‖∇xF (x, t)−∇f(x)‖.

14

The term ‖∇xF (x, t)−∇f(x)‖ can be upper bounded as follows:

‖∇xF (x, t)−∇f(x)‖ ≤
∥∥∥∥Eu [(f(x+ tu)− f(x)

t
− 〈∇f(x), u〉

)
u

]∥∥∥∥
≤ Eu

[∣∣∣∣1t (f(x+ tu)− f(x)− t〈∇f(x), u〉)
∣∣∣∣ ‖u‖]

≤ Eu
[
tL1

2
‖u‖3

]
≤ tL1

2
(d+ 3)3/2,

where the last second inequality follows from a property of L1-smooth function (∀x, y ∈ Rd, |f(y)−
f(x)− 〈∇f(x), y− x〉| ≤ L1

2 ‖y− x‖
2), and the last inequality holds due to Lemma B.1. Therefore,

we obtain

‖∇f(x)‖2 ≤ ‖∇xF (x, t)‖2 + tL0L1(d+ 3)3/2.

Now, we are ready to prove Theorem 3.4.

Proof for Theorem 3.4: We follow the convergence analysis of gradient descent. According to
Assumption A1 and Lemma 3.2, F (x, t) is L0-Lipschitz and L1-smooth in terms of x. Therefore,
we have

F (xk+1, tk) ≤ F (xk, tk) + 〈∇xF (xk, tk), (xk+1 − xk)〉+
L1

2
‖xk+1 − xk‖2

= F (xk, tk)−
(
β − L1

2
β2

)
‖∇xF (xk, tk)‖2,

where the last equation holds due to the updating rule of the gradient descent: xk+1 − xk =
−β∇xF (xk, tk). Then, we can get the upper bound for ‖∇xF (x, t)‖2:

(
β − L1

2
β2

)
‖∇xF (xk, tk)‖2 ≤ F (xk, tk)− F (xk+1, tk)

= F (xk, tk)− F (xk+1, tk+1) + F (xk+1, tk+1)− F (xk+1, tk)

≤ F (xk, tk)− F (xk+1, tk+1) + L0|tk+1 − tk|
√
d,

where the last inequality follows from Lemma 3.3.
Now, sum up the above inequality for all iterations k0 + 1 ≤ k ≤ T (T > k0 ∈ N), and denote the
minimum of f as f∗, then we have

(
β − L1

2
β2

) T∑
k=k0+1

‖∇xF (xk, tk)‖2 ≤ F (xk0+1, tk0+1)− F (xT+1, tT+1) + L0

√
d

T∑
k=k0+1

|tk+1 − tk|

≤ F (xk0+1, tk0+1)− f∗ + L0

√
d

T∑
k=k0+1

|tk+1 − tk|

≤ f(xk0+1)− f∗ + L0

√
d

(
tk0+1 +

T∑
k=k0+1

|tk+1 − tk|

)
,

(10)

15

where the last inequality holds due to Lemma 3.3. Then, we can get the upper bound for ‖∇f(x̂)‖2
as

‖∇f(x̂)‖2 = min
k∈[T]

‖∇f(xk)‖2

≤ min
k=k0+1,...,T

‖∇f(xk)‖2

≤ 1

T − k0

T∑
k=k0+1

‖∇f(xk)‖2

≤ 1

T − k0

T∑
k=k0+1

‖∇xF (xk, tk)‖2 +
1

T − k0
L0L1(d+ 3)3/2

T∑
k=k0+1

tk

≤
2
(
f(xk0+1)− f∗ + L0

√
d
(
tk0+1 +

∑T
k=k0+1 |tk+1 − tk|

))
(T − k0)(2β − L1β2)

+
1

T − k0
L0L1(d+ 3)3/2

T∑
k=k0+1

tk,

where the third inequality holds due to Lemma B.2 (ii) and the last inequality follows from (10).

If we choose the step size β as 1
L1

, we have

‖∇f(x̂)‖2

≤
2L1

(
f(xk0+1)− f∗ + L0

√
d
(
tk0+1 +

∑T
k=k0+1 |tk+1 − tk|

))
T − k0

+
1

T − k0
L0L1(d+ 3)3/2

T∑
k=k0+1

tk

= O

(
1

T − k0

(
1 + d3/2

T∑
k=k0+1

tk

))
, (11)

where the last equality holds since
∑T
k=k0+1 |tk+1 − tk| = O

(∑T
k=k0+1 tk

)
is satisfied.

If we update tk as in Algorithm 2, we have
∑T
k=k0+1 tk ≤

∑T
k=k0+1 max{t1γk−1, ε′} ≤∑T

k=k0+1

(
t1γ

k−1 + ε′
)
≤ t1γ

k0

1−γ + ε′(T − k0). By taking ε′ sufficiently close to 0, together

with the assumption of 1/(1 − γ) = O(1), we have
∑T
k=k0+1 tk = O(γk0). This implies that

‖∇f(x̂)‖2 ≤ O(1+γk0d3/2

T−k0). Hence, we can obtain ‖∇f(x̂)‖ ≤ ε in T = k0 + O
(

1+γk0d3/2

ε2

)
iterations.

Now, set k0 as k0 = O
(

1
ε2

)
, then, the iteration complexity can be bounded as T = O

(
d3/2

ε2

)
.

Furthermore, when γ is chosen as γ ≤ d−3ε2/2, we can obtain γk0 = O
(
d−3/2

)
for some k0 =

O
(

1
ε2

)
. This yields the iteration complexity of T = O

(
1
ε2

)
.

�

Before going to the proof of Theorem 3.5 in the stochastic setting, we prove that the gradient of the
smoothed stochastic function∇F (x, t; ξ) is unbiased, and it has a finite variance.

Lemma B.3. Suppose that f satisfies Assumption A1 (i) and Assumption A2.
(i) The stochastic gradient of the smoothed function ∇xF̄ (x, t; ξ) becomes an unbiased estimator of
∇xF (x, t). That is, for any x ∈ Rd and t > 0, Eξ[∇xF̄ (x, t; ξ)] = ∇xF (x, t) holds.
(ii) For any x ∈ Rd and t > 0, the variance of ∇xF̄ (x, t; ξ) is bounded as Eξ[‖∇xF̄ (x, t; ξ) −
∇xF (x, t)‖2] ≤ σ2.

16

Proof for (i): From Assumption A1 (i), we can exchange the order of integration in terms of ξ and u,
which yields that

Eξ[∇xF̄ (x, t; ξ)] = Eξ
[
Eu
[
f̄(x+ tu; ξ)− f̄(x; ξ)

t
u

]]
= Eu

[
Eξ
[
f̄(x+ tu; ξ)− f̄(x; ξ)

t
u

]]
= Eu

[
f(x+ tu)− f(x)

t
u

]
= ∇xF (x, t).

Proof for (ii): We have

Eξ[‖∇xF̄ (x, t; ξ)−∇xF (x, t)‖2] = Eξ[‖∇xEu[f̄(x+ tu; ξ)]−∇xEu[f(x+ tu)]‖2]

= Eξ[‖Eu[∇xf̄(x+ tu; ξ)−∇f(x+ tu)]‖2]

≤ Eξ[Eu[‖∇xf̄(x+ tu; ξ)−∇f(x+ tu)‖2]]

= Eu[Eξ[‖∇xf̄(x+ tu; ξ)−∇f(x+ tu)‖2]]

≤ σ2,

where the second and third equalities hold due to Assumption A1 (i), and the last inequality follows
from Assumption A2 (ii).

Proof for Theorem 3.5: Denote δk := ∇xF̄ (xk, tk; ξk)−∇xF (xk, tk). We follow the convergence
analysis of stochastic gradient descent. According to Lemma 3.2, since f(x) is L0-Lipschitz and
L1-smooth, F (x, t) is also L0-Lipschitz and L1-smooth in terms of x. Thus, we have

F (xk+1, tk) ≤ F (xk, tk) + 〈∇xF (xk, tk), (xk+1 − xk)〉+
L1

2
‖xk+1 − xk‖2

= F (xk, tk)− β
〈
∇xF (xk, tk),∇xF̄ (xk, tk; ξk)

〉
+
L1

2
β2‖∇xF̄ (xk, tk; ξk)‖2

= F (xk, tk)−
(
β − L1

2
β2

)
‖∇xF (xk, tk)‖2 − (β − L1β

2) 〈∇xF (xk, tk), δk〉+
L1

2
β2‖δk‖2,

(12)

where the first equation holds due to the updating rule xk+1 − xk = −β∇xF̄ (xk, tk; ξk), and the
last equation holds due to the definition of δk. Denote

Ak := −(β − L1β
2) 〈∇xF (xk, tk), δk〉+

L1

2
β2‖δk‖2

for simplicity. From (12), we obtain the upper bound for ‖∇xF (x, t)‖2 as follows:

(
β − L1

2
β2

)
‖∇xF (xk, tk)‖2 ≤ F (xk, tk)− F (xk+1, tk) +Ak

= F (xk, tk)− F (xk+1, tk+1) + F (xk+1, tk+1)− F (xk+1, tk) +Ak

≤ F (xk, tk)− F (xk+1, tk+1) + L0|tk+1 − tk|
√
d+Ak,

17

where the last inequality follows from Lemma 3.3.
Now, sum up the above inequality for all iterations k0 + 1 ≤ k ≤ T (k0 < T). Then we have(

β − L1

2
β2

) T∑
k=k0+1

‖∇xF (xk, tk)‖2

≤ F (xk0+1, tk0+1)− F (xT+1, tT+1) + L0

√
d

T∑
k=k0+1

|tk+1 − tk|+
T∑

k=k0+1

Ak

≤ F (xk0+1, tk0+1)− f∗ + L0

√
d

T∑
k=k0+1

|tk+1 − tk|+
T∑

k=k0+1

Ak.

