
Published as a conference paper at ICLR 2025

NEURAL ODE TRANSFORMERS: ANALYZING INTER-
NAL DYNAMICS AND ADAPTIVE FINE-TUNING

Anh Tong
Korea University
anhtong12@korea.ac.kr

Thanh Nguyen-Tang
Johns Hopkins University
nguyent@cs.jhu.edu

Dongeun Lee
Texas A&M University-Commerce
dongeun.lee@tamuc.edu

Duc Nguyen
Qualcomm AI Research∗
ducanguy@qti.qualcomm.com

Toan Tran
Qualcomm AI Research∗
ttran@qti.qualcomm.com

David Hall
Stanford
dlwh@stanford.edu

Cheongwoong Kang
KAIST
cw.kang@kaist.ac.kr

Jaesik Choi
KAIST, INEEJI
jaesik.choi@kaist.ac.kr

ABSTRACT

Recent advancements in large language models (LLMs) based on transformer ar-
chitectures have sparked significant interest in understanding their inner workings.
In this paper, we introduce a novel approach to modeling transformer architec-
tures using highly flexible non-autonomous neural ordinary differential equations
(ODEs). Our proposed model parameterizes all weights of attention and feed-
forward blocks through neural networks, expressing these weights as functions
of a continuous layer index. Through spectral analysis of the model’s dynam-
ics, we uncover an increase in eigenvalue magnitude that challenges the weight-
sharing assumption prevalent in existing theoretical studies. We also leverage
the Lyapunov exponent to examine token-level sensitivity, enhancing model inter-
pretability. Our neural ODE transformer demonstrates performance comparable
to or better than vanilla transformers across various configurations and datasets,
while offering flexible fine-tuning capabilities that can adapt to different architec-
tural constraints.

1 INTRODUCTION

The recent advancements in large language models (LLMs) based on transformer architec-
tures (Vaswani et al., 2017; Brown et al., 2020) have impressive empirical performance in various
tasks. These transformer models with millions to billions of parameters, pose a formidable chal-
lenge in comprehending the intricate processes transpiring within their layers. Initial efforts have
been undertaken to unravel mechanistic interpretability (Elhage et al., 2021) and adopt a mathemati-
cal approach (Geshkovski et al., 2023a;b) to better understand the inner workings of these complex
models.

As the field of LLMs continues to evolve and grow, it is important to develop a fundamental approach
to understanding such complex models. This can provide stepping stones for improving trustwor-
thiness, interpretability, and alignment in LLMs (Shevlane et al., 2023). To this aim, there are
multifaceted approaches combining insights from mechanistic interpretability, mathematical analy-
sis, and other complementary methods. Rigorous approaches from Geshkovski et al. (2023a;b) open

∗Qualcomm Vietnam Company Limited

1

Published as a conference paper at ICLR 2025

interesting directions, providing theoretical understanding of transformers using neural ordinary dif-
ferential equations (neural ODEs) (Chen et al., 2018). In practical applications, neural ODEs have
been used in models proposed by Lu et al. (2019); Zhong et al. (2022); Dutta et al. (2021). While
Geshkovski et al. (2023a;b) suggest that the model outputs collapse to a small number of points at
infinite depth, Zhong et al. (2022); Dutta et al. (2021) demonstrate the use cases of neural ODE-
based transformers. However, the main limitation in this line of work is that they often rely on
shared-weight assumptions, which leads to a discrepancy between theoretical results and practical
observations. Theoretically, the clustering behavior of fixed points in these studies (Geshkovski
et al., 2023a;b) does not align well with the outputs of autoregressive transformers, which flexibly
predict next tokens rather than forming clusters. Practically, the potential of differential equation-
like adaptive computation is often overlooked, as evidenced by the limited exploration of neural
ODE versions of transformers with time-dependent vector fields, as opposed to weight-sharing ap-
proaches.

In this paper, we introduce a novel approach to modeling transformer architectures using highly flex-
ible non-autonomous neural ODEs1. Apart from existing methodologies that seek weight-sharing,
our proposed model generates all the weights of attention and feed-forward blocks through hyper-
neural networks. Specifically, we consider weights as functions of a continuous layer index (or
time). We conduct a comprehensive exploration and analysis of its dynamics through the lens of dy-
namical systems. Our primary analytical tool is spectral analysis that examines the components of
our models including attention blocks and feed-forward blocks. Our analysis reveals some important
properties of our models. The observed spectral dynamics tend to exhibit increasing magnitudes of
eigenvalues. Through simulation, we demonstrate that this phenomenon inhibits the emergence of
clusters, contrasting with the results reported in Geshkovski et al. (2023a). In other aspects, we use
the Lyapunov exponent to study token-level sensitivity, which can be a potential tool for explainable
machine learning methods (Gunning et al., 2019).

Furthermore, we present a novel approach that leverages the adaptive computation of differential
equations to create a versatile pretrained model. Our model exhibits a unique characteristic: the abil-
ity to be fine-tuned under various architectures derived from the initial pretrained structure. When
presented with novel datasets, our model dynamically adjusts the step size of its ODE solvers. This
adaptation effectively transform the model’s architecture, allowing it to function as a vanilla trans-
former. Consequently, this enables the application of a wide range of fine-tuning techniques such
as LoRA (Hu et al., 2021). To the best of our knowledge, this represents the first instance of a
pretrained model capable of being fine-tuned across diverse architectural configurations.

The contributions of this paper are threefold. First, we introduce neural ODE transformers having
comparable performance with GPT in different settings and data sets. Second, we offer a compre-
hensive analysis of the proposed models, unraveling their intricate internal dynamics and a tech-
nique to assess token-level sensitivity, enhancing our ability to interpret model behaviors. Lastly,
we show that our model provides flexible computation fine-tune while maintaining a competitive
performance.

2 REVISITING TRANSFORMER

Transformers proposed by Vaswani et al. (2017) consist of key components, including self-attention
and feed-forward neural network.

Attention mechanism Consider a sequence with n tokens, X1, . . . , Xn in Rd, and represent it as
a matrix X ∈ Rn×d. Let us define three linear projections Q,K, V ∈ Rdattn×d for query, key, and
value, respectively. The self-attention operation is expressed as follows:

Attn(Q,K, V ;X) = softmax
(
XQ⊤KX⊤

√
d

)
(XV ⊤). (1)

In essence, the self-attention mechanism acts as an operator determining where to focus attention
within the entire sequence. The softmax function introduces emphasis, making it more likely that
one token will be highlighted over others.

1Non-autonomous ODEs have time-dependent vector fields.

2

Published as a conference paper at ICLR 2025

Self-attention is further extended into multi-head attention. In this configuration, multiple indepen-
dent self-attention outputs, referred to as heads, are concatenated and reprojected, allowing for the
introduction of residual connections. The formal definition is given by:

MultiHead :=Concat(head1, . . . , headH)O,

where headi :=Attn(Qi,Ki, Vi;X), i = 1, . . . ,H.

Here, H is the number of heads and O ∈ Rdconcat×d is a projection matrix.

Feed-forward block The second crucial component is the feed-forward layer, modeled as a two-
layer multilayer perceptron with a nonlinear activation function, expressed as:

GeLU(XW⊤
1 + b1)W

⊤
2 + b2,

where W1 ∈ Rdmlp×d, W2 ∈ Rd×dmlp , b1 ∈ Rdmlp , and b2 ∈ Rd. The feed-forward layer, a singular
component in the transformer, introduces nonlinearity in the computational flow, enhancing the
model ability to capture complex patterns and relationships.

