
A VISUAL ENCODERS
In this section, we will describe the architectures of all end-to-end
visual encoders, the image augmentations applied for end-to-end
visual encoders, and detail the sources of the pre-trained encoders
used in our study.

A.1 End-To-End Visual Encoders
Impala ResNet. The Impala ResNet architecture faithfully imple-

ments the visual encoder of the "large architecture" outlined by
Espeholt et al. [8] consisting of a 3 × 3 convolution with stride 1,
max pooling with 3×3 kernels and stride 2 followed by two residual
blocks of two 3 × 3 convolutions with stride 1. This joint block is
repeated three times with 16, 32, and 32 channels, respectively.

Custom ResNet. The architecture for our custom ResNet models
is modelled after Liu et al. [20] and illustrated in detail in Figure 6.

ViT. Our ViT architectures are all based on the reference imple-
mentation at https://github.com/lucidrains/vit-pytorch/blob/main/
vit_pytorch/vit.py. For all models, we use no dropout, and the fol-
lowing configurations are used across the considered ViT visual
encoders:

Model name Patch size Num layers Width MLP dim Num heads

ViT Tiny 16 12 192 768 3
Custom ViT 16 4 512 512 12

Table 6: Configurations of end-to-end ViT models.

The ViT Tiny architecture follows the suggested architecture
of Steiner et al. [33]. In contrast, both custom ViT for 128 × 128
and 256 × 256 have notably fewer layers, wider dimensions of
the attention layers and no increase of dimensions in the MLP
projections. In our experiments, we found that such an architecture
resulted in better online evaluation performance in CS:GO and
Minecraft Dungeons.

Image augmentations. If image augmentations are applied during
training, we randomly augment images after the down-scaling
process. We implement all augmentations with the torchvision
library and randomly sample augmentations during training. We
apply the following augmentations as described by Baker et al. [1]:

• Change colour hue by a random factor between -0.2 and 0.2
• Change colour saturation with a random factor between 0.8
and 1.2

• Change brightness with a random factor between 0.8 and 1.2
• Change colour contrast with a random factor between 0.8
and 1.2

• Randomly rotate the image between -2 and 2 degrees
• Scale the image with a random factor between 0.98 and 1.02
in each dimension

• Apply a random shear to the image between -2 and 2 degrees
• Randomly translate the image between -2 and 2 pixels in
both the x- and y-direction

A.2 Pre-Trained Visual Encoders
In this section, we will detail the sources for all pre-trained visual
encoders considered in our evaluation.

OpenAI CLIP. For the visual encoders of OpenAI’s CLIP mod-
els [27], we use the official interface at https://github.com/openai/
CLIP. We use the following models from this repository: "RN50"
(ResNet 50), "ViT-B/16", and "ViT-L/14". In preliminary experiments,
we found the available larger ResNet models to provide no signifi-
cant improvements in online evaluation performance and the ViT
model with a larger patch size of 32 to perform worse than the
chosen ViT models with patch sizes of 16 and 14.

DINOv2. For the DINOv2 pre-trained visual encoders [23], we
use the official interface at https://github.com/facebookresearch/
dinov2. Due to the computational cost, we do not evaluate the
non-distilled ViT-G/14 checkpoint with 1.1 billion parameters.

FocalNet. For the FocalNet pre-trained visual encoders [40], we
used the Hugging Face timm library (https://huggingface.co/docs/
timm/index) to load the pre-trained models for its ease of use. We
use the FocalNet models pre-trained on ImageNet-22K classification
with 4 focal layers: "focalnet_large_fl4", "focalnet_xlarge_fl4", and
"focalnet_huge_fl4".

Stable Diffusion. For the pre-trained stable diffusion 2.1 VAE
encoder, we use the Hugging Face checkpoint of the model available
at https://huggingface.co/stabilityai/sdxl-vae. This model can be
accessed with the diffusers library. In contrast to other encoders,
the VAE outputs a Gaussian distribution of embeddings rather than
an individual embedding for a given image. We use the mode of
the distribution of a given image as its embedding since (1) we
want to keep the embeddings of the frozen encoder for a given
image deterministic, and (2) we find the standard deviation to be
neglectable for most inputs.