≤ f(xk0+1)− f∗ + L0

√
d

(
tk0+1 +

T∑
k=k0+1

|tk+1 − tk|

)
+

T∑
k=k0+1

Ak.

Take the expectation with respect to the random vectors {ξk0+1, . . . , ξT }, then we have(
β − L1

2
β2

) T∑
k=k0+1

Eξ[‖∇xF (xk, tk)‖2]

≤ f(xk0+1)− f∗ + L0

√
d

(
tk0+1 +

T∑
k=k0+1

Eξ[|tk+1 − tk|]

)
+

T∑
k=k0+1

Eξ[Ak]. (13)

The expectation of Ak is evaluated as

T∑
k=k0+1

Eξ[Ak] = −
T∑

k=k0+1

(β − L1β
2)Eξ[〈∇xF (xk, tk), δk〉] +

T∑
k=k0+1

L1

2
β2Eξ[‖δk‖2]

≤ (T − k0)
L1

2
β2σ2, (14)

where the last equality holds due to Lemma B.3 (ii) (Eξ[‖δk‖2] ≤ σ2) and the fact that each point xk
is a function of the history ξ[k−1] in the random process, thus Eξk [〈∇xF (xk, tk), δk〉 | ξ[k−1]] = 0.

Then, we can estimate the upper bound for Eξ,k′ [‖∇f(x̂)‖2] as

Eξ,k′ [‖∇f(x̂)‖2] =
1

T − k0

T∑
k=k0+1

Eξ[‖∇f(xk)‖2]

≤ 1

T − k0

T∑
k=k0+1

Eξ[‖∇xF (xk, tk)‖2] +
1

T − k0
L0L1(d+ 3)3/2

T∑
k=k0+1

Eξ[tk]

≤
2
(
f(xk0+1)− f∗ + L0

√
d
(
tk0+1 +

∑T
k=k0+1 Eξ[|tk+1 − tk|]

))
(T − k0)(2β − L1β2)

+
1

T − k0
L0L1(d+ 3)3/2

T∑
k=k0+1

Eξ[tk] +
L1β

2σ2

2β − L1β2
,

where the first inequality holds due to Lemma B.2 (ii) and the last inequality follows from (13) and
(14).

If the step size β is chosen as β = min { 1
L1
, 1√

T−k0
}, then we have

1

2β − L1β2
≤ 1

β
,

1

β
≤ L1 +

√
T − k0.

18

Hence, we can obtain

2
(
f(xk0+1)− f∗ + L0

√
d
(
tk0+1 +

∑T
k=k0+1 Eξ[|tk+1 − tk|]

))
(T − k0)(2β − L1β2)

+
1

T − k0
L0L1(d+ 3)3/2

T∑
k=k0+1

Eξ[tk] +
L1β

2σ2

2β − L1β2

= O

1 +
√
dEξ

[∑T
k=k0+1 |tk+1 − tk|

]
√
T − k0

+
d3/2

T − k0
Eξ

[
T∑

k=k0+1

tk

] .

If tk is updated as in Algorithm 2, we have
∑T
k=k0+1 |tk+1 − tk| ≤ t1γk0 = O(γk0) and∑T

k=k0+1 tk ≤
t1γ

k0

1−γ + ε′T = O(γk0) in the same argument that showed Theorem 3.4. Com-
bining the above inequalities, we obtain

Eξ,k′ [‖∇f(x̂)‖2] =
1

T − k0

T∑
k=k0+1

Eξ[‖∇f(xk)‖2] = O

(
1 +
√
dγk0√

T − k0

+
d3/2γk0

T − k0

)
. (15)

Here, we have k0 = O
(

1
ε4

)
by the definition of k0. Thus, by setting T = k0 + O

(
d
ε4 + d3/2

ε2

)
=

O
(
d
ε4 + d3/2

ε2

)
, we can obtain Eξ,k′ [‖∇f(x̂)‖2] ≤ ε2. This implies Eξ,k′ [‖∇f(x̂)‖] ≤

ε as Eξ,k′ [‖∇f(x̂)‖]2 ≤ Eξ,k′ [‖∇f(x̂)‖2] follows from Jensen’s inequality. Furthermore,
when γ is chosen as γ ≤ (max{d1/2, d3/2ε2})−ε4 , we have logγ min{d−1/2, d−3/2ε−2} =

O
(

1
ε4

)
, which implies k0 = Ω(logγ min{d−1/2, d−3/2ε−2}). Therefore, we can obtain γk0 =

O
(
min{d−1/2, d−3/2ε−2})

)
, which yields the iteration complexity of T = O

(
1
ε4

)
.

�

B.3 Zeroth-order SLGH algorithm

In the zeroth-order setting, we can evaluate the gap between the zeroth-order gradient estimator and
the true gradient using the following lemma.

Lemma B.4 (Theorem 4 in [28]). Let f be a L1-smooth function, then for any x ∈ Rd and for any
t > 0, we have

Eu
[

1

t2
(f(x+ tu)− f(x))2‖u‖2

]
≤ t2

2
L2

1(d+ 6)3 + 2(d+ 4)‖∇f(x)‖2.

Proof for Theorem 4.1: Let wk := (uk, vk), k ∈ [T], and denote δk := g̃x(xk, tk;uk) −
∇xF (xk, tk), where g̃x(xk, tk;uk) is the zeroth-order estimator of gradient defined in the main
paper. Utilize the updating rule of x and L1-smoothness of F (x, t) in terms of x. Then we have

F (xk+1, tk) ≤ F (xk, tk) + 〈∇xF (xk, tk), (xk+1 − xk)〉+
L1

2
‖xk+1 − xk‖2

= F (xk, tk)− β 〈∇xF (xk, tk), g̃x(xk, tk;uk)〉+
L1

2
β2‖g̃x(xk, tk;uk)‖2

= F (xk, tk)− β‖∇xF (xk, tk)‖2 − β 〈∇xF (xk, tk), δk〉+
L1

2
β2‖g̃x(xk, tk;uk))‖2,

(16)

where the first equation holds due to the updating rule xk+1 − xk = −βg̃x(xk, tk;uk).
Denote

Bk := −β 〈∇xF (xk, tk), δk〉+
L1

2
β2‖g̃x(xk, tk;uk)‖2

19

for simplicity. From Lemma 3.3 and (16), we get the upper bound for ‖∇xF (x, t)‖2 as

β‖∇xF (xk, tk)‖2 ≤ F (xk, tk)− F (xk+1, tk) +Bk
= F (xk, tk)− F (xk+1, tk+1) + F (xk+1, tk+1)− F (xk+1, tk) +Bk

≤ F (xk, tk)− F (xk+1, tk+1) + L0|tk+1 − tk|
√
d+Bk.

Now, sum up the above inequality for all iterations k0 + 1 ≤ k ≤ T (k0 < T). Then we have
T∑

k=k0+1

β‖∇xF (xk, tk)‖2 ≤ F (xk0+1, tk0+1)− F (xT+1, tT+1) + L0

T∑
k=k0+1

|tk+1 − tk|
√
d+

T∑
k=k0+1

Bk

≤ F (xk0+1, tk0+1)− f∗ + L0

√
d

T∑
k=k0+1

|tk+1 − tk|+
T∑

k=k0+1

Bk

≤ f(xk0+1)− f∗ + L0

√
d

(
tk0+1 +

T∑
k=k0+1

|tk+1 − tk|

)
+

T∑
k=k0+1

Bk.

Next, take the expectations with respect to random vectors {wk0+1, . . . , wT } on both sides. Then we
can get

T∑
k=k0+1

βEw[‖∇xF (xk, tk)‖2] ≤ f(xk0+1)− f∗ + L0

√
d

(
tk0+1 +

T∑
k=k0+1

Ew[|tk+1 − tk|]

)

+

T∑
k=k0+1

Ew[Bk]. (17)

Observe by the definition of g̃x(xk, tk;uk) in the main paper that Euk
[g̃x(xk, tk;uk) | u[k−1]] =

∇xF (xk, tk), thus Ewk
[〈∇xF (xk, tk), δk〉 | w[k−1]] = 0 holds. Then we have

Ewk
[Bk | w[k−1]] = −βEwk

[〈∇xF (xk, tk), δk〉 | w[k−1]] +
L1

2
β2Ewk

[‖g̃x(xk, tk;uk)‖2 | w[k−1]]

≤ L1

2
β2

(Ewk
[t2k | w[k−1]]

2
L2

1(d+ 6)3 + 2(d+ 4)Ewk
[‖∇f(xk)‖2 | w[k−1]]

)
=

Ewk
[t2k | w[k−1]]

4
L3

1β
2(d+ 6)3 + L1β

2(d+ 4)Ewk
[‖∇f(xk)‖2 | w[k−1]],

(18)
where the inequality holds due to Lemma B.4.

Lemma B.2 (ii) together with the above inequalities yields that
T∑

k=k0+1

βEw[‖∇f(xk)‖2]

≤
T∑

k=k0+1

βEw[‖∇xF (xk, tk)‖2] +

T∑
k=k0+1

βL0L1(d+ 3)3/2Ew[tk]

≤ f(xk0+1)− f∗ + L0

√
d

(
tk0+1 +

T∑
k=k0+1

Ew[|tk+1 − tk|]

)
+

T∑
k=k0+1

Ew[Bk]

+

T∑
k=k0+1

βL0L1(d+ 3)3/2Ew[tk]

≤ f(xk0+1)− f∗ + L0

√
d

(
tk0+1 +

T∑
k=k0+1

Ew[|tk+1 − tk|]

)
+

T∑
k=k0+1

Ew[t2k]

4
L3

1β
2(d+ 6)3

+

T∑
k=k0+1

L1β
2(d+ 4)Ew[‖∇f(xk)‖2] +

T∑
k=k0+1

βL0L1(d+ 3)3/2Ew[tk], (19)

20

where the second inequality holds due to (17), and the last inequality follows from (18). Rearrange
the terms in the above inequality. Then we can get

(β − (d+ 4)L1β
2)

T∑
k=k0+1

Ew[‖∇f(xk)‖2] ≤ f(xk0+1)− f∗ + L0

√
d

(
tk0+1 +

T∑
k=k0+1

Ew[|tk+1 − tk|]

)

+
L3

1β
2(d+ 6)3

4

T∑
k=k0+1

Ew[t2k] + L0L1β(d+ 3)3/2
T∑

k=k0+1

Ew[tk].