3 RELATED WORK

The work in Lu et al. (2019) is pioneering in establishing the link between neural ODEs and trans-
formers. They recognize that the residual connections in transformer blocks can be interpreted as a
Lie-Trotter splitting scheme akin to ODE solvers. Building on this insight, Lu et al. (2019) proposes
a novel architecture called MacaronNet, motivated by an enhanced numerical solver. In a parallel
vein, Li et al. (2021) presents a new variant of transformers inspired by higher-order solvers to
address machine translation tasks. Our approach differs from these works in a key aspect: while
they were inspired by ODE solvers to develop novel transformer construction methods, we focus
on directly formulating differential equations. Consequently, our model enjoys all the properties of
neural ODEs, such as adaptive computation, and is compatible with any ODE solver.

The approach outlined in Dutta et al. (2021) aligns with certain aspects of our proposed model.
Specifically, this approach involves introducing time-evolving attention layers and feed-forward lay-
ers. In the context of attention mechanisms, Dutta et al. (2021) suggests concatenating inputs and
layer embeddings. However, it is worth noting that this approach may need more flexibility, as there
persists a shared component in the computation of attention weights. This shared component relies
solely on input and remains independent of layer embeddings.

In another investigation, Zhong et al. (2022) explores various configurations of weight-sharing
strategies when training transformers in a neural ODE style. The key finding indicates that as the
degree of weight-sharing between layers increases, the model’s performance tends to degrade. Our
model overcomes this limitation by using time-dependent weights, resulting in improved perfor-
mance.

A body of research has emerged, focusing on constructing models and laying down theoretical
frameworks for transformers built upon neural ODEs. In works such as Geshkovski et al. (2023a;b),
transformers are conceptualized as particle systems, and the geometric behaviors of simplified equiv-
alents based on neural ODEs are analyzed. The predominant findings in these studies highlight
the tendency of systems to converge to clusters as they approach their limits. Interestingly, Sink-
former (Sander et al., 2022) also uses a similar theoretical approach but aims to design a new vari-
ant of transformers. However, we note that the weight-sharing assumption of Geshkovski et al.
(2023a;b) is rather restrictive. Our work demonstrates that learned weight dynamics prevent mod-
els from suffering clustering effects. This suggests to reconsider alternative assumptions for such
studies.

Research has been devoted to deep equilibrium models, as demonstrated by Bai et al. (2019), show-
casing a close relationship with neural ODEs. This technique has been effectively employed in
training transformer-like models with unspecified depth during training. While similar in some re-
spects, our model (and neural ODEs in general) allows for adaptive fine-tuning with flexible ODE
solver step sizes.

3

Published as a conference paper at ICLR 2025

Q VK

Temporal Embedding

Linear

Linear

+

GeLU

(a)

MLP Proj MatMulTemporal
Embedding

(b)

Figure 1: (a) The vector field of DIFFEQFORMER with attention block and feed-forward block
constructed from time-dependent weights. (b) The architecture of time-dependent weights.

4 TIME-DEPENDENT WEIGHT TRANSFORMER

This section introduces our proposed transformers as differential equations, called DIFFEQFORMER.
In the beginning, we formulate the transformer within the context of ODEs. We then provide the
approach for representing time-dependent weights in our models.

4.1 TRANSFORMERS THROUGH THE LENS OF DIFFERENTIAL EQUATIONS

Consider a sequence X1, . . . , Xn with Xi ∈ Rd. Let a dynamical system evolve the given sequence
under the following differential equation:

ẋi(t) =f(xi(t), x[n](t), t) + g(xi(t), t), t ∈ [0, T], (2)

xi(0) =Xi, i = 1, . . . , n. (3)

Here, ẋi(t) =
dxi

dt
and x[n](t) denotes [x1(t), . . . , xn(t)]. This formulation was first presented in Lu

et al. (2019). Based on a numerical solver, they proposed the MacaronNet architecture with discrete
layers, in contrast to our approach which uses continuous layers with time-dependent weights (see
Section 4.2 on time-dependent weights).

Here f acts as an attention mechanism, capturing inter-particle interactions. Self-attention facilitates
the transfer of information among particles. In a multi-head setting, each particle receives informa-
tion from H , which is the number of different versions of all particles, and updates itself based on
this information. To express this, we define f as follows:

f(xi(t), x[n](t), t) =

H∑
h=1

1

Li,h

n∑
j=1

exp

(
⟨Qh(t)xi(t),Kh(t)xj(t)⟩√

d

)
Vh(t)xj(t), (4)

where Qh(·),Kh(·), Vh(·) are the mapping from [0, T] to Rdattn×d. Li,h =∑n
j=1 exp

(
⟨Qh(t)xi(t),Kh(t)xj(t)⟩√

d

)
is the normalizing term in the softmax function and

⟨x, y⟩ = x⊤y.

On the other hand, the convection g serves a role as feed-forward blocks having all time-dependent
weights:

g(xi(t), t) = W FF
2 (t)GeLU(W FF

1 (t)xi(t) + b1(t)) + b2(t). (5)

Figure 1a illustrates how to construct the vector field of DIFFEQFORMER.

Remarks The particle system exhibits certain similarities with consensus-based optimization tech-
niques, as explored in previous works (Pinnau et al., 2017; Carrillo et al., 2021), with an initial

4

Published as a conference paper at ICLR 2025

discussion provided in Geshkovski et al. (2023b). Drawing upon this resemblance, it becomes pos-
sible to elucidate specific observations in transformers, revealing that these models implicitly en-
gage in optimization processes (mesa-optimization) over contextual information (Garg et al., 2022;
Von Oswald et al., 2023; von Oswald et al., 2023).

Notably, the work of Elhage et al. (2021) introduces the concept of residual streams: the connec-
tions between input tokens and their corresponding output tokens. In this framework, the role of
attention is to facilitate the communication and information transfer between these residual streams.
Multi-head attention encompasses information from various subspaces, allowing for the merging
and writing of information to residual streams through residual connections. This perspective aligns
with the interpretation of particle systems described in Lu et al. (2019); Geshkovski et al. (2023a;b).

Additionally, placing attention layers and feed-forward layers at the same level was investigated in
prior studies (Peng et al., 2022; Zhong et al., 2022; Dehghani et al., 2023). This approach allows us
to fully conceptualize transformers as neural ODEs with Euler methods, in contrast to the Lie-Trotter
scheme employed in Lu et al. (2019).

4.2 REPRESENTATION OF TIME-DEPENDENT WEIGHTS

We model time-dependent weights for attention components Qh(t), Kh(t), Vh(t), and feed-forward
weights W FF

1 (t), W FF
2 (t), using a time-dependent unit W : R+ → Rdin×dout that embeds the time

information in the Fourier domain, inspired by the existing diffusion model architectures (Song
et al., 2020; Peebles & Xie, 2023). In particular, for any time t ∈ R+,

W (t) = Proj(MLP(Sinusoidal(t))), (6)

where Sinusoidal : R → Rdsinusoidal is used to embed time t into a higher-dimensional space and the
two-layer multilayer perceptron MLP : Rdsinusoidal → Rdemb is used. The MLP’s output will then be
linearly projected and reshaped to match the desire of the weight matrices by using the operator
Proj : Rdemb → Rdin×dout . Figure 1b depicts the architecture of W (t).

Remark The time-dependent weights can be understood as hypernetworks (Ha et al., 2016; Stanley
et al., 2009). However, our approach stems from a distinct motivation, aiming to establish a flexible
method for modeling time-dependent vector fields in differential equations, employing a Fourier
time embedding representation rather than the architecture proposed in Ha et al. (2016). The frame-
work presented by Ha et al. (2016) contains two types of hypernetworks: static and dynamic. Our
approach aligns more closely with the static variant. Conversely, existing work, such as Zhang et al.
(2019); Choromanski et al. (2020), in the realm of neural ODE, attempts to parameterize weights
using differential equations, resembling a form of dynamic hypernetworks. While this paper does
not explore this approach, it is noteworthy that the main challenge lies in considering the state of the
original ODE, which is high-dimensional and could result in computational expense.