B DETAILS FOR VIDEO GAMES
Below, we provide more details for each video game we evaluate in,
including details about the task, action space, dataset, and online
evaluations.

B.1 Minecraft
Minecraft is a game that lets players create and explore a world
made of breakable cubes. Players can gather resources, craft items
and fight enemies in this open-world sandbox game. Minecraft is
also a useful platform for AI research, where different learning algo-
rithms can be tested and compared [15]. We use the MineRL [1, 11]
environment, which connects Minecraft with Python and allows us
to control the agents and the environment. We use MineRL version
1.0.2, which has been used for large-scale imitation learning exper-
iments before [1], and which offers simpler mouse and keyboard
input than previous MineRL versions [11].

Action space. In Minecraft, agents have two continuous actions
corresponding to the x- and y-movement of the mouse to control
the camera, and eight binary buttons. The buttons control the move-
ment in four directions (forward, backward, rotate left, rotate right),
interaction with items or objects, attacking (also used to destroy
blocks needed to harvest wood), sprinting, and jumping.
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Figure 6: Illustration of the architecture of our custom ResNet visual encoders for 128 × 128 and 256 × 256 images.

Dataset.We use the Minecraft dataset released with the OpenAI
VPTmodel [1] to select demonstrations of tree chopping.We choose
the 6.13 version of the dataset and filter it to 40 minutes of human
demonstrations that start from a fresh world and chop a tree within
1 minute. We also remove any erroneous files that remain after the
filtering. The demonstrations include the image pixels seen by the
human player at 640 × 360 resolution and the keyboard and mouse
state at the same time, recorded at 20Hz. We also run the models at
20Hz.

Online evaluation. To evaluate our BC models, we use the
“Treechop" task; after spawning to a new, randomly generatedworld,
the player has to chop a single log of a tree within 1 minute. This
is the first step to craft many of the items in Minecraft, and has
been previously used to benchmark reinforcement learning algo-
rithms [11]. See Figure 2b for a screenshot of the starting state. The
agent observes the shown image pixels in first-person perspective,
can move the player around and attack to chop trees. For reporting
the performance of trained models, we rollout each model for 100
episodes with the same world seeds, and record the number of trees
the player chopped. If the player chopped at least one tree within
the first minute, the episode is counted as a success, otherwise it is
counted as a failure (the timeout is set to 1 minute).

B.2 Counter-Strike: Global Offensive
CS:GO is a first-person shooter game designed for competitive, five
versus five games. The core skill of the game is accurate aiming and
handling the weapon recoil/sway as the weapon is fired. Previous
work has used CS:GO as a benchmark to train and test behavioural
cloning models [25], with best models able to outperform easier
bots [26]. We incorporate experiments using CS:GO, as it offers
visuals more similar to the real-world images that most pre-trained
visual encoders were trained on, in contrast to our primary evalua-
tion in Minecraft Dungeons and Minecraft (see Figure 2c).

Action space. We represent the mouse movement in x- and
y-direction as two continuous values, and the left mouse click as a
binary button.

Dataset. Following Pearce and Zhu [26], we use the “Clean aim
train" dataset and setup. The controlled player is placed in the
middle of an arena, and random enemies are spawned around them
who try to reach the player. The player can not move; they can
only aim and shoot (Figure 2c). The dataset contains 45 minutes of
expert-human gameplay from one player, recorded at 16Hz.

Online evaluation. To evaluate models, we run each model
for three rollouts of five minutes each in the “Clean aim train"
environment at 16Hz, and report the average and standard deviation
of the kills-per-minute.

B.3 Minecraft Dungeons
Minecraft Dungeons is an action-adventure role-playing video
gamewith isometric camera view centered on the player. The player
controls the movement and actions (including dodge roll, attack,
use health potion, use items) of a single character which is kept
in the center of the video frame (as seen in Figure 2a). The player
has to complete diverse levels by following and completing several
objectives. In our evaluation, we focus on the “Arch Haven” level of
Minecraft Dungeons which contains fighting against several types
of enemies and navigation across visually diverse terrain.

Action space. Agents have access to all effective controls in
Minecraft Dungeons, including the x- and y-positions of both joy-
sticks as four continuous values in the range [−1, 1], the right
trigger position (for shooting the bow), and ten buttons as binary
actions. The most frequently used buttons during recordings con-
trol sword attacks, bow shooting, healing potions, and forward
dodging.