(20)

Divide both sides of the above inequality by (T − k0)(β − (d+ 4)L1β
2) and set the step size β as

1
2(d+4)L1

. Since 1
β−(d+4)L1β2 ≤ 4(d+ 4)L1 holds, we can obtain

1

T − k0

T∑
k=k0+1

Ew[‖∇f(xk)‖2] ≤ 4(d+ 4)L1

T − k0

(
f(xk0+1)− f∗ + L0

√
d

(
tk0+1 +

T∑
k=k0+1

Ew[|tk+1 − tk|]

)

+
L1(d+ 6)3

16(d+ 4)2

T∑
k=k0+1

Ew[t2k] +
L0(d+ 3)3/2

2(d+ 4)

T∑
k=k0+1

Ew[tk]

)

= O

(
d

T − k0

(
1 + dEw

[
T∑

k=k0+1

t2k

]
+
√
dEw

[
T∑

k=k0+1

tk

]))

= O

(
d

T − k0

(
1 + dγ2k0 +

√
dγk0

))
, (21)

where the last equality follows from the update rule of tk, as shown in the proof of Theorem 3.4 as
well.

Here, we have k0 = O
(
d
ε2

)
by the definition of k0. Thus, by setting T = k0 + O

(
d2

ε2

)
=

O
(
d2

ε2

)
, we can obtain Ew,k′ [‖∇f(x̂)‖2] = 1

T−k0
∑T
k=k0+1 Ew[‖∇f(xk)‖2] ≤ ε2. This implies

Ew,k′ [‖∇f(x̂)‖] ≤ ε as Ew,k′ [‖∇f(x̂)‖]2 ≤ Ew,k′ [‖∇f(x̂)‖2] follows from Jensen’s inequality.
Furthermore, when γ is chosen as γ ≤ d−ε

2/2d , we have logγ d
−1/2 = O

(
d
ε2

)
, which implies

k0 = Ω
(
logγ d

−1/2
)
. Therefore, we can obtain γk0 = O(d−1/2), which yields the iteration

complexity of T = O
(
d
ε2

)
.

�

Proof for Theorem 4.2: Let ζk := (ξk, uk, vk), k ∈ [T] and denote δk := G̃x(xk, tk; ξk, uk) −
∇xF (xk, tk). As discussed in the main paper, we have

Eξ,u[G̃x(x, t; ξ, u)] = Eu[Eξ[G̃x(x, t; ξ, u)|u]] = ∇xF (x, t). (22)

From the update rule for x, we can obtain

F (xk+1, tk) ≤ F (xk, tk) + 〈∇xF (xk, tk), (xk+1 − xk)〉+
L1

2
‖xk+1 − xk‖2

= F (xk, tk)− β
〈
∇xF (xk, tk), G̃x(xk, tk; ξk, uk)

〉
+
L1

2
β2‖G̃x(xk, tk; ξk, uk)‖2

= F (xk, tk)− β‖∇xF (xk, tk)‖2 − β 〈∇xF (xk, tk), δk〉+
L1

2
β2‖G̃x(xk, tk; ξk, uk)‖2.

Now, denote

Dk := −β 〈∇xF (xk, tk), δk〉+
L1

2
β2‖G̃x(xk, tk; ξk, uk)‖2

for simplicity. Then, we can get the upper bound for ‖∇xF (x, t)‖2 with Dk:

β‖∇xF (xk, tk)‖2 ≤ F (xk, tk)− F (xk+1, tk) +Dk

= F (xk, tk)− F (xk+1, tk+1) + F (xk+1, tk+1)− F (xk+1, tk) +Dk

≤ F (xk, tk)− F (xk+1, tk+1) + L0|tk+1 − tk|
√
d+Dk.

21

Sum up the above inequality for all iterations k0 + 1 ≤ k ≤ T (T > k0). Then we have

T∑
k=k0+1

β‖∇xF (xk, tk)‖2

≤ F (xk0+1, tk0+1)− F (xT+1, tT+1) + L0

√
d

T∑
k=k0+1

|tk+1 − tk|+
T∑

k=k0+1

Dk

≤ F (xk0+1, tk0+1)− f∗ + L0

√
d

T∑
k=k0+1

|tk+1 − tk|+
T∑

k=k0+1

Dk

≤ f(xk0+1)− f∗ + L0

√
d

(
tk0+1 +

T∑
k=k0+1

|tk+1 − tk|

)
+

T∑
k=k0+1

Dk, (23)

where the last inequality follows from Lemma 3.3. Observe from (22) that

Eζk [〈∇xF (xk, tk), δk〉 | ζ[k−1]] = 0.

Thus, we have

Eζk [Dk | ζ[k−1]] = −βEζk [〈∇xF (xk, tk), δk〉 | ζ[k−1]] +
L1

2
β2Eζk [‖G̃x(xk, tk; ξk, uk)‖2 | ζ[k−1]]

=
L1

2
β2Eζk(‖G̃x(xk, tk; ξk, uk)‖2 | ζ[k−1])

≤ L1

2
β2

(Eζk [t2k | ζ[k−1]]

2
L2

1(d+ 6)3 + 2(d+ 4)(Eζk [‖∇xf̄(xk; ξk) | ζ[k−1]‖2])

)
≤ L1

2
β2

(Eζk [t2k | ζ[k−1]]

2
L2

1(d+ 6)3 + 2(d+ 4)(Eζk [‖∇f(xk) | ζ[k−1]‖2] + σ2)

)
,

(24)

where the fist inequality follows from Lemma B.4 and the last inequality holds due to Assump-
tion A2 (ii).

Take the expectation for (23) with respect to ζk0+1, . . . , ζT . Together with Lemma B.2 (ii), we have

T∑
k=k0+1

βEζ [‖∇f(xk)‖2]

≤
T∑

k=k0+1

βEζ [‖∇xF (xk, tk)‖2] +

T∑
k=k0+1

βEζ [tk]L0L1(d+ 3)3/2

≤ f(xk0+1)− f∗ + L0

√
d

(
tk0+1 +

T∑
k=k0+1

Eζ [|tk+1 − tk|]

)
+

T∑
k=k0+1

Eζ [Dk]

+

T∑
k=k0+1

Eζ [tk]L0L1β(d+ 3)3/2

≤ f(xk0+1)− f∗ + L0

√
d

(
tk0+1 +

T∑
k=k0+1

Eζ [|tk+1 − tk|]

)
+

T∑
k=k0+1

Eζ [tk]L0L1β(d+ 3)3/2

+

T∑
k=k0+1

Eζ [t2k]

4
L3

1β
2(d+ 6)3 +

T∑
k=k0+1

L1β
2(d+ 4)Eζ [‖∇f(xk)‖2] + L1β

2(d+ 4)σ2(T − k0),

22

where the last inequality holds due to (24). Rearrange the terms in the above inequality. Then we can
get

(β − (d+ 4)L1β
2)

T∑
k=k0+1

Eζ [‖∇f(xk)‖2] ≤ f(xk0+1)− f∗ + L0

√
d

(
tk0+1 +

T∑
k=k0+1

Eζ [|tk+1 − tk|]

)

+
L3

1β
2(d+ 6)3

4

T∑
k=k0+1

Eζ [t2k] + L1β
2(d+ 4)σ2(T − k0)

+

T∑
k=k0+1

Eζ [tk]L0L1β(d+ 3)3/2, (25)

If the step size β is chosen as min

{
1

2(d+4)L1
, 1√

(T−k0)(d+4)

}
, then we have

1

β − (d+ 4)L1β2
≤ 2

β
,

1

β
≤ 2(d+ 4)L1 +

√
(T − k0)(d+ 4).

Hence, by dividing both sides of (25) by (T − k0)(β − 2(d+ 4)L1β
2), we can obtain

1

T − k0

T∑
k=1

Eζ [‖∇f(xk)‖2]

≤
f(xk0+1)− f∗ + L0

√
d
(
tk0+1 +

∑T
k=k0+1 Eζ [|tk+1 − tk|]

)
+ L0L1(d+ 3)3/2β

∑T
k=k0+1 Eζ [tk]

(T − k0)(β − (d+ 4)L1β2)

+

L3
1β

2(d+6)3

4

∑T
k=k0+1 Eζ [t2k] + L1β

2(d+ 4)σ2T

(T − k0)(β − (d+ 4)L1β2)

≤ 2

T − k0

(
f(xk0+1)− f∗ + L0

√
d

(
tk0+1 +

T∑
k=k0+1

Eζ [|tk+1 − tk|]

))(
2(d+ 4)L1 +

√
(T − k0)(d+ 4)

)

+
2

T − k0
L0L1(d+ 3)3/2

T∑
k=k0+1

Eζ [tk] +
L3

1β(d+ 6)3

2(T − k0)

T∑
k=k0+1

Eζ [t2k] + 2L1β(d+ 4)σ2

= O

√d
(

1 +
√
d
∑T
k=k0+1 Eζ [|tk+1 − tk|]

)
√
T − k0

+
d
(
dEζ

[∑T
k=k0+1 t

2
k

]
+
√
dEζ

[∑T
k=k0+1 tk

]
+ 1
)

T − k0


= O

√d
(

1 +
√
dγk0

)
√
T − k0

+
d
(
dγ2k0 +

√
dγk0 + 1

)
T − k0


where the last equality follows from the update rule of tk, as shown in the proof of Theorem 3.4 as
well.