5 ANALYZING INTERNAL DYNAMICS OF TRANSFORMERS

In this section, we explore the qualitative aspects and properties of our proposed model, including
its behaviors of attention mechanism and model interpretability. Our analysis presented here is
conducted on the DIFFEQFORMER model trained on the OPENWEBTEXT dataset (refer to Section 6
for the detailed setup).

5.1 ANALYSIS OF ATTENTION MECHANISM

To characterize attention blocks in DIFFEQFORMER, we will use existing tools, including gradient
flows (Geshkovski et al., 2023a;b) and induction heads (Elhage et al., 2021).

Analyzing Query-Key (QK) pair First, we explore the spectral flow of the Query-Key (QK) pair,
Qh(t)

⊤Kh(t). This particular element plays a vital role in determining particle communication and
provides insights into the extent of their interactions.

Figure 2a displays the dynamics of eigenvalues of Qh(t)
⊤Kh(t) in DIFFEQFORMER model. It

exhibits a higher degree of interactions in its last layers, as evidenced by the broader range of

5

Published as a conference paper at ICLR 2025

0 10 20

Layer

80

60

40

20

0

R
ea

l(
)

Head 0

0 10 20

Layer

10

5

0

5

10

15

Head 1

0 10 20

Layer

0

10

20

30
Head 2

0 10 20

Layer

30

20

10

0

10

20
Head 3

(a) Spectral dynamic of QK

0 10 20

Layer
10

5

0

5

10

15

R
ea

l(
)

Head 0

0 10 20

Layer

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0
Head 1

0 10 20

Layer

10

5

0

5

10

15

Head 2

0 10 20

Layer

10

5

0

5

10

15

Head 3

(b) Spectral dynamic of OV

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0 2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

start
end
trajectory

(c)

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0 2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

start
end
trajectory

(d)

0 5 10 15 20
t

0.0

0.2

0.4

f(t
)

(e)

Figure 2: (a-b): Spectral dynamics of QK and OV pairs. (c-d): Trajectory of a sequence consist-
ing of 40 points in 3-dimensional space. (c) Attention-only model with shared weight assump-
tions as described in Geshkovski et al. (2023a): Clusters emerge. (d) Attention-only model with
time-dependent weights of increasing magnitude, inspired by observations from trained DIFFEQ-
FORMER: No clusters occur. (e) Plot of a function in our simulation that mimics the magnitude of
Q(t),K(t), V (t) over time like in trained DIFFEQFORMER.

eigenvalues in these layers. The eigenvalues of Qh(t)
⊤Kh(t) directly affect the variance of

x⊤
i (t)Qh(t)

⊤Kh(t)xj(t). For instance, if x, y ∼ N (0, I), then Var(x⊤Ay) = trace(A⊤A) =∑
i λ

2
i (A) where λi(A) is the i-th eigenvalue of A. A high variance of x⊤

i (t)Qh(t)
⊤Kh(t)xj(t)

indicates that the softmax of [x⊤
i (t)Qh(t)

⊤Kh(t)xj(t)]j=1,...,n tends to approach a one-hot vector.
This results in sharper attention weights, leading to a more distinct exchange between the j-th and
i-th particles.

To gain a deeper understanding, we make a connection with the work of Geshkovski et al. (2023b).
In this study, the authors simplify the model by assuming that Q(t), K(t), and V (t) are all identity
matrices, i.e.,

fβ(xi(t), x[n](t), t) =
1

Lβ

n∑
j=1

exp(β⟨xi(t), xj(t)⟩)xj ,

where Lβ =
∑n

j=1 exp(β⟨xi(t), xj(t)⟩). Here, the parameter β serves as a simplification of
Qh(t)

⊤Kh(t) in equation 4. The study by Geshkovski et al. (2023b) looks into the interaction
energy, and its gradient flows govern the dynamics of fβ (Otto, 2001; Jordan et al., 1998; Ambro-
sio et al., 2005; Villani et al., 2009). Importantly, the parameter β directly influences the speed at
which the interaction energy decreases or increases. Such interactions in DIFFEQFORMER can be
reflected by the eigenvalues of Qh(t)

⊤Kh(t). For example, a wide range of eigenvalues encourage
interactions between particles, as they indicate stronger coupling and information exchange within
the system.

Analyzing Output-Value (OV) pair While Qh(t)
⊤Kh(t) identifies the source and destination

particles of inter-particle communication, the Output-Value (OV) pair represents the component
describing how information of the source particle is merged to the destination particle.

Figure 2b illustrates the spectral dynamics of the OV matrix in DIFFEQFORMER. A significant
number of heads exhibit positive eigenvalues, which are primarily concentrated near the output
layer. It seems to have a correlation with the spectral dynamics of the QK pair.

Consider a communication from a source particle j to a destination particle i. The OV matrix
has eigenvalues {λk}dk=1 and corresponding eigenvectors {vk}dk=1. We can express the states of

6

Published as a conference paper at ICLR 2025

particles i and j at time t as linear combinations of these eigenvectors:

xi(t) =

d∑
k=1

wi
kvk, xj(t) =

d∑
k=1

wj
kvk,

where {wi
k}dk=1 and {wj

k}dk=1 are the respective coefficients. The output of the Euler step for atten-
tion can be interpreted as:

xi(t+∆t) =

d∑
k=1

(λkw
j
k∆t+ wi

k)vk.

Here, we focus on the coefficient λkw
j
k∆t + wi

k. The magnitude of λk determines the influence of
the source particle xj(t) on the output xi(t+∆t). Larger absolute values of λk result in a stronger
influence of the source particle on the destination particle’s next state. The sign of λk decides either
positive or negative influence of source particle with respect to the corresponding eigenvector vj .

Drawing connection to the work of Geshkovski et al. (2023a;b), the authors suggest two simplified
cases: the attractive scenario, where particles exhibit attractions and more likely to follow some
leader particles with V = Id; and the repulsive scenario with V = −Id, where particles repel
each other. We extend this analysis by examining both the sign and magnitude of eigenvalues λk as
shown in Figure 2a and 2b. This means that DIFFEQFORMER shows both attractive and repulsive
behaviors, with attraction being more dominant in some attention heads near the last layers.

In comparison, the approach presented by Elhage et al. (2021) characterizes OV pairs as exhibit-
ing copying behavior when the eigenvalues of the OV pair feature numerous positive values. This
copying behavior conceptually is similar to the attractive scenario in Geshkovski et al. (2023a;b).
In mathematical terms, V = Id means that all eigenvalues are positive and equal to 1. If copying
behaviors occur frequently, it indicates a selective focus on specific particles, resembling a situation
where only a subset of major particles is highlighted. Note that copying behavior is characterized as
a component of induction heads, recognized as a key observation associated with in-context learning
performance in Elhage et al. (2021); Olsson et al. (2022).

Under the interpretation of Elhage et al. (2021), induction heads perform two key operations: (i) de-
tecting matching patterns through QK pair and (ii) copying values when matches are found through
OV pairs. The “matching” operation manifests through attention scores, where positive eigenvalues
of QK pair indicate strong attention paths between similar tokens. The “copying” operation is facil-
itated by the OV pair, where positive eigenvalues suggest effective information propagation. Given
our observations in Figure 2a and 2b of both positive eigenvalues in QK pair (supporting pattern
matching) and positive eigenvalues in the OV pair (enabling copying), it is highly probable that
induction heads occur in the last layer of DIFFEQFORMER.