Dataset. Before data collection, we pre-registered this studywith
our Institutional Review Board (IRB) who advised on the drafting
of our participant instructions to ensure informed consent. After
their approval, four players4 played the “Arch Haven” level, and
game frames at 1280 × 720 resolution, actions (joystick positions
and button presses on a controller), and character position within
the level were captured. The dataset includes a total of 139 recorded
trajectories with more than eight hours of gameplay at 30Hz. Indi-
vidual demonstrations vary between 160 and 380 seconds which
corresponds to 4,800 and 11,400 recorded actions, respectively. We
use 80% of the data for training and reserve 20% for validation.
Each player was instructed to complete the level using a fixed char-
acter equipped with only the starting equipment of a sword and
bow, and most players followed the immediate path towards level
completion.

Online evaluation. To evaluate the quality of trained BC poli-
cies, we rollout the policy in the game with actions being queried
at 10Hz (see Section E for details). These actions are then taken in
the game using Xbox controller emulation software. Each rollout
spawns the agent in the beginning of the “Arch Haven” level and
queries actions until five minutes passed (3,000 actions) or the agent
dies four times resulting in the level being failed. We run 20 rollouts
per trained agent and report the progression throughout the level
(Section D).

C TRAINING LOSS CURVES
In this section, we learning curves for the training loss of all models
across Minecraft Dungeons and Minecraft.

4120 recordings were collected by one player with the remaining 19 recordings being
roughly evenly split across the other three players.



Minecraft. Figure 7a shows the training loss of end-to-end and
pre-trained visual encoders in Minecraft. We find that the training
loss for all end-to-end and pre-trained visual encoders in Minecraft
plateaus after less than 50,000 training steps and all encoders appear
to converge to a similar training loss. This might indicate that com-
parably short training might be sufficient given the small dataset in
Minecraft, but we have observed that online rollout performance
can increase even after training loss stagnates. Furthermore, this
indicates that training loss is a poor indicator of online performance
in Minecraft given we observed significant differences in online
performance as seen in Table 3.

Counter-Strike: Global Offensive. Figure 7b shows the training
loss for all models in CS:GO. In contrast to Minecraft, we can see
that the training loss improves all throughout training for all trained
models, indicating that the training task in CS:GO might be harder
to learn compared to Minecraft. This is somewhat surprising given
the comparable amount of demonstrations and lower dimensional
action space of CS:GO compared to Minecraft. As expected, we
can see that visual encoders trained end-to-end with image aug-
mentations generally have a larger training loss despite improving
online performance in most cases as seen in Table 3. Furthermore,
we observe that the Impala ResNet models exhibit comparably high
dispersion across three seeds, leading to large shading and stag-
nating training loss early in training. We hypothesise that this
occurs due to the very large embeddings of the Impala encoders
that make training a BC policy challenging. However, while the
large dispersion across runs is also observed for the online rollout
performance of Impala ResNet, in aggregate, we observe strong
online performance of the Impala ResNet models in CS:GO (Table 3)
despite the high training loss. Among pre-trained encoders, we find
most models to converge to similar training loss values that are
also comparable to end-to-end trained models.

Minecraft Dungeons. Figure 7c shows the training loss for all
models with end-to-end and pre-trained visual encoders inMinecraft
Dungeons. Generally, we observe similar trends for Minecraft Dun-
geons as we observe for CS:GO with slowly converging training
losses, image augmentations leading to higher training losses for
end-to-end trained models, and the Impala ResNet models exhibit-
ing high training loss that stagnates early in training and high
dispersion across random seeds. Similarly, we observe that the
training loss for the ResNet with 256 × 256 images trained without
image augmentations stagnates early in training and exhibits high
dispersion across seeds. Among the models with pre-trained visual
encoders, the training loss appears comparable for most models.
Only the reconstruction-based stable diffusion encoder and the
CLIP ResNet50 models stand out with the lowest and highest train-
ing loss throughout training, respectively. Comparing the training
loss of models with end-to-end and pre-trained visual encoders
further shows that end-to-end encoders trained without image aug-
mentation are capable of reaching lower losses. We hypothesise that
this occurs since the end-to-end trained encoders are specialised to
perform well on the exact training data the loss is computed over.
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(c) Minecraft Dungeons

Figure 7: Training loss in log-scale for BC agents in Minecraft (top), Counter-Strike: Global Offensive (middle), and Minecraft
Dungeons (bottom) with end-to-end trained (left) and pre-trained (right) visual encoders. We visualise the mean and standard
deviation across three seeds after computing window-averaged training losses at twenty regular intervals throughout training.