Here, we have k0 = O
(
d
ε4

)
by the definition of k0. Thus, by setting T = k0 + O

(
d2

ε4

)
=

O
(
d2

ε4

)
, we can obtain Eζ,k′ [‖∇f(x̂)‖2] = 1

T−k0
∑T
k=k0+1 Eζ [‖∇f(xk)‖2] ≤ ε2. This implies

Eζ,k′ [‖∇f(x̂)‖] ≤ ε as Eζ,k′ [‖∇f(x̂)‖]2 ≤ Eζ,k′ [‖∇f(x̂)‖2] follows from Jensen’s inequality.
Furthermore, when γ is chosen as γ ≤ d−ε

4/2d , we have logγ d
−1/2 = O

(
d
ε4

)
, which implies

that k0 = Ω
(
logγ d

−1/2
)
. Therefore, we can obtain γk0 = O(d−1/2), which yields the iteration

complexity of T = O
(
d
ε4

)
.

�

23

C ZOSLGH algorithm with error tolerance

In Sections 3 and 4, we assumed that we had access to the exact function value or a gradient oracle
whose variance was finite. However, in some practical cases, we will have access only to the
function values containing error, and it would be impossible to obtain accurate gradient oracles of
an underlying objective function. Figure 2 illustrates such a case; although the objective function f
(Figure 2(a)) is smooth, the accessible function f ′ (Figure 2(b)) contains some error, and thus many
local minima arise. In this section, we consider optimizing a smooth objective function f using only
the information of f ′. We assume that the following condition holds between f and f ′.
Assumption A3. The supremum norm of the difference between f and f ′ is uniformly bounded:

sup
x∈Rd

|f(x)− f ′(x)| ≤ ν.

In the stochastic setting, we assume supx∈Rd |f(x; ξ)− f ′(x; ξ)| ≤ ν for any ξ.

(a) Smooth objective function (b) Accessible function with error

Figure 2: Illustration of a smooth objective function and the accessible function that contains error.

Please note that we do not impose any other assumptions on the accessible function f ′. Thus, f ′ can
be non-Lipschitz or even discontinuous. Even in such cases, we can develop an algorithm with a
convergence guarantee because its smoothed function F ′(x, t) is smooth as far as t is sufficiently
large. In the following, we denote the Lipschitz and gradient Lipschitz constant of F ′(·, t) as L0(t)
and L1(t), respectively.

The ZOSLGH algorithm in this setting is almost the same as Algorithm 3. The only difference is
√
ν

rather than ε in the update rule of tk+1. See the Algorithm 4 for a more detailed description. Please
note that F ′, g̃′x, G̃

′
x,u, g̃

′
t, G̃
′
t,v are defined in the same way as the no-error setting using f ′.

Algorithm 4 Deterministic/Stochastic Zeroth-Order Single Loop GH algorithm (ZOSLGH) with
error tolerance
Require: Iteration number T , initial solution x1, initial smoothing parameter t1, sequence of step

sizes {βk} for x, step size η for t, decreasing factor γ ∈ (0, 1), error tolerance ν
for k = 1 to T do

Sample uk from N (0, Id)
Update xk by

xk+1 = xk − βkḠ′x,u,

where Ḡ′x,u =

{
g̃′x(xk, tk;uk) (deterministic)

G̃′x(xk, tk; ξk, uk), ξk ∼ P (stochastic)

Sample vk from N (0, Id)
Update tk by

tk+1 =

{
max{γtk,

√
ν} (SLGHr)

max{min{tk − ηḠ′t,v, γtk},
√
ν} (SLGHd)

,

where Ḡ′t,v =

{
g̃′t(xk, tk; vk) (deterministic)

G̃′t(xk, tk; ξk, vk), ξk ∼ P (stochastic)

end for

24

We provide the convergence analyses in the following theorems. The definitions of x̂ in the determin-
istic and stochastic settings are given in Appendix C.2 and C.3, respectively.

Theorem C.1 (Convergence of ZOSLGH with error tolerance, Deterministic setting). Suppose
Assumptions A1 and A3 hold.

Take k1 := Θ(d/ε2) and k2 := O
(
logγ 1/d

)
and define k0 = min{k1, k2}. Let x̂ := xk′ , where k′

is chosen from a uniform distribution over {k0 +1, k0 +2, . . . , T}. Set the stepsize for x at iteration k
as βk = 1

16(d+4)L1(tk) , k ∈ [T]. Then, for any setting of the parameter γ, if the error level ν satisfies
ν = O(ε2/d3), x̂ satisfies E[‖∇f(x̂)‖] ≤ ε with the iteration complexity of T = O(d3/ε2), where
the expectation is taken w.r.t. random vectors {uk} and {vk}. Further, if we choose γ ≤ d−Ω(ε2/d),
the iteration complexity can be bounded as T = O(d/ε2).

Theorem C.2 (Convergence of ZOSLGH with error tolerance, Stochastic setting). Suppose
Assumptions A1, A2 and A3 hold. Take k1 := Θ(d/ε4) and k2 := O

(
logγ 1/d

)
and define

k0 = min{k1, k2}. Let x̂ := xk′ , where k′ is chosen from a uniform distribution over {k0 +

1, k0 + 2, . . . , T}. Set the stepsize for x at iteration k as βk = min

{
1

16(d+4)L1(tk) ,
1√

(T−k0)(d+4)

}
.

Then, for any setting of the parameter γ, if the error level ν satisfies ν = O(ε2/d3), x̂ satisfies
E[‖∇f(x̂)‖] ≤ ε with the iteration complexity of T = O(d2/ε4 + d3/ε2), where the expectation is
taken w.r.t. random vectors {uk}, {vk} and {ξk}. Further, if we choose γ ≤ d−Ω(ε4/d), the iteration
complexity can be bounded as T = O(d/ε4).

C.1 Proofs for technical lemmas

We introduce several lemmas before going to the convergence analysis. All of them describe properties
of the function with error f ′ and its Gaussian smoothing F ′. Throughout this subsection, we assume
that f is L0-Lipschitz and L1-smooth function. We also suppose that the function pair (f, f ′) satisfies
sup
x∈Rd

|f(x)− f ′(x)| ≤ ν.

Lemma C.3. For any x ∈ Rd and t > 0, we have

Eu
[

1

t2
(f ′(x+ tu)− f ′(x))2‖u‖2

]
≤ 4(d+ 4)‖∇f(x)‖2 + t2L2

1(d+ 6)3 + 8d
ν2

t2
.

Proof:

Eu
[

1

t2
(f ′(x+ tu)− f ′(x))2‖u‖2

]
= Eu

[
1

t2
(f(x+ tu)− f(x) + (f ′ − f)(x+ tu)− (f ′ − f)(x))2‖u‖2

]
≤ 2Eu

[
1

t2
(f(x+ tu)− f(x))2‖u‖2

]
+ 2Eu

[
1

t2
(2ν)2‖u‖2

]
≤ 4(d+ 4)‖∇f(x)‖2 + t2L2

1(d+ 6)3 + 8d
ν2

t2
,

where the last inequality holds due to Lemma B.1 and Lemma B.4.

Lemma C.4. For any x ∈ Rd and t > 0, we have

Eζ
[

1

t2
(f̄ ′(x+ tu; ξ)− f̄ ′(x; ξ))2‖u‖2

]
≤ 4(d+ 4)(‖∇f(x)‖2 + σ2) + t2L2

1(d+ 6)3 + 8d
ν2

t2
.

25

Proof:

Eζ
[

1

t2
(f̄ ′(x+ tu; ξ)− f̄ ′(x; ξ))2‖u‖2

]
= Eξ

[
Eu
[

1

t2
(f̄(x+ tu; ξ)− f̄(x; ξ) + (f̄ ′ − f̄)(x+ tu; ξ)− (f̄ ′ − f̄)(x; ξ))2‖u‖2

]]
≤ 2Eξ

[
Eu
[

1

t2
(f̄(x+ tu; ξ)− f̄(x; ξ))2‖u‖2

]]
+

2

t2
Eξ[Eu[(2ν)2‖u‖2]]

≤ 2Eξ
[
t2

2
L2

1(d+ 6)3 + 2(d+ 4)‖∇f̄(x; ξ)‖2
]

+ 8d
ν2

t2

≤ 4(d+ 4)(‖∇f(x)‖2 + σ2) + t2L2
1(d+ 6)3 + 8d

ν2

t2
,

where the second inequality follows from Lemma B.1 and Lemma B.4, and the last inequality holds
due to Assumption A2 (ii).

Lemma C.5. For any x ∈ Rd and for any t1, t2 ∈ T , we have

|F ′(x, t1)− F ′(x, t2)| ≤ L0|t1 − t2|
√
d+ 2ν.

Proof:

|F ′(x, t1)− F ′(x, t2)| = |F (x, t1)− F (x, t2) + (F ′ − F)(x, t1)− (F ′ − F)(x, t2)|
≤ |F (x, t1)− F (x, t2)|+ |Eu[(f ′ − f)(x+ t1u)]|+ |Eu[(f ′ − f)(x+ t2u)]|
≤ |F (x, t1)− F (x, t2)|+ Eu[|(f ′ − f)(x+ t1u)|] + Eu[|(f ′ − f)(x+ t2u)|]
≤ |F (x, t1)− F (x, t2)|+ 2ν

≤ L0|t1 − t2|
√
d+ 2ν,

where the last inequality holds due to Lemma 3.3.

Lemma C.6 (Lemma 30 in [17]). For any x ∈ Rd and for any t1, t2 ∈ T , we have

‖∇x(F ′ − F)(x, t)‖ ≤
√

2

π

ν

t
.

Lemma C.7.
(i) F ′(x, t) is L0 +

√
2
π
ν
t -Lipschitz in terms of x.

(ii) (Lemma 20 in [17]) F ′(x, t) is L1 + 2ν
t2 -smooth in terms of x.