Clustering behavior in DIFFEQFORMER Trained DIFFEQFORMER exhibits a distinct dynamic
of QK and OV pairs characterized by increasing magnitudes of eigenvalues over time, with a no-
table peak observed near the final layers. This dynamic contrasts with the assumptions put forth
by Geshkovski et al. (2023a), who posited the emergence of clustering behavior at limit. Given this
unique dynamic, it is crucial to investigate potential clustering behavior in our DIFFEQFORMER. To
this end, we simulate ODE trajectories for attention-only model with the simplified dynamic based
on the trained DIFFEQFORMER (refer to Appendix C.8 for details). As illustrated in Figure 2d,
our findings indicate an absence of emergent clusters for a case of time-dependent weights. This
contrasts with the cluster emergence observed in the weight-sharing case, shown in Figure 2c. This
outcome aligns with the practical considerations of autoregressive language modeling tasks with
next-token prediction, where clustered outputs would be counterintuitive. This shows that a discrep-
ancy between the theoretical assumptions in existing studies and the empirical properties exhibited
by our DIFFEQFORMER models. Therefore, it is necessary to have future rigorous investigation into
this gap.

Remark Due to the continuity of weights within our model, the dynamics of eigenvalues exhibit the
continuity property, as discussed in previous works (Wilkinson, 1965; Hoffman & Wielandt, 2003).
Consequently, a smooth transition of spectral information between layers can be observed in our
analysis of QK and OV pairs. In contrast, the spectral flow in the case of vanilla transformers do
not exhibit clear patterns or behaviors in their dynamics, making it challenging to identify induction
heads (see Appendix E).

7

Published as a conference paper at ICLR 2025

(a) (b)

Figure 3: Lyapunov exponent values represent the sensitivity of previous words to the next word.
Higher values correspond to more intense highlighting in red. (a) The next word is its. (b) The next
word is match.

5.2 SENSITIVITY ANALYSIS WITH LYAPUNOV EXPONENTS

Next, we utilize the Lyapunov exponent to assess the sensitivity of the inputs of DIFFEQFORMER.
Lyapunov exponents can provide valuable insights into the behavior of transformer models by quan-
tifying how small changes in the input may impact the outputs. Previous studies have utilized
Lyapunov exponents for understanding neural networks, primarily focusing on recurrent neural
networks (RNNs) (Vogt et al., 2022; Storm et al., 2023; Engelken et al., 2023; Engelken, 2023).
In another example, Gilpin (2021) demonstrates how Lyapunov exponents can enhance the inter-
pretability of time series data (see Appendix B for a brief review).

The main challenge in extracting Lyapunov exponents for the entire DIFFEQFORMER system stems
from the high dimensionality of its states. Calculating Lyapunov exponents requires computing the
spectrum or QR decomposition of Jacobian matrices, which can be computationally infeasible for
DIFFEQFORMER2.

In this context, our objective is to investigate the token-level sensitivity of transformers. Specifically,
we aim to understand how the changes of the i-th token in a given input sentence influence the j-th
token of its corresponding output. To achieve this, we intend to monitor the evolution of the tangent
vectors associated with the i-th input particle and j-th output particle, similar to the formulation
in equation 8, using the following ODE:

Ẏij(t) = Jij(t)Yij(t), (7)

with Yij(0) = Id and Jij(t) = ∂xif(xj(t), x[n](t)) + ∂xig(xj(t)) is the Jacobian of the vector
field in equation 4. The Jacobian Jij comprises two components: the attention information and
the change between input and output. Consequently, employing Lyapunov exponents can provide a
more principled approach to understanding the behavior of transformer models compared to solely
using attention matrices, which have limitations as discussed by Jain & Wallace (2019) (see further
discussion in Appendix B).

Our approach may share similarities with conditional Lyapunov exponents, which analyze the sta-
bility of specific subsystems within a larger system (Pecora et al., 1997). Like these exponents, our
sensitivity values provide insights into the stability of specific tokens within the transformer model.

Figure 3 showcases how our approach quantifies sensitivity for predicting the next words using
Lyapunov exponents. In these examples, the obtained Lyapunov exponents can explain the case
of possessive pronouns. For instance, in the BIGBANG example, the next word “its” corresponds
to “BIGBANG”, which is highlighted by the Lyapunov exponent. Similarly, in the Alpha Go arti-
cle example, the obtained Lyapunov exponent can highlight the next word “match” and the order
preposition “after.” This analysis offers potential avenues for interpreting the inner workings of
transformers, building upon prior efforts in attention interpretability (Jain & Wallace, 2019; Wiegr-
effe & Pinter, 2019; Chefer et al., 2021; Ali et al., 2022). Further results and examples of this
analysis, including comparisons with attention-based explanations can be found in Appendix F.

6 EXPERIMENTAL RESULTS

This section presents an empirical comparison of our proposed model DIFFEQFORMER and vari-
ous baseline models in the context of language modeling tasks. The implementation of our model

2For example, consider a model taking 1000 tokens with an embedding dimension of 768 as input; the
dimension of its state would be 768, 000.

8

Published as a conference paper at ICLR 2025

WIKITEXT103

0 2000 4000 6000 8000 10000
Step

20

25

30

35

40

Va
l p

er
pl

ex
ity

GPT
Ours

(a) small
0 2000 4000 6000 8000 10000

Step
20

25

30

35

40

Va
l p

er
pl

ex
ity

GPT
Ours

(b) medium

OPENWEBTEXT

0 5000 10000 15000 20000
Step

20

25

30

35

40

Va
l p

er
pl

ex
ity

GPT
Ours

(c) small
0 10000 20000 30000 40000

Step

20

25

30

35

40

Va
l p

er
pl

ex
ity

GPT
Ours

(d) medium
0 10000 20000 30000 40000

Step

15

20

25

30

35

40

Va
l p

er
pl

ex
ity

GPT
Ours

(e) large

Figure 4: Validation Perplexity of DIFFEQFORMER in comparison with GPT models. (a,b) Results
on WIKITEXT103 dataset in two architecture settings. (c, d, e) Results on OPENWEBTEXT dataset
on three architecture settings.

and baseline models is built on JAX (Bradbury et al., 2018), utilizing an ecosystem that includes
Equinox (Kidger & Garcia, 2021), Haliax, and the Levanter framework (Hall et al., 2023). Our
implementation is available at https://github.com/SDML-KU/qkvflow.

6.1 LANGUAGE MODELING

We evaluate our model DIFFEQFORMER, in comparison to baselines on both OPENWEB-
TEXT (Gokaslan et al., 2019) and WIKITEXT103 (Merity et al., 2016) for the autoregressive mod-
eling task. The main evaluation metric is perplexity, a commonly used measure in this task.

Baselines We explore various baselines, with the primary one being decoder-only transformers in-
cluding GPT (Radford, 2018; Brown et al., 2020) and Llama (Touvron et al., 2023). We extend our
investigation to a broader range of baselines for the Wikitext dataset, incorporating techniques such
as weight-sharing (Zhong et al., 2022). However, on the OPENWEBTEXT dataset, we exclusively
compare our model against the GPT model.

Setting We consider model settings including: GPT-medium, GPT-small, GPT-large, and Llama-
1B (see Table 3 in Appendix for details). We ensure uniformity in terms of model configuration
between DIFFEQFORMER and baselines, including the depth of the models, the dimension of token
embeddings, the number of heads, and other hyperparameters.

Table 1: Perplexity on WIKITEXT103 data set.

Model Perplexity
GPT-small 22.87
Shared parameter 36.27
Our model-small 22.84
GPT-medium 23.38∗

Shared parameter 32.95
Our model-medium 21.94

Table 2: Perplexity on OPENWEBTEXT dataset.

Model Perplexity
GPT-small 22.60
Our model-small 22.06
GPT-medium 17.85
Our model-medium 17.67
GPT-large 15.64
Our model-large 15.43
Llama-1B 10.17
Our Llama-1B 9.68

Table 1 shows the perplexity across different models on WIKITEXT103 dataset. Our model achieves
strong performance, outperforming GPT models while exhibiting less overfitting. Notably, GPT-
medium shows signs of overfitting on this data (see Figure 4). This can be attributed to an increase
in model parameters without a corresponding increase in data (Kaplan et al., 2020). Though the
shared-weight approach excels in masked language modeling (Lan et al., 2020), it falls short in
autoregressive language modeling tasks in this experiment.