D MINECRAFT DUNGEONS ARCH HAVEN
LEVEL

To measure progress for the online evaluation in Minecraft Dun-
geons, we define boundaries of zones which determine the pro-
gression throughout the "Arch Haven" level we evaluate in. These
zones and a heatmap showing the visited locations of the human
demonstrations used for training are visualised in Figure 8. The
heatmap also shows the path followed by most demonstrations
towards completion of the level.

E MINECRAFT DUNGEONS ACTION
FREQUENCY IN ONLINE EVALUATION

The visual encoders used in our evaluation have vastly different
model sizes (see Table 1) and, thus, notably different computational
cost at inference time. This is particularly challenging during online
evaluation in Minecraft Dungeons, since there exists no program-
matic interface to pause or slow down the game like in Minecraft
and CS:GO. We attempt to take actions during evaluation at 10Hz
to match the action selection frequency of the (processed) training
data, in particular due to the recurrent architecture of our policy.
However, we are unable to perfectly match this frequency for all
visual encoders on the hardware used to conduct the evaluation
(see Section F for specifications on the hardware used during train-
ing and online evaluation) despite using a more powerful GPU for
pre-trained visual encoders due to their comparably large size.

Table 7 lists the average action frequencies of all models during
online evaluation in Minecraft Dungeons across all runs conducted
as part of our evaluation. We note that most end-to-end trained
visual encoders enable fast inference achieving close to 10 Hz action
frequency. The ViT Tiny model is the slowest model, likely due to
its deeper 12 layers in comparison to the other end-to-end trained
ViT models with 4 layers as shown in Table 6, but we are still able
to take actions at more than 8.5Hz. For pre-trained visual encoders,
we see comparably fast action frequencies for all CLIP and most
DINOv2 models as. The largest DINOv2 and stable diffusion VAE
have notably slower action frequencies, but the FocalNet models
induced the highest inference cost. However, we highlight that we
did not observe behaviour during online evaluation which would
suggest that these models were significantly inhibited due to this
discrepancy.

F TRAINING AND EVALUATION HARDWARE
All training runs have been completed using Azure compute using
a mix of Nvidia 16GB V100s, 32GB V100s and A6000 GPUs.

Minecraft Dungeons. For Minecraft Dungeons, end-to-end train-
ing runs for Impala ResNet, custom ResNets (for 128 × 128 and
256 × 256 images) and custom ViT for 128 × 128 images without
image augmentation have been done on four 16GB V100s for each
run. Training runs for the same models with image augmentation
have been run on one A6000 GPU (with 48GB of VRAM) for each
run. Training the ViT Tiny and ViT model for 256 × 256 images
needed more VRAMs, so these were trained on eight 16GB V100s
for each run.

For training runs using pre-trained visual encoders, we computed
the embeddings of all images in the Minecraft Dungeons dataset

Table 7: Average action frequencies during online evaluation
in Minecraft Dungeons across 60 runs per model (20 for each
seed).

Model name Action freq. (Hz)

Impala ResNet 9.83
ResNet 128 9.90
ResNet 256 9.81
ViT Tiny 8.63
ViT 128 9.90
ViT 256 9.46

Impala ResNet +Aug 9.78
ResNet 128 +Aug 9.67
ResNet 256 +Aug 9.62
ViT Tiny +Aug 8.77
ViT 128 +Aug 9.69
ViT 256 +Aug 9.63

CLIP ResNet50 9.85
CLIP ViT-B/16 9.84
CLIP ViT-L/14 9.71

DINOv2 ViT-S/14 9.81
DINOv2 ViT-B/14 9.81
DINOv2 ViT-L/14 7.93

FocalNet Large 8.00
FocalNet XLarge 6.13
FocalNet Huge 6.91

Stable Diffusion VAE 8.77

prior to training for more efficient training using A6000 GPUs.
After, we were able to train each model using pre-trained visual
encoders with four 16GB V100s for a single run.