Proof for (i):

‖∇xF ′(x, t)‖ ≤ ‖∇xF (x, t)‖+ ‖∇x(F ′ − F)(x, t)‖

≤ L0 +

√
2

π

ν

t
,

where the last inequality holds due to Lemma 3.2 and Lemma C.6.

Lemma C.8. For any x ∈ Rd and t > 0, we have

‖∇f(x)‖2 ≤ 4‖∇xF ′(x, t)‖2 +
t2

2
L2

1(d+ 6)3 +
8

π

ν2

t2
.

26

Proof: We have

‖∇f(x)‖2 = ‖Eu[〈∇f(x), u〉u]‖2

=

∥∥∥∥1

t
Eu[(f(x+ tu)− f(x)− [f(x+ tu)− f(x)− t〈∇f(x), u〉])u]

∥∥∥∥2

≤
∥∥∥∥∇xF (x, t)− 1

t
Eu[(f(x+ tu)− f(x)− t〈∇f(x), u〉)u]

∥∥∥∥2

≤ 2‖∇xF (x, t)‖2 +
2

t2
‖Eu[(f(x+ tu)− f(x)− t〈∇f(x), u〉)u]‖2

≤ 2‖∇xF (x, t)‖2 +
2

t2
Eu[|f(x+ tu)− f(x)− t〈∇f(x), u〉|2‖u‖2]

≤ 2‖∇xF (x, t)‖2 +
t2L2

1

2
Eu[‖u‖6]

≤ 2‖∇xF (x, t)‖2 +
t2L2

1

2
(d+ 6)3

≤ 2(2‖∇x(F − F ′)(x, t)‖2 + 2‖∇xF ′(x, t)‖2) +
t2L2

1

2
(d+ 6)3

≤ 4‖∇xF ′(x, t)‖2 +
t2L2

1

2
(d+ 6)3 +

8

π

ν2

t2
,

where the third last inequality holds due to Lemma B.1, and the last inequality holds due to Lemma
C.6.

C.2 Proof for the deterministic setting

Proof for Theorem C.1: Let wk := (uk, vk) and denote δk := g̃′x(xk, tk;uk) − ∇xF ′(xk, tk).
Utilize the updating rule for x and L1(t)-smoothness of F ′(·, t). Then we have

F ′(xk+1, tk) ≤ F ′(xk, tk) + 〈∇xF ′(xk, tk), (xk+1 − xk)〉+
L1(tk)

2
‖xk+1 − xk‖2

= F ′(xk, tk)− βk 〈∇xF ′(xk, tk), g̃′x(xk, tk;uk)〉+
L1(tk)

2
β2
k‖g̃′x(xk, tk;uk)‖2

= F ′(xk, tk)− βk‖∇xF ′(xk, tk)‖2 − βk 〈∇xF ′(xk, tk), δk〉+
L1(tk)

2
β2
k‖g̃′x(xk, tk;uk))‖2.

(26)

Denote

Ek := −βk 〈∇xF ′(xk, tk), δk〉+
L1(tk)

2
β2
k‖g̃′x(xk, tk;uk)‖2

for simplicity. From Lemma C.5 and (26), we get the upper bound for ‖∇xF ′(x, t)‖2 as

βk‖∇xF ′(xk, tk)‖2 ≤ F ′(xk, tk)− F ′(xk+1, tk) + Ek

= F ′(xk, tk)− F ′(xk+1, tk+1) + F ′(xk+1, tk+1)− F ′(xk+1, tk) + Ek

≤ F ′(xk, tk)− F ′(xk+1, tk+1) + L0|tk+1 − tk|
√
d+ 2ν + Ek.

27

Now, sum up the above inequality for all iterations k0 + 1 ≤ k ≤ T (T > k0). Then we have

T∑
k=k0+1

βk‖∇xF ′(xk, tk)‖2

≤ F ′(xk0+1, tk0+1)− F ′(xT+1, tT+1) + L0

T∑
k=k0+1

|tk+1 − tk|
√
d+ 2ν(T − k0) +

T∑
k=k0+1

Ek

≤ F ′(xk0+1, tk0+1)− f∗ + ν + L0

√
d

T∑
k=k0+1

|tk+1 − tk|+ 2ν(T − k0) +

T∑
k=k0+1

Ek.

≤ f ′(xk0+1)− f∗ + 3ν + L0

√
d

(
tk0+1 +

T∑
k=k0+1

|tk+1 − tk|

)
+ 2ν(T − k0) +

T∑
k=k0+1

Ek

≤ f(xk0+1)− f∗ + 4ν + L0

√
d

(
tk0+1 +

T∑
k=k0+1

|tk+1 − tk|

)
+ 2ν(T − k0) +

T∑
k=k0+1

Ek,

(27)

where the third inequality holds due to Lemma C.5. We can bound the conditional expectation of Ek
as

Ewk
[Ek | w[k−1]]

= −βkEwk
[〈∇xF ′(xk, tk), δk〉 | w[k−1]] +

Ewk
[L1(tk) | w[k−1]]

2
β2
kEwk

[‖g̃′x(xk, tk;uk)‖2 | w[k−1]]

≤
Ewk

[L1(tk) | w[k−1]]

2
β2
kEwk

[‖g̃′x(xk, tk;uk)‖2 | w[k−1]]

≤
Ewk

[L1(tk) | w[k−1]]

2
β2
k

(
4(d+ 4)Ewk

[‖∇f(xk)‖2 | w[k−1]] + L2
1(d+ 6)3Ewk

[t2k | w[k−1]]

+8dEwk

[
ν2/t2k | w[k−1]

])
,

where the first inequality holds since we have Ewk
[δk | w[k−1]] = Euk

[δk | u[k−1]] = 0, and
the last inequality holds due to Lemma C.3. Take the expectations of (27) w.r.t. random vectors
{wk0+1, ..., wT }. Then we can get

T∑
k=k0+1

βkEw[‖∇xF ′(xk, tk)‖2]

≤ f(xk0+1)− f∗ + 4ν + L0

√
d

(
tk0+1 +

T∑
k=k0+1

Ew[|tk+1 − tk|]

)
+ 2ν(T − k0)

+
1

2

(
4(d+ 4)

T∑
k=k0+1

β2
kEw[L1(tk)‖∇f(xk)‖2] + L2

1(d+ 6)3
T∑

k=k0+1

β2
kEw[L1(tk)t2k]

+8d

T∑
k=k0+1

β2
kEw

[
L1(tk)

ν2

t2k

])
. (28)

28

Lemma C.8 together with (28) yields
T∑

k=k0+1

βkEw[‖∇f(xk)‖2]

≤ 4

T∑
k=k0+1

βkEw[‖∇xF ′(xk, tk)‖2] +
1

2

T∑
k=k0+1

βkEw[t2k]L2
1(d+ 6)3 +

8

π

T∑
k=k0+1

βkEw
[
ν2

t2k

]

≤ 4

(
f(xk0+1)− f∗ + 4ν + L0

√
d

(
tk0+1 +

T∑
k=k0+1

Ew[|tk+1 − tk|]

)
+ 2ν(T − k0)

)

+ 2

(
4(d+ 4)

T∑
k=k0+1

β2
kEw[L1(tk)‖∇f(xk)‖2] + L2

1(d+ 6)3
T∑

k=k0+1

β2
kEw[L1(tk)t2k]

+8d

T∑
k=k0+1

β2
kEw

[
L1(tk)

ν2

t2k

])

+
1

2

T∑
k=k0+1

βkEw[t2k]L2
1(d+ 6)3 +

8

π

T∑
k=k0+1

βkEw
[
ν2

t2k

]
.

By rearranging the terms, we obtain
T∑

k=k0+1

(
βkEw[‖∇f(xk)‖2]− 8(d+ 4)β2

kEw[L1(tk)‖∇f(xk)‖2]
)

≤ 4

(
f(xk0+1)− f∗ + 4ν + L0

√
d

(
tk0+1 +

T∑
k=k0+1

Ew[|tk+1 − tk|]

)
+ 2ν(T − k0)

)

+ 2

(
L2

1(d+ 6)3
T∑

k=k0+1

β2
kEw[L1(tk)t2k] + 8d

T∑
k=k0+1

β2
kEw

[
L1(tk)

ν2

t2k

])

+
1

2

T∑
k=k0+1

βkEw[t2k]L2
1(d+ 6)3 +

8

π

T∑
k=k0+1

βkEw
[
ν2

t2k

]
. (29)

If we update tk (k ∈ [T]) as in Algorithm 4, we have ν = O(t2k), which yields L1(tk) = O(1) from
Lemma C.7. Hence, by setting the step size βk as 1

16(d+4)L1(tk) (k ∈ [T]), we can obtain

1

T − k0

T∑
k=k0+1

Ew[‖∇f(xk)‖2] = O

(
d

T − k0

(
1 +
√
d

T∑
k=k0+1

Ew[|tk+1 − tk|] + d2
T∑

k=k0+1

Ew[t2k]

))

in the same way as before. We can also get
∑T
k=k0+1 |tk+1 − tk| =

∑T
k=k0+1(tk − tk+1) =

tk0+1 − tT+1 = tk0+1 = O(γk0). Further, we have
T∑

k=k0+1

t2k ≤
T∑

k=k0+1

max{t21γ2(k−1), ν} ≤
T∑

k=k0+1

(
t21γ

2(k−1) + ν
)
≤ t21γ

2k0

1− γ2
+ ν(T − k0)

= O(γ2k0 + ν(T − k0)),

where the first inequality follows from the update rule of tk in Algorithm 4. Hence, we obtain

1

T − k0

T∑
k=k0+1

Ew[‖∇f(xk)‖2] = O

(
d

T − k0

(
1 +
√
dγk0 + d2(γ2k0 + ν(T − k0))

))

= O

(
d(1 + d2γ2k0)

T − k0
+ d3ν

)
= O

(
d(1 + d2γ2k0)

T − k0
+ ε2

)
,

29

where the last equality follows from the assumption of ν = O(ε2/d3).