Table 2 demonstrates that our model consistently outperforms all baselines on the OPENWEBTEXT
dataset, with particularly substantial improvements over the Llama-1B baseline (see Appendix C.6).

Downstream evaluation We evaluate DIFFEQFORMER against GPT-large and Llama-1B using the
lm-evaluation-harness framework (Gao et al., 2024), following the experimental protocol
established in Biderman et al. (2023). Our evaluation encompasses various downstream tasks in both
zero-shot and few-shot settings. While DIFFEQFORMER demonstrates comparable performance to
the baselines across most tasks, it achieves statistically significant improvements on reading compre-

9

https://github.com/SDML-KU/qkvflow

Published as a conference paper at ICLR 2025

(a) OPENWEBTEXT → WIKITEXT103 (b) WIKITEXT103 → OPENWEBTEXT

0 0.5B 1B 1.5B 2B 2.5B
Token

20

25

30

35

40

Va
l p

er
pl

ex
ity

LoRA

0 0.5B 1B 1.5B 2B 2.5B
Token

20

25

30

35

40

Va
l p

er
pl

ex
ity

Full rank

0 0.5B 1B 1.5B 2B 2.5B
Token

30

40

50

60

70

Va
l p

er
pl

ex
ity

LoRA

0 0.5B 1B 1.5B 2B 2.5B
Token

30

40

50

60

Va
l p

er
pl

ex
ity

Full rank
Ours (18 -> 24)
Ours (18 -> 18)
Ours (18 -> 12)
Ours (18 -> 9)
GPT (24 -> 24)
GPT from scratch

Figure 5: Finetune validation perplexity across two settings: (a) OPENWEBTEXT → WIKI-
TEXT103; (b) WIKITEXT103 → OPENWEBTEXT. All models are pretrained with 18 function
evaluations (or layers) and finetune in different settings of function evaluations 9, 12, 18, 24 with
LoRA and full-rank finetune. We compare these with the baseline of corresponding GPT model
pretrained and finetune with 24 layers which is on much expensive computation both pretrain and
finetune.

hension tasks (Lambada OpenAI and Lambada Standard) in both zero-shot and five-shot evaluations.
Detailed results are presented in Appendix C.7.

6.2 COMPUTATIONAL ADAPTABILITY FOR FINE-TUNE

Modeling transformers using differential equations enables adaptive computation during fine-tuning
through the adjustment of ODE solver step sizes. By utilizing a fixed step size, we populate the
weights of DIFFEQFORMER over time steps to obtain discrete-layer pretrained models. Now, we
can apply any fine-tuning techiques such as LoRA (Hu et al., 2021).

Finetune settings The pretrained model undergoes training on one dataset before evaluation on
novel data. We examine two scenarios: pretraining on WIKITEXT103 followed by fine-tuning
on OPENWEBTEXT (WIKITEXT103 → OPENWEBTEXT), and pretraining on OPENWEBTEXT
followed by fine-tuning on WIKITEXT103 (OPENWEBTEXT → WIKITEXT103). Both LoRA fine-
tuning and full-rank weight fine-tuning approaches are employed.

Model setting We trained DIFFEQFORMER models with 18 time steps (layers). Fine-tuning was
conducted on models with varying time steps: 9, 12, 18, and 24. For instance, pretraining with 18
time steps followed by fine-tuning with 9 time steps is denoted as 18 → 9. A baseline GPT model
with 24 layers was used for both training and fine-tuning.

Result Figure 5 shows the perplexity evaluated on validation datasets. Our models demonstrate su-
perior performance compared to the GPT baseline across configurations 18 → {12, 18, 24} under
LoRA fine-tuning. It is noteworthy that the baseline model was trained and fine-tuned with greater
computational resources (24 layers). In the case of full-rank weight fine-tuning (or continued train-
ing on new data), our models (18 → 24) exhibit comparable performance to the baseline, despite
initial training with only 18 time steps. Furthermore, the flexibility in fine-tuning allows our models
to mitigate overfitting by employing fewer time steps. This is particularly evident in the case of the
WIKITEXT103 dataset, where our models (18 → {9, 12}) are less prone to overfitting during the
full-rank weight fine-tuning process.

7 CONCLUSION

This paper proposes a novel method for formulating transformers as neural ODEs, revealing inter-
esting characteristics within the models. We posit that the findings presented herein can provide
theorists with foundation for developing ODE-based transformers in their theoretical frameworks.
At the same time, practitioners may explore the potential of integrating ODE approaches into trans-
formers. However, there remain important areas for future work such as improving memory effi-
ciency at larger scales, exploring advanced ODE solvers (McCallum & Foster, 2025), examining the
robustness of the proposed model against adversarial attacks (Huang et al., 2021) and extending to
various aspects including stochastic differential equation paradigms (Tzen & Raginsky, 2019; Tong
et al., 2022) and alternative architectures (Tong et al., 2023).

10

Published as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

The source code of this work is available at https://github.com/SDML-KU/qkvflow. We
built upon the Levanter library (Hall et al., 2023), which manages Pseudorandom Number Generator
(PRNG) states in JAX to ensure bitwise determinism in both data processing and the training pro-
cess. All hyperparameters are detailed in the Appendix, and the corresponding configuration files
can be found in the source code repository.

ACKNOWLEDGMENTS

This work was supported by Institute of Information & communications Technology Planning &
Evaluation (IITP) grants funded by the Korea government(MSIT) (No. RS-2019-II190079, Arti-
ficial Intelligence Graduate School Program(Korea University); No. RS-2019-II190075, Artificial
Intelligence Graduate School Program (KAIST); No. RS-2022-II220984, Development of Artificial
Intelligence Technology for Personalized Plug-and-Play Explanation and Verification of Explana-
tion; No. RS-2024-00457882, AI Research Hub Project) and the New Faculty Settlement Research
Fund by Korea University. This work was supported by the New Faculty Settlement Research Fund
by Korea University and Artificial intelligence industrial convergence cluster development project
funded by the Ministry of Science and ICT(MSIT, Korea) & Gwangju Metropolitan City. We also
acknowledge the Google Cloud Research Credit Program for their support during the early develop-
ment of this work.

REFERENCES

Ameen Ali, Thomas Schnake, Oliver Eberle, Grégoire Montavon, Klaus-Robert Müller, and Lior
Wolf. XAI for transformers: Better explanations through conservative propagation. In Interna-
tional Conference on Machine Learning, pp. 435–451. PMLR, 2022.

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces and in the
space of probability measures. Springer Science & Business Media, 2005.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models, 2019.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, et al. JAX:
composable transformations of Python+ NumPy programs. 2018.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

José A Carrillo, Shi Jin, Lei Li, and Yuhua Zhu. A consensus-based global optimization method
for high dimensional machine learning problems. ESAIM: Control, Optimisation and Calculus of
Variations, 27:S5, 2021.

Hila Chefer, Shir Gur, and Lior Wolf. Transformer interpretability beyond attention visualization.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
782–791, 2021.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

11

https://github.com/SDML-KU/qkvflow

Published as a conference paper at ICLR 2025

Krzysztof Choromanski, Jared Quincy Davis, Valerii Likhosherstov, Xingyou Song, Jean-Jacques
Slotine, Jacob Varley, Honglak Lee, Adrian Weller, and Vikas Sindhwani. An ode to an ode, 2020.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

George Datseris. Dynamicalsystems.jl: A julia software library for chaos and nonlinear dynamics.
Journal of Open Source Software, 3(23):598, mar 2018. doi: 10.21105/joss.00598. URL https:
//doi.org/10.21105/joss.00598.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In International Conference on Machine Learning,
pp. 7480–7512. PMLR, 2023.