To train models on half or a quarter of the training data for the
third set of experiments, we used four 16GB V100s for a single run
of any configuration.

Since the Minecraft Dungeons game is unable to run on Linux
servers, we used Azure virtual machines running Windows 10 for
the online evaluation. For evaluation of end-to-end trained models,
we use a machine with two M60 GPUs, 24 CPU cores and 224GB of
RAM. However, we noticed that this configuration was insufficient
to evaluate models with larger pre-trained visual encoders at the
desired 10Hz. Therefore, we used a configuration with one A10
GPU, 18 CPU cores and 220GB of RAM which was able to run the
game and rollout the trained policy close to the desired 10Hz for
all models.

Minecraft. The training hardware is similar to Minecraft Dun-
geons, with A6000s used for embedding/training with pretrained
models, and 32GB V100s used to train the end-to-end models. Train-
ing pretrainedmodels took considerably less time, withmostmodels
training within hours on a single A6000 GPU.

Minecraft evaluation was performed on remote Linux machines
with A6000s, as MineRL is able to run on headless machines with
virtual X buffers (xvfb). Each GPU had maximum of three rollouts
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Figure 8: (a) A visualisation of the boundaries of each progression zone in the "Arch Haven" level in Minecraft Dungeons used
for online evaluations. (b) A heatmap visualising the visited locations of the human dataset of demonstrations within the "Arch
Haven" level.

happening concurrently, with each rollout running at 3-9 frames
per second, depending on the model size.

Counter-Strike: Global Offensive. Training was performed on the
same hardware as with Minecraft experiments. For evaluation, we
ran CS:GO on local Windows machines, equipped with either a
GTX 1650Ti or a GTX 980 GPU, as per instructions in the original
CS:GO paper [26]. We ran the game at lower speeds (and adjusted
action rate accordingly) to allow models to predict actions in time
to match the 16Hz action frequency.

G GRAD-CAM VISUALISATIONS
To generate Grad-CAM [31] visualisations, we use the library avail-
able at https://github.com/jacobgil/pytorch-grad-cam. We use all

actions of the policy trained on the embeddings of each visual en-
coder as the target concept to analyse, and visualise the average
Grad-CAM plot across all actions. Following https://github.com/
jacobgil/pytorch-grad-cam#chosing-the-target-layer, we use the
activations of these layers within the visual encoders to compute
visualisations for:

• ResNet: Activations across the last ResNet block
• ViT: Activations across the layer normalisation before the
last attention block

• FocalNet: Activations across the layer normalisation before
the last focal modulation block

• SD VAE: Activations across the last ResNet block within the
mid-block of the encoder

https://github.com/jacobgil/pytorch-grad-cam
https://github.com/jacobgil/pytorch-grad-cam#chosing-the-target-layer
https://github.com/jacobgil/pytorch-grad-cam#chosing-the-target-layer
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Figure 9: Grad-Cam visualisations for all encoders (seed 0) in Minecraft Dungeons with policy action logits serving as the targets.
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Figure 10: Grad-Cam visualisations for all encoders (seed 0) in Minecraft Dungeons with policy action logits serving as the targets.
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Figure 11: Grad-Cam visualisations for all encoders (seed 0) in Minecraft Dungeons with policy action logits serving as the targets.
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Figure 12: Grad-Cam visualisations for all encoders (seed 0) in Minecraft with policy action logits serving as the targets.
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Figure 13: Grad-Cam visualisations for all encoders (seed 0) in Minecraft with policy action logits serving as the targets.
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Figure 14: Grad-Cam visualisations for all encoders (seed 0) in Minecraft with policy action logits serving as the targets.
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Figure 15: Grad-Cam visualisations for all encoders (seed 0) in Counter Strike with policy action logits serving as the targets.
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Figure 16: Grad-Cam visualisations for all encoders (seed 0) in Counter Strike with policy action logits serving as the targets.
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Figure 17: Grad-Cam visualisations for all encoders (seed 0) in Counter Strike with policy action logits serving as the targets.