Here, we have k0 = O
(
d
ε2

)
by the definition of k0. Thus, by setting T = k0 + O

(
d3

ε2

)
=

O
(
d3

ε2

)
, we can obtain Ew,k′ [‖∇f(x̂)‖2] = 1

T−k0
∑T
k=k0+1 Ew[‖∇f(xk)‖2] ≤ ε2. This implies

Ew,k′ [‖∇f(x̂)‖] ≤ ε as Ew,k′ [‖∇f(x̂)‖]2 ≤ Ew,k′ [‖∇f(x̂)‖2] follows from Jensen’s inequality.
Furthermore, when γ is chosen as γ ≤ d−ε

2/d , we have logγ d
−1 = O

(
d
ε2

)
, which implies

k0 = Ω
(
logγ d

−1
)
. Therefore, we can obtain γk0 = O(d−1), which yields the iteration complexity

of T = O
(
d
ε2

)
.

�

C.3 Proof for the stochastic setting

Proof for Theorem C.2:

Let ζk := (ξk, uk, vk), k ∈ [T] and denote δk := G̃′x(xk, tk; ξk, uk) − ∇xF ′(xk, tk). Since
G̃′x(x, t; ξ, u) is an unbiased estimator of∇xF ′(x, t), we have

F ′(xk+1, tk) ≤ F ′(xk, tk) + 〈∇xF ′(xk, tk), (xk+1 − xk)〉+
L1(tk)

2
‖xk+1 − xk‖2

= F ′(xk, tk)− βk
〈
∇xF ′(xk, tk), G̃′x(xk, tk; ξk, uk)

〉
+
L1(tk)

2
β2
k‖G̃′x(xk, tk; ξk, uk)‖2

= F ′(xk, tk)− βk‖∇xF ′(xk, tk)‖2 − βk 〈∇xF ′(xk, tk), δk〉+
L1(tk)

2
β2
k‖G̃′x(xk, tk; ξk, uk)‖2.

Now, denote

Ik := −βk 〈∇xF ′(xk, tk), δk〉+
L1(tk)

2
β2
k‖G̃′x(xk, tk; ξk, uk)‖2

for simplicity. Then, we can get the upper bound for ‖∇xF (x, t)‖2 with Ik:

βk‖∇xF ′(xk, tk)‖2 ≤ F ′(xk, tk)− F ′(xk+1, tk) + Ik

= F ′(xk, tk)− F ′(xk+1, tk+1) + F ′(xk+1, tk+1)− F ′(xk+1, tk) + Ik

≤ F ′(xk, tk)− F ′(xk+1, tk+1) + L0|tk+1 − tk|
√
d+ 2ν + Ik,

where the last inequality follows from Lemma C.5. Sum up the above inequality for all iterations
k0 + 1 ≤ k ≤ T . Then we have

T∑
k=k0+1

βk‖∇xF ′(xk, tk)‖2

≤ F ′(xk0+1, tk0+1)− F ′(xT+1, tT+1) + L0

√
d

T∑
k=k0+1

|tk+1 − tk|+ 2ν(T − k0) +

T∑
k=k0+1

Ik

≤ f(xk0+1)− f∗ + 4ν + L0

√
d

(
tk0+1 +

T∑
k=k0+1

|tk+1 − tk|

)
+ 2ν(T − k0) +

T∑
k=k0+1

Ik.

(30)

We can also obtain

Eζk [Ik | ζ[k−1]]

= −βkEζk [〈∇xF ′(xk, tk), δk〉 | ζ[k−1]] +
Eζk [L1(tk) | ζ[k−1]]

2
β2
kEζk [‖G̃′x(xk, tk; ξk, uk)‖2 | ζ[k−1]]

=
Eζk [L1(tk) | ζ[k−1]]

2
β2
kEζk [‖G̃′x(xk, tk; ξk, uk)‖2 | ζ[k−1]]

≤
Eζk [L1(tk) | ζ[k−1]]s

2
β2
k

(
4(d+ 4)(Eζk [‖∇f(xk)‖2 | ζ[k−1]] + σ2) + Eζk [t2k | ζ[k−1]]L

2
1(d+ 6)3

+8dEζk
[
ν2/t2k | ζ[k−1]

])
,

30

where the last inequality holds due to Lemma C.4.

Take the expectation of (30) with respect to ζk0+1, . . . , ζT . Then we have
T∑

k=k0+1

βkEζ [‖∇xF ′(xk, tk)‖2]

≤ f(xk0+1)− f∗ + 4ν + L0

√
d

(
tk0+1 +

T∑
k=k0+1

Eζ [|tk+1 − tk|]

)
+ 2ν(T − k0) +

T∑
k=k0+1

Eζ [Ik]

≤ f(xk0+1)− f∗ + 4ν + L0

√
d

(
tk0+1 +

T∑
k=k0+1

Eζ [|tk+1 − tk|]

)
+ 2ν(T − k0)+

+
1

2

(
4(d+ 4)

T∑
k=k0+1

β2
k(Eζ [L1(tk)‖∇f(xk)‖2] + σ2) + L2

1(d+ 6)3
T∑

k=k0+1

β2
kEζ [L1(tk)t2k]

+8d

T∑
k=k0+1

β2
kEζ

[
L1(tk)

ν2

t2k

])
,

From Lemma C.8 (ii), we have
T∑

k=k0+1

βkEζ [‖∇f(xk)‖2]

≤ 4

T∑
k=k0+1

βkEζ [‖∇xF ′(xk, tk)‖2] +
L2

1(d+ 6)3

2

T∑
k=k0+1

βkEζ [t2k] +
8

π

T∑
k=k0+1

βkEζ
[
ν2

t2k

]

≤ 4

(
f(xk0+1)− f∗ + 4ν + L0

√
d

(
tk0+1 +

T∑
k=k0+1

Eζ [|tk+1 − tk|]

)
+ 2ν(T − k0)

)

+ 2

(
4(d+ 4)

T∑
k=k0+1

(β2
kEζ [L1(tk)(‖∇f(xk)‖2 + σ2)]) + L2

1(d+ 6)3
T∑

k=k0+1

Eζβ2
k[L1(tk)t2k]

+8d

T∑
k=k0+1

β2
kEζ

[
L1(tk)

ν2

t2k

])

+
L2

1(d+ 6)3

2

T∑
k=k0+1

βkEζ [t2k] +
8

π

T∑
k=k0+1

βkEζ
[
ν2

t2k

]
. (31)

By rearranging the terms, we obtain

T∑
k=k0+1

(
βkEζ [‖∇f(xk)‖2]− 8(d+ 4)β2

kEζ [L1(tk)‖∇f(xk)‖2]
)

≤ 4

(
f(xk0+1)− f∗ + 4ν + L0

√
d

(
tk0+1 +

T∑
k=k0+1

Eζ [|tk+1 − tk|]

)
+ 2ν(T − k0)

)

+ 2

(
4(d+ 4)σ2

T∑
k=k0+1

β2
kEζ [L1(tk)] + L2

1(d+ 6)3
T∑

k=k0+1

βkEζ [L1(tk)t2k] + 8d

T∑
k=k0+1

βkEζ
[
L1(tk)

ν2

t2k

])

+
L2

1(d+ 6)3

2

T∑
k=k0+1

βkEζ [t2k] +
8

π

T∑
k=k0+1

βkEζ
[
ν2

t2k

]
. (32)

If we update tk (k ∈ [T]) as in Algorithm 4, we have ν = O(t2k), which yields L1(tk) = O(1) from

Lemma C.7. Furthermore, if we set the step size βk as min

{
1

16(d+4)L1(tk) ,
1√

(T−k0)(d+4)

}
(k ∈

31

[T]), then we have

1

βk − 8(d+ 4)L1(tk)β2
k

≤ 2

βk
,

1

βk
≤ 16(d+ 4)L1(tk) +

√
(T − k0)(d+ 4).

for all k ∈ [T]. Using the above inequalities, we can obtain

1

T − k0

T∑
k=k0+1

Eζ [‖∇f(xk)‖2] = O

√d
(

1 +
√
d
∑T
k=k0+1 Eζ [|tk+1 − tk|]

)
√
T − k0

+
d
(

1 + d2
∑T
k=k0+1 Eζ [t2k]

)
T − k0


= O

(√
d+ dγk0√
T − k0

+
d+ d3γ2k0

T − k0
+ d3ν

)

= O

(√
d+ dγk0√
T − k0

+
d+ d3γ2k0

T − k0
+ ε2

)
,

where the second and last equality can be shown via a similar way as in the proof of Theorem C.1.

Here, we have k0 = O
(
d
ε4

)
by the definition of k0. Thus, by setting T = O

(
d3

ε2 + d2

ε4

)
=

O
(
d3

ε2 + d2

ε4

)
, we can obtain Eζ,k′ [‖∇f(x̂)‖2] = 1

T−k0
∑T
k=k0+1 Eζ [‖∇f(xk)‖2] ≤ ε2. This im-

plies Eζ,k′ [‖∇f(x̂)‖] ≤ ε as Eζ,k′ [‖∇f(x̂)‖]2 ≤ Eζ,k′ [‖∇f(x̂)‖2] follows from Jensen’s inequality.
Furthermore, when γ is chosen as γ ≤ d−ε

4/d , we have logγ d
−1 = O

(
d
ε4

)
, which implies that

k0 = Ω
(
logγ d

−1
)
. Therefore, we can obtain γk0 = O(d−1), which yields the iteration complexity

of T = O
(
d
ε4

)
.

�

D Optimization of test functions

In the first three subsections, let us compare the performance of our SLGH algorithms with GD-based
algorithms and double loop GH algorithms using highly-non-convex test functions for optimization:
the Ackley function [26], Rosenbrock function, and Himmelblau function [1]. We implemented the
following five types of algorithms: (ZOS)GD, (ZO)GradOpt, in which the factor for decreasing the
smoothing parameter was 0.5 or 0.8, (ZO)SLGHr with γ = 0.995 or γ = 0.999.