Subhabrata Dutta, Tanya Gautam, Soumen Chakrabarti, and Tanmoy Chakraborty. Redesigning the
transformer architecture with insights from multi-particle dynamical systems, 2021.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for
transformer circuits. Transformer Circuits Thread, 1, 2021.

Rainer Engelken. Gradient flossing: Improving gradient descent through dynamic control of jaco-
bians. arXiv preprint arXiv:2312.17306, 2023.

Rainer Engelken, Fred Wolf, and L. F. Abbott. Lyapunov spectra of chaotic recurrent neural net-
works. Phys. Rev. Res., 5:043044, Oct 2023. doi: 10.1103/PhysRevResearch.5.043044. URL
https://link.aps.org/doi/10.1103/PhysRevResearch.5.043044.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=flNZJ2eOet.

Borjan Geshkovski, Cyril Letrouit, Yury Polyanskiy, and Philippe Rigollet. The emergence of clus-
ters in self-attention dynamics, 2023a.

Borjan Geshkovski, Cyril Letrouit, Yury Polyanskiy, and Philippe Rigollet. A mathematical per-
spective on transformers, 2023b.

William Gilpin. Chaos as an interpretable benchmark for forecasting and data-driven modelling.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021. URL https://openreview.net/forum?id=enYjtbjYJrf.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http:
//Skylion007.github.io/OpenWebTextCorpus, 2019.

Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves. Memory-efficient
backpropagation through time. Advances in neural information processing systems, 29, 2016.

David Gunning, Mark Stefik, Jaesik Choi, Timothy Miller, Simone Stumpf, and Guang-Zhong Yang.
Xai—explainable artificial intelligence. Science robotics, 4(37):eaay7120, 2019.

David Ha, Andrew Dai, and Quoc V. Le. Hypernetworks, 2016.

12

https://doi.org/10.21105/joss.00598
https://doi.org/10.21105/joss.00598
https://link.aps.org/doi/10.1103/PhysRevResearch.5.043044
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://openreview.net/forum?id=flNZJ2eOet
https://openreview.net/forum?id=enYjtbjYJrf
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

Published as a conference paper at ICLR 2025

David Hall, Ivan Zhao, Virginia Adams, Jason Wang, and Percy Liang. Levanter, 2023. URL
https://github.com/stanford-crfm/levanter.

Alan J Hoffman and Helmut W Wielandt. The variation of the spectrum of a normal matrix. In
Selected Papers Of Alan J Hoffman: With Commentary, pp. 118–120. World Scientific, 2003.

Joachim Holzfuss and Ulrich Parlitz. Lyapunov exponents from time series. Lyapunov exponents:
Proceedings, Oberwolfach, 1990, pp. 263–270, 1991.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2021.

Yifei Huang, Yaodong Yu, Hongyang Zhang, Yi Ma, and Yuan Yao. Adversarial robustness of
stabilized neuralodes might be from obfuscated gradients, 2021. URL https://arxiv.org/
abs/2009.13145.

Sarthak Jain and Byron C Wallace. Attention is not explanation. arXiv preprint arXiv:1902.10186,
2019.

Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the fokker–
planck equation. SIAM journal on mathematical analysis, 29(1):1–17, 1998.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Patrick Kidger. On neural differential equations, 2022.

Patrick Kidger and Cristian Garcia. Equinox: neural networks in JAX via callable PyTrees and
filtered transformations. Differentiable Programming workshop at Neural Information Processing
Systems 2021, 2021.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. Albert: A lite bert for self-supervised learning of language representations. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=H1eA7AEtvS.

Bei Li, Quan Du, Tao Zhou, Shuhan Zhou, Xin Zeng, Tong Xiao, and Jingbo Zhu. Ode transformer:
An ordinary differential equation-inspired model for neural machine translation, 2021.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
of objective landscapes. In International Conference on Learning Representations, 2018.

Yiping Lu, Zhuohan Li, Di He, Zhiqing Sun, Bin Dong, Tao Qin, Liwei Wang, and Tie-Yan Liu.
Understanding and improving transformer from a multi-particle dynamic system point of view,
2019.

Sam McCallum and James Foster. Efficient, accurate and stable gradients for neural odes, 2025.
URL https://arxiv.org/abs/2410.11648.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

Felix Otto. The geometry of dissipative evolution equations: the porous medium equation. 2001.

Louis M Pecora, Thomas L Carroll, Gregg A Johnson, Douglas J Mar, and James F Heagy. Funda-
mentals of synchronization in chaotic systems, concepts, and applications. Chaos: An Interdisci-
plinary Journal of Nonlinear Science, 7(4):520–543, 1997.

13

https://github.com/stanford-crfm/levanter
https://arxiv.org/abs/2009.13145
https://arxiv.org/abs/2009.13145
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://arxiv.org/abs/2410.11648

Published as a conference paper at ICLR 2025

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Yifan Peng, Siddharth Dalmia, Ian Lane, and Shinji Watanabe. Branchformer: Parallel mlp-attention
architectures to capture local and global context for speech recognition and understanding. In
International Conference on Machine Learning, pp. 17627–17643. PMLR, 2022.

René Pinnau, Claudia Totzeck, Oliver Tse, and Stephan Martin. A consensus-based model for global
optimization and its mean-field limit. Mathematical Models and Methods in Applied Sciences, 27
(01):183–204, 2017.

Alec Radford. Improving language understanding by generative pre-training. 2018.

Geo rey Zweig and Mukund Padmanabhan. Exact alpha-beta computation in logarithmic space with
application to map word graph construction. 2000.

Michael E. Sander, Pierre Ablin, Mathieu Blondel, and Gabriel Peyré. Sinkformers: Transformers
with doubly stochastic attention. In Proceedings of The 25th International Conference on Arti-
ficial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning Research, pp.
3515–3530, 28–30 Mar 2022.

Toby Shevlane, Sebastian Farquhar, Ben Garfinkel, Mary Phuong, Jess Whittlestone, Jade Leung,
Daniel Kokotajlo, Nahema Marchal, Markus Anderljung, Noam Kolt, et al. Model evaluation for
extreme risks. arXiv preprint arXiv:2305.15324, 2023.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2020.

Kenneth Stanley, David D’Ambrosio, and Jason Gauci. A hypercube-based encoding for evolving
large-scale neural networks. Artificial life, 15:185–212, 02 2009. doi: 10.1162/artl.2009.15.2.
15202.

L. Storm, H. Linander, J. Bec, K. Gustavsson, and B. Mehlig. Finite-time lyapunov exponents of
deep neural networks, 2023.

Philipp Stumm and Andrea Walther. New algorithms for optimal online checkpointing. SIAM
Journal on Scientific Computing, 32(2):836–854, 2010.

Anh Tong, Thanh Nguyen-Tang, Toan Tran, and Jaesik Choi. Learning fractional white noises
in neural stochastic differential equations. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=lTZBRxm2q5.

Anh Tong, Thanh Nguyen-Tang, Dongeun Lee, Toan M Tran, and Jaesik Choi. Sigformer: Signature
transformers for deep hedging. In Proceedings of the Fourth ACM International Conference on
AI in Finance, ICAIF ’23, pp. 124–132, New York, NY, USA, 2023. Association for Computing
Machinery. ISBN 9798400702402. doi: 10.1145/3604237.3626841. URL https://doi.
org/10.1145/3604237.3626841.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Belinda Tzen and Maxim Raginsky. Neural stochastic differential equations: Deep latent gaussian
models in the diffusion limit, 2019. URL https://arxiv.org/abs/1905.09883.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.

Ryan Vogt, Maximilian Puelma Touzel, Eli Shlizerman, and Guillaume Lajoie. On lyapunov expo-
nents for rnns: Understanding information propagation using dynamical systems tools. Frontiers
in Applied Mathematics and Statistics, 8:818799, 2022.