D.1 Ackley Function

The Ackley function is defined as

f(x, y) = −20 exp
[
−0.2

√
0.5 (x2 + y2)

]
− exp[0.5(cos 2πx+ cos 2πy)] + e+ 20,

whose global optimum is f(0, 0) = 0. As shown in Figure 3(a), it has numerous small local minima
due to cosine functions which are included in the second term. We ran the aforementioned five types
of zeroth-order algorithms with the stepsize β = 0.1 for T = 1000 iterations. The initial smoothing
parameter for the GH algorithms (ZOGradOpt and ZOSLGHr) was set to t1 = 1, where local minima
of the smoothed function almost disappeared (Figure 3(b)). The smoothing parameter for ZOSGD
was chosen as t = 0.005. We set the initial point for the optimization as (x, y) = (5, 5).

32

(a) Ackley function (b) Gaussian smoothed function with parameter t =
1

Figure 3: Visualization of the Ackley function and its Gaussian smoothed function.

We illustrate the optimization results in Table 3 and Figure 4. The GH methods successfully reach
near the optimal solution (0, 0) when the decreasing speed of t is not so fast, while ZOSGD is stuck
in a local minimum in the immediate vicinity of the initial point (5, 5). Please note that GradOpt
succeeds in optimization without decreasing the smoothing parameter since the optimal solution of
the smoothed function with t = 1 almost matches that of the original target function.

Table 3: Optimization results of the Ackley function. The global optimum is f(0, 0) = 0.

Methods (x, y) f(x, y)
SGD algo. ZOSGD (4.99, 4.99) 12.63
GH algo. ZOGradOpt (γ = 0.5) (4.2× 10−3, 1.9× 10−3) 1.4× 10−2

ZOGradOpt (γ = 0.8) (−2.2× 10−3, 6.7× 10−3) 8.1× 10−2

ZOSLGHr (γ = 0.995) (1.97, 1.97) 6.56
ZOSLGHr (γ = 0.999) (−3.6× 10−3,−4.6× 10−3) 1.7× 10−2

(a) Function value f(x, y) versus iterations. (b) Smoothing parameter t versus iterations.

Figure 4: Plots of the function value and the smoothing parameter during optimization of the Ackley
function.

33

D.2 Rosenbrock Function

Let us define the Rosenbrock function in 2D as

f(x, y) = 100
(
y − x2

)2
+ (1− x)

2
,

whose global optimum is f(1, 1) = 0. This function is difficult to optimize because the global
optimum lies inside a flat parabolic shaped valley with low function value (Figure 5(a)). Since this
function is polynomial, we can calculate the GH smoothed function analytically (see [25]):

F (x, y, t) := Eux,uy [f(x+ tux, y + tuy)], (ux, uy ∼ N (0, 1))

= 100x4 + (−200y + 600t2 + 1)x2 − 2x+ 100y2 − 200t2y + (300t4 + 101t2 + 1).

Thus, we applied first-order methods to this function. The stepsize and iteration number were
set to β = 1 × 10−4 and T = 20000, respectively. The initial smoothing parameter for the GH
algorithms (GradOpt and SLGHr) was set to t1 = 1.5, where the smoothed function became almost
convex around the optimal solution (Figure 5(b)). We set the initial point for the optimization as
(x, y) = (−3, 2).

(a) Rosenbrock function (b) Smoothed function with parameter t = 1.5

Figure 5: Visualization of the Rosenbrock function and its Gaussian smoothed function.

We illustrate the optimization results in Table 4, Figure 6 and Figure 7. The GH methods can decrease
the function value much faster than GD. This is because the smoothed function is much easier to
optimize than the original function while its optimal solution is close to that of the original one. In
the early stage of optimization, the GH methods reach near a point (0, 2), which is a good initial
point for optimization, while GD falls into a point in the flat valley, which is far from the optimal
solution. (Figure 7).

Table 4: Optimization results of the Rosenbrock function. The global optimum is f(1, 1) = 0.

Methods (x, y) f(x, y)
GD algo. GD (0.468, 0.216) 0.284
GH algo. GradOpt (γ = 0.5) (0.817, 0.667) 3.36× 10−2

GradOpt (γ = 0.8) (0.808, 0.652) 3.70× 10−2

SLGHr (γ = 0.995) (0.819, 0.670) 3.27× 10−2

SLGHr (γ = 0.999) (0.795, 0.631) 4.19× 10−2

34

(a) Function value f(x, y) versus iterations. (b) Smoothing parameter t versus iterations.

Figure 6: Plots of the function value and the smoothing parameter during optimization of the
Rosenbrock function.

Figure 7: Comparison of output sequences between GD and SLGHr (γ = 0.999) with contours
of the Rosenbrock function.

D.3 Himmelblau Function

The Himmelblau function is defined as

f(x, y) = (x2 + y − 11)2 + (x+ y2 − 7)2.

It has four minimum points in the vicinity of (x, y) =
(3.000, 2.000), (−2.805, 3.131), (−3.779,−3.283), (3.584,−1.848) and one maximum point
in the vicinity of (x, y) = (−0.271,−0.923). It takes the optimal value 0 at the four points. Since
this function is also polynomial, we can calculate the GH smoothed function analytically:

F (x, y, t) := Eux,uy
[f(x+ tux, y + tuy)], (ux, uy ∼ N (0, 1))

= x4 + (2y + 6t2 − 21)x2 + (2y2 + 2t2 − 14)x+ y4 + (6t2 − 13)y2 + (2t2 − 22)y + (6t4 − 34t2 + 170).

Thus, we applied first-order methods to this function. The stepsize and iteration number were set
to β = 1× 10−4 and T = 2000, respectively. The initial smoothing parameter for GH algorithms
was set to t1 = 2, where the smoothed function became almost convex around the optimal solution
(Figure 8(b)). We set the initial point for the optimization as (x, y) = (5, 5).

35

(a) Himmelblau function (b) Gaussian smoothed function with parameter t =
2

Figure 8: Visualization of the Himmelblau function and its Gaussian smoothed function.

Table 5, Figure 9, and Figure 10 show the optimization results. GD and our SLGH algorithms
successfully reach near the global optimum, while GradOpt fails to decrease the function value. This
is because the optimal solution of the smoothed function when t = 2 lies near the maximum point
of the original Himmelblau function (−0.271,−0.923). Figure 10 describes detailed optimization
process. Our SLGH algorithm succeeds in returning to the optimal solution once it has passed by
reducing t. In contrast, GradOpt reaches the vicinity of a minimum of the smoothed function without
knowing the detailed shape of the original function; as a result, it is stuck around a local maximum of
the original function.

Table 5: Results of optimization of the Himmelblau function. It has a global optimum f(3, 2) = 0.

Methods (x, y) f(x, y)
GD algo. GD (2.998, 2.003) 1.6× 10−4

GH algo. GradOpt (γ = 0.5) (2.575, 1.437) 14.14
GradOpt (γ = 0.8) (1.573, 0.868) 80.51
SLGHr (γ = 0.995) (2.999, 2.002) 6.9× 10−5

SLGHr (γ = 0.999) (2.983, 1.897) 0.21

(a) Function value f(x, y) versus iterations. (b) Smoothing parameter t versus iterations.

Figure 9: Plots of the function value and the smoothing parameter during optimization of the
Himmelblau function.

36

Figure 10: Comparison of output sequences of GradOpt, in which the factor for decreasing the
smoothing parameter is 0.8, and SLGHr (γ = 0.999) with contours of the smoothed Himmelblau
function. The blue and orange lines represent output sequences of GradOpt when t = 2.0 and t = 1.6,
respectively.

D.4 Additional Toy Example

At the end of this section, let us present a toy example problem in which SLGHd, which utilizes
the derivative ∂F

∂t for the update of t, outperforms SLGHd. Let us consider the following artificial
non-convex function:

f(x, y) =

{
x2 − 150× 1.1−((x−10)2+y2) (x ≥ 0)

x2/50− 150× 1.1−((x−10)2+y2) (x < 0)
.

The second term creates a hole around (x, y) = (10, 0) (see Figure12(a)), and this function has an
optimum in the vicinity of f(9.319, 0) ' −56.670. This function is difficult to optimize for GH
methods since the hole around the optimum disappears when the smoothing parameter t is large
(Figure12(b)).

We ran SLGHr (γ = 0.995 or 0.999) and SLGHd (γ = 0.999) with the stepsize (for x) β = 0.01 for
T = 1000 iterations. The initial point and initial smoothing parameter were set to (x, y) = (15, 0)
and t1 = 5, respectively. We set the stepsize for t as 0.01.

Table 6 and Figure 11 show the optimization results. We can see that only SLGHd can decrease t
around the hole adaptively, and thus successfully can find the optimal solution.

Table 6: Optimization results of the artificial non-convex function. It has a global optimum in the
vicinity of f(9.319, 0) ' −56.670.

Methods (x, y) f(x, y)
GH algo. SLGHr (γ = 0.995) (−0.248, 2.38× 10−2) −5.52× 10−3

SLGHr (γ = 0.999) (−2.959,−2.18× 10−3) 0.175
SLGHd (γ = 0.999) (9.319, 8.33× 10−3) −56.670

37

(a) Function value f(x, y) versus iterations. (b) Smoothing parameter t versus iterations.

Figure 11: Plots of the function value and the smoothing parameter during optimization
of the artificial non-convex function.

38

(a) Artificial non-convex function

(b) Gaussian smoothed function with parameter t = 5

Figure 12: Visualization of the artificial non-convex function and its Gaussian smoothed function.

39

E Black-box adversarial attack

E.1 Experimental Setup

We used well-trained DNNs4 for CIFAR10 and MNIST classification tasks as target models, re-
spectively. We adopt the implementation5 in [9] for ZOSGD and ZOAdaMM. GradOpt [14] in our
implementation adopts the same random gradient-free oracles [28] as with our ZOSLGH methods,
rather than their smoothed gradient oracle, where random variables are sampled from the unit sphere.
Moreover, we set the stepsize in its inner loop as a constant instead of Θ(1/k), where k denotes
an iteration number in the inner loop, due to less efficiency of the original setting. Therefore, the
essential difference between GradOpt and ZOSLGHr is whether or not the structure of algorithms is
single loop.

As recommended in their work, we set the parameter for ZOAdaMM as v0 = 10−5, β1 = 0.9,
and β2 = 0.3. The factor for decreasing the smoothing parameter in ZOGradOpt was set to 0.5.
For all algorithms, we chose the regularization parameter λ as λ = 10 and set attack confidence
κ = 1e − 10. We chose minibatch size as M = 10 to stabilize estimation of values and gradients
of the smoothed function. The initial adversarial perturbation was chosen as x0 = 0, and the initial
smoothing parameter t0 was 10 for GH methods and 0.005 for the others. The decreasing factor
for t in the ZOSLGH algorithm was set to γ = 0.999 for both of ZOSLGHr and ZOSLGHd, unless
otherwise noted. Other parameter settings are described in Table 7. We used different step sizes for
ZOAdaMM because it adaptively penalizes the step size using the information of past gradients [9].

Table 7: Parameter settings in the adversarial attack problems. T represents the iteration number.
β is the step size for x, and η is the step size for t. N0 and ε0 are used to determine termination
condition of the inner loop in ZOGradOpt: we stop the inner loop and decrease t if the condition
| 1
M

∑M
i=1 f(xk+1 + tui)− 1

M

∑M
i=1 f(xk + tu′i)| ≤ ε0 is satisfied N0 times, where ui and u′i (i =

1, ...,M) are sampled from N (0, Id). Each of “3072” and “784” is the dimension of images in
CIFAR-10 and MNIST.

T
β

(other than
ZOAdaMM)

β
(for ZOAdaMM) η (N0, ε0)

CIFAR-10 10000 0.01/3072 0.5/3072 1× 10−4/3072 (100, 5× 10−3)
MNIST 20000 1/784 100/784 0.1/784 (100, 1× 10−3)

E.2 CIFAR-10

Additional plots Figures 13 and 14 show additional plots for total loss and L2 distortion, respec-
tively. We can see that our ZOSLGH algorithms successfully decrease the total loss value except in
cases where images are so difficult to attack that no algorithms succeed in attacking (Figure 13(i),
13(j)). Plots in Figure 14 imply that the algorithms are stuck around a local minimum x = 0 when
they are failed to decrease the loss value.

4https://github.com/carlini/nn_robust_attacks
5https://github.com/KaidiXu/ZO-AdaMM

40

(a) CIFAR-10, Image ID = 1 (b) CIFAR-10, Image ID = 16

(c) CIFAR-10, Image ID = 37 (d) CIFAR-10, Image ID = 7

(e) CIFAR-10, Image ID = 51 (f) CIFAR-10, Image ID = 96

(g) CIFAR-10, Image ID = 39 (h) CIFAR-10, Image ID = 104

(i) CIFAR-10, Image ID = 14 (j) CIFAR-10, Image ID = 41

Figure 13: Additional plots of total loss versus iterations on CIFAR-10 (log scale). (a)-(c) All
algorithms can successfully decrease the loss value when images are easy to attack. In particular,
in plot (c), SGD-based algorithms can find better solutions than GH-based algorithms. (d)-(f) Only
GradOpt fails to attack due to its slow convergence. (g) Only ZOSGD is stuck around a local
minimum x = 0. (h) Only our ZOSLGHr algorithm succeeds in escaping the local minimum, and
thus it can decrease the loss value more than 200 than other algorithms. (i), (j): These images are so
difficult to attack that no algorithms can succeed in attacking.

41

(a) CIFAR-10, Image ID = 39 (b) CIFAR-10, Image ID = 104

(c) CIFAR-10, Image ID = 14 (d) CIFAR-10, Image ID = 41

Figure 14: Plots of L2 distortion versus iterations for images that are difficult to attack on CIFAR-10.
Each plot of (a)-(d) corresponds to Figure 13(g)-Figure 13(j).

42

Effect of choice of the parameter γ in the ZOSLGH algorithm We also investigated the effect of
choice of the decreasing parameter γ in the ZOSLGH algorithm. We compared ZOSGD, ZOSLGHr
with γ = 0.995, and ZOSLGHr with γ = 0.999. All other parameters were set to the same values
as before. Figure 15 implies that the decreasing speed of t is associated with a trade-off: a rapid
decrease of t yields fast convergence, but reduces the possibility to find better solutions.

(a) CIFAR-10, Image ID = 8 (b) CIFAR-10, Image ID = 66

(c) CIFAR-10, Image ID = 105 (d) CIFAR-10, Image ID = 89

Figure 15: Comparison of total loss transition of ZOSGD, ZOSLGHr with γ = 0.995, and ZOSLGHr
with γ = 0.999 (log scale).

43

Generated adversarial examples Table 8 shows adversarial images generated by different algo-
rithms and their original images.

Table 8: Comparison of adversarial images for CIFAR-10 with different algorithms.

Image ID 39 79 89 115

Original

Classified as dog ship truck cat
L2 distortion: 0 0 0 0

ZOSGD

Classified as dog (fail.) airplane truck (fail.) horse
L2 distortion: 6.7× 10−5 0.154 5.6× 10−5 4.5× 10−3

ZOAdaMM

Classified as dog (fail.) airplane truck (fail.) horse
L2 distortion: 0.226 0.145 0.131 1.6× 10−3

ZOGradOpt

Classified as cat airplane truck (fail.) horse
L2 distortion: 0.304 0.254 1.1× 10−30 0.192

ZOSLGHr

Classified as cat airplane automobile horse
L2 distortion: 0.540 0.212 0.282 0.076

ZOSLGHd

Classified as cat airplane automobile horse
L2 distortion: 0.359 0.174 0.241 0.075

E.3 MNIST

Finally, let us show the experimental results on the MNIST dataset. Our ZOSLGH algorithms attain
higher success rates than other algorithms on this dataset as well as CIFAR-10 (Table 9). Moreover,
the average number of iterations to achieve the first successful attack becomes comparable to ZOSGD.
The main difference from the results on CIFAR-10 is that the average of L2 distortion at successful
time becomes far larger, from 0.050 ∼ 0.250 to 4.25 ∼ 5.20. This implies that attacks on MNIST
are more difficult than those on CIFAR-10. See Figure 16 and Figure 17 for additional plots for total
loss and L2 distortion. Figure 10 shows adversarial images generated by different algorithms and
their original images.

44

Table 9: Performance of a per-image attack over 100 images of MNIST under T = 20000 iterations.
“Succ. rate” indicates the ratio of success attack, “Avg. iters to 1st succ.” is the average number of
iterations to reach the first successful attack, “Avg. L2 (succ.)” is the average of L2 distortion taken
among successful attacks, and “Avg. total loss” is the average of total loss f(x) over 100 samples.
Please note that the standard deviations are large since the attack difficulty varies considerably from
sample to sample.

Methods Succ. rate Avg. iters
to 1st succ.

Avg. L2

(succ.) Avg. total loss

SGD algo. ZOSGD 67% 1171± 1954 4.83± 4.13 73.60± 102.70
ZOAdaMM 71% 261± 1068 4.25± 3.36 67.49± 100.25
ZOGradOpt 84% 6166± 4354 5.16± 2.28 28.25± 65.35

GH algo. ZOSLGHr (γ = 0.999) 96% 1537± 277 4.32± 2.44 11.83± 37.88
ZOSLGHd (γ = 0.999) 96% 1342± 242 4.37± 2.58 12.09± 38.56

45

(a) MNIST, Image ID = 7 (b) MNIST, Image ID = 58

(c) MNIST, Image ID = 18 (d) MNIST, Image ID = 94

(e) MNIST, Image ID = 61 (f) MNIST, Image ID = 30

(g) MNIST, Image ID = 68 (h) MNIST, Image ID = 82

Figure 16: Additional plots of total loss versus iterations on MNIST (log scale). (a)-(b) All algorithms
can successfully decrease the loss value when images are easy to attack. (c)-(d) Only GradOpt fails
to attack due to its slow convergence. (e) ZOSGD and ZOAdaMM are stuck around a local minimum
x = 0. (f) Only our ZOSLGH algorithms succeed in escaping the local minimum, and thus they can
decrease the loss value more than 200 than other algorithms. (g), (h): These images are so difficult to
attack that no algorithms can succeed in attacking.

46

(a) MNIST, Image ID = 61 (b) MNIST, Image ID = 30

(c) MNIST, Image ID = 68 (d) MNIST, Image ID = 82

Figure 17: Plots of L2 distortion versus iterations for images that are difficult to attack on MNIST.
Each plot of (a)-(d) corresponds to Figure 16(e)-Figure 16(h).

47

Table 10: Comparison of the adversarial images for MNIST with different algorithms.

Image ID 10 21 48 83

Original

Classified as 0 6 4 7
L2 distortion: 0 0 0 0

ZOSGD

Classified as 0 (fail.) 5 9 7 (fail.)
L2 distortion: 4.1× 10−7 1.194 1.183 1.8× 10−4

ZOAdaMM

Classified as 0 (fail.) 5 9 7 (fail.)
L2 distortion: 4.9× 10−14 1.334 1.100 4.0× 10−14

ZOGradOpt

Classified as 2 5 9 9
L2 distortion: 3.898 1.378 1.903 6.379

ZOSLGHr

Classified as 2 5 9 9
L2 distortion: 3.867 1.261 1.106 6.075

ZOSLGHd

Classified as 2 5 9 9
L2 distortion: 4.048 1.222 1.059 5.722

48