14

https://openreview.net/forum?id=lTZBRxm2q5
https://doi.org/10.1145/3604237.3626841
https://doi.org/10.1145/3604237.3626841
https://arxiv.org/abs/1905.09883

Published as a conference paper at ICLR 2025

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Johannes von Oswald, Eyvind Niklasson, Maximilian Schlegel, Seijin Kobayashi, Nicolas Zucchet,
Nino Scherrer, Nolan Miller, Mark Sandler, Max Vladymyrov, Razvan Pascanu, et al. Uncovering
mesa-optimization algorithms in transformers. arXiv preprint arXiv:2309.05858, 2023.

Sarah Wiegreffe and Yuval Pinter. Attention is not not explanation. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 11–20, 2019.

James Hardy Wilkinson. The algebraic eigenvalue problem, volume 662. Oxford Clarendon, 1965.

Alan Wolf, Jack B Swift, Harry L Swinney, and John A Vastano. Determining lyapunov exponents
from a time series. Physica D: nonlinear phenomena, 16(3):285–317, 1985.

Tianjun Zhang, Zhewei Yao, Amir Gholami, Kurt Keutzer, Joseph Gonzalez, George Biros, and
Michael Mahoney. Anodev2: A coupled neural ode evolution framework, 2019.

Yaofeng Desmond Zhong, Tongtao Zhang, Amit Chakraborty, and Biswadip Dey. A neural ode
interpretation of transformer layers, 2022.

15

Published as a conference paper at ICLR 2025

A DETAIL ON TIME-DEPENDENT WEIGHTS

In the main text, we define the time-dependent weights as:
W (t) = Proj(MLP(Sinusoidal(t))).

Each component will be explained further as follows. The temporal embedding is a concatenation
of input time t and sine and cosine of the projection of t in higher dimensions.

Sinusoidal(t) = Concat(t, sin(wt), cos(wt)).
The multilayer perceptron is a two-layer neural network with SiLU activation. The projection layer
is a linear layer with a reshape function. In our experiment, we set the weight vector w ∈ R128 as

w =

[
− log(104)

i

128

]127
i=0

.

The hidden layer dimension of the MLP block is set to the embedding dimension demb.

Note that our models use time-dependent weights for layer normalization, with time embedding
serving as input.

Figure 6: Visualization of the output of Sinusoidal function.

B FURTHER DETAILS ON LYAPUNOV EXPONENT

B.1 BRIEF REVIEW ON LYAPUNOV EXPONENT

In essence, the Lyapunov exponent of a dynamical system quantifies the trajectory separation rate.
For a dynamical system described by ẋ(t) = f(x(t)), consider two trajectories x(1)(t) and x(2)(t).
The Lyapunov exponent λ roughly captures the separation at time t in relation to the initial separa-
tion, expressed as |x(1)(t)− x(2)(t)| ≈ exp(λt)|x(1)(0)− x(2)(0)|.
In practice, obtaining the spectrum of Lyapunov involves computing the eigenvalues of matrix
1
2tY (t)Y ⊤(t) at the limit where Y (t) satisfies

Ẏ (t) = J(t)Y (t), Y (0) = I, (8)
where J(t) represents the Jacobian matrix of f(x) with respect to x(t). This Jacobian matrix de-
scribes how the tangent vectors associated with the given trajectory evolve. The numerical method
to compute the Lyapunov exponent can be found in Wolf et al. (1985); Holzfuss & Parlitz (1991);
Datseris (2018).

B.2 DERIVATION OF JACOBIAN TERM IN COMPUTING LYAPUNOV EXPONENT

Consider the case that we want to measure the sensitivity of the i-th token to the j-th token. We
need to extract the Jacobian Jij of the vector field in Equation equation 7.

To make our notation more readable, we rephrase our goal as measure sensitivity of the in-th position
to the out-th position. We simplify the multihead setting to one-head setting.

We also denote
qi = Q(t)xi(t), ki = K(t)xi(t), vi = V (t)xi(t).

The first component of the Jacobian Jin,out now is ∂xinf(xout, x[n]) and is computed as

∂xinf(xout, x[n]) =

 ∂
∂qin

f(xout, x[n])
∂

∂kin
f(xout, x[n])

∂
∂vin

f(xout, x[n])

[
∂qin
∂xin

, ∂kin
∂xin

, ∂vin
∂xin

]
.

16

Published as a conference paper at ICLR 2025

The individual terms in the above equation are computed as

∂

∂qin
f(xout, x[n]) =

∂

∂qin

n∑
j=1

exp(q⊤outkj)

Lout
vj = 0,

∂

∂vin
f(xout, x[n]) =

∂

∂vin

n∑
j=1

exp(q⊤outkj)

Lout
vj =

exp(q⊤outkin)

Lout
Id = Ain→outId,

∂

∂kin
f(xout, x[n]) =

∂

∂kin

n∑
j=1

exp(q⊤outkj)

Lout
vj =

exp(q⊤outkin)

Lout
vinq

⊤
out −

n∑
j=1

exp(q⊤outkj)

Lout

exp(q⊤outkin)

Lout
vjqout

=Ain→out[vin −
∑
j

Aj→outvj]q
⊤
out

=Ain→out[vin − f(xout, x[n])]q
⊤
out.

Here, we denote the attention Ai→j =
exp(q⊤j ki)

Lj
with Lj =

∑
ℓ exp(q

⊤
j kℓ).

Also, we have
∂qin

∂xin
= Q(t),

∂kin

∂xin
= K(t),

∂vin

∂xin
= V (t).

The second component in the Jacobian Jin,out is ∂xing(xout) and can be computed easily.

Discussion The Jacobian Jin,out comprises two components: the attention information represented
by Ain→out and the change between input and output represented by vin − f(xout, x[n]). This ap-
proach differs from heuristic methods that utilize attention matrices to explain transformers, which
have been criticized for their limitations (Jain & Wallace, 2019). By incorporating both attention
information and input-output changes, our method provides a more principled approach to under-
standing the behavior of transformer models.

C EXPERIMENTS

Here, we provide details about data and experiment set up, e.g., hyperparameters, optimizers.

C.1 WIKITEXT DATASET

We utilized the Wikitext dataset, accessible via the Hugging Face dataset ID:
dlwh/wikitext 103 detokenized.

C.2 OPENWEBTEXT DATASET

Following the configuration from Dao et al. (2022), we partitioned the entire OpenWebText dataset
into training and testing sets. The test set corresponds to 0.0005 of the entire dataset.

C.3 MODEL SPECIFICATION

The details of model specification of GPT-small, GPT-medium, GPT-large and Llama-1B are de-
scribed in Table 3.

Specification GPT-small GPT-medium GPT-large Llama-1B
Parameters 117M 345M 762M 1213M
Layers 12 24 36 16
Hidden Size 768 1024 1280 2048
Attention Heads 12 16 20 16

Table 3: Specifications for GPT-small, GPT-medium, GPT-large models, and Llama-1B.

17

https://huggingface.co/datasets/dlwh/wikitext_103_detokenized

Published as a conference paper at ICLR 2025

C.4 HYPERPARAMETER SETTING

All models were trained using the Adam optimizer, along with a weight decay of 0.1 and dropout
rate of 0.1. For GPT-small and GPT-medium models, we used Adam’s default hyperparameters
(β1 = 0.9, β2 = 0.999). Based on our findings in Section C.5, we modified these parameters for
GPT-large and Llama-1B models, setting β1 = 0.9, β2 = 0.95. The number of warm-up steps was
set to 1% of the total training steps. Additionally, the cosine learning rate schedule is used. The ratio
between the minimum learning rate and the base learning rate was fixed at 0.1.

We mainly use two A100 80GB GPUs for training our models. However, owing to hardware con-
straints, there are variations in the batch sizes used for training GPT-large, GPT-medium and GPT-
small on the OPENWEBTEXT dataset. Specifically, the batch size for GPT-medium and GPT-large
is set to 256, while the batch size for GPT-small is configured at 512. Meanwhile, the batch size
for training on the WIKITEXT103 dataset is set at 256 for all models. For experiments with the
Llama-1B configuration, training was conducted using eight NVIDIA H100 GPUs, each with 80GB
of memory.

Backpropagation We employ the optimal online checkpointing technique (Stumm & Walther,
2010) rather than opting for the optimize-then-discretize approach or the adjoint method, as outlined
in Chen et al. (2018). The latter methods may introduce error accumulation, leading to instability
during training. For a thorough discussion of the advantages and disadvantages of these techniques
in backpropagation for neural ODEs, one can refer to (Kidger, 2022, Chapter 5). Notably, this
approach shares similarities with the techniques used in training deep neural networks (Chen et al.,
2016; Gruslys et al., 2016; rey Zweig & Padmanabhan, 2000).

C.5 ON ADAM’S β2 PARAMETER

Since DIFFEQFORMER’s weights are generated by time-dependent weight functions, its parameter-
ization differs from GPT models, leading to distinct loss landscapes and optimizer behaviors. In
practice, we found that setting the Adam optimizer parameter β2 = 0.95 improves optimization
stability and convergence for DIFFEQFORMER compared to the standard value of 0.999.

0 10000 20000 30000 40000
Step

15

20

25

30

35

40

Va
l p

er
pl

ex
ity

Ours (2 = 0.95)
Ours (2 = 0.999)

(a) DIFFEQFORMER

0 10000 20000 30000 40000
Step

15

20

25

30

35

40

Va
l p

er
pl

ex
ity

GPT (2 = 0.95)
GPT (2 = 0.999)

(b) GPT

Figure 7: The effect of modifying Adam’s β2 parameter to 0.95. (a) DIFFEQFORMER shows sig-
nificant performance improvement with β2 = 0.95 (from 15.89 to 15.43). In contrast, while GPT
initially converges faster with β2 = 0.95, its final performance is inferior to that achieved with
β2 = 0.999. Both models exhibit more stable and smoother training curves with decreased β2 val-
ues.

When comparing DIFFEQFORMER with GPT-large on the OPENWEBTEXT dataset, using β2 =
0.95 reduced our model’s validation perplexity from 15.89 to 15.43, surpassing GPT baselines. In
contrast, GPT models perform better with β2 = 0.999, as shown in Figure 7. We observe that lower
β2 values generally produce smoother learning curves in both models.

We hypothesize that this behavior arises because the parameters of time-dependent weights (the
MLP block in W (t)’s architecture) require rapid adaptation to generate flexible weights. Since

18

Published as a conference paper at ICLR 2025

higher β2 values maintain longer memory of past squared gradients, a lower β2 enables quicker
adaptation of time-dependent weights by reducing the influence of historical gradients. This can
explain the improvement for our model shown in Figure 7.

C.6 OTHER BASELINE ARCHITECTURES

We conduct additional experiments to evaluate the adaptability of DIFFEQFORMER across differ-
ent architectures. Specifically, we implement a LLaMA-based version of DIFFEQFORMER follow-
ing the architecture proposed by Touvron et al. (2023). The key architectural differences between
LLaMA-based and GPT-based implementations include: (1) the use of rotary positional embed-
dings (RoPE) instead of absolute positional embeddings, (2) RMSNorm for layer normalization
rather than the standard LayerNorm, and (3) SwiGLU activation functions in feed-forward blocks
instead of ReLU. Importantly, these architectural modifications do not alter the core principles and
effectiveness of DIFFEQFORMER’s design.

0 10000 20000 30000 40000
Step

8

10

12

14

16

18

20

Va
l p

er
pl

ex
ity

Ours (Llama-1B)
Llama-1B

Figure 8: Comparison of validation perplexity between our model and Llama-1B, both trained with
Adam optimizer (β1 = 0.9, β2 = 0.95).

Figure 8 compares the validation perplexity between our Llama-based DIFFEQFORMER and the
baseline Llama-1B on the OPENWEBTEXT dataset. Our model consistently achieves lower per-
plexity, demonstrating DIFFEQFORMER’s effectiveness when implemented with modern architec-
tures like Llama.

C.7 DOWNSTREAM TASK EVALUATION

We evaluate the performance of DIFFEQFORMER and baselines in the setting of GPT-large and
Llama-1B. We use the framework lm-evaluation-harness (Gao et al., 2024) to evaluation
the pre-trained models. The performance is assessed with the tasks having the similar setup with Bi-
derman et al. (2023). Figure 9, Figure 10, and Table 4 show the performance compared against the
GPT-large baseline across different tasks in two settings: zero-shot and five-shot. Figure 11, Fig-
ure 12, and Table 5 show the performance compared against the Llama-1B baseline across different
tasks in two settings: zero-shot and five-shot.

GPT-large Our model demonstrates competitive performance against GPT-large across multiple
benchmarks. In zero-shot evaluations (Figure 9), we achieve statistically significant improvements
on reading comprehension tasks: Lambada OpenAI and Lambada Standard. Additionally, we ob-
serve modest but consistent gains on reasoning tasks including LogiQA, PIQA, and SciQ. In five-
shot settings (Figure 10), our model outperforms GPT-large on 5 out of 10 tasks, with statistically
significant improvements on Lambada Standard and Winogrande. Performance remains comparable
on two tasks, while GPT-large shows marginal, though not statistically significant, advantages on
two others. These results suggest our neural ODE architecture maintains or exceeds GPT-large’s
capabilities across diverse language understanding and reasoning tasks.

Llama-1B Our model demonstrates notable improvements over Llama-1B in both zero-shot and
five-shot settings, as shown in Figures 11 and 12. The improvements are particularly pronounced in

19

Published as a conference paper at ICLR 2025

reading comprehension tasks - we observe statistically significant accuracy gains (2% - 4%) on both
Lambada OpenAI and Lambada Standard benchmarks. These results suggest our neural ODE-based
transformer architecture enhances language understanding capabilities while maintaining competi-
tive performance across other evaluation metrics.

ARC-C
ha

lle
ng

e

ARC-E
as

y

Hell
aS

wag

La
mba

da
 O

pe
nA

I

La
mba

da
 Stan

da
rd

Lo
giQ

A

MMLU
PI

QA
SciQ

Wino
gr

an
de

WSC27
3

0

10

20

30

40

50

60
Ac

cu
ra

cy
 (%

)

Model Performance Comparison
GPT
Our Model

ARC-C
ha

lle
ng

e

ARC-E
as

y

Hell
aS

wag

La
mba

da
 O

pe
nA

I

La
mba

da
 Stan

da
rd

Lo
giQ

A

MMLU
PI

QA
SciQ

Wino
gr

an
de

WSC27
3

6

4

2

0

2

4

D
iff

er
en

ce
 (%

)

Performance Difference (Our Model - GPT)

Figure 9: Benchmark score for zero-shot in GPT-large configuration.

ARC-C
ha

lle
ng

e

ARC-E
as

y

Hell
aS

wag

La
mba

da
 O

pe
nA

I

La
mba

da
 Stan

da
rd

Lo
giQ

A

MMLU
PI

QA
SciQ

Wino
gr

an
de

WSC27
3

0

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

Model Performance Comparison
GPT
Our Model

ARC-C
ha

lle
ng

e

ARC-E
as

y

Hell
aS

wag

La
mba

da
 O

pe
nA

I

La
mba

da
 Stan

da
rd

Lo
giQ

A

MMLU
PI

QA
SciQ

Wino
gr

an
de

WSC27
3

2

0

2

4

6

D
iff

er
en

ce
 (%

)

Performance Difference (Our Model - GPT)

Figure 10: Benchmark score for five-shot GPT-large configuration.

ARC-C
ha

lle
ng

e

ARC-E
as

y

Hell
aS

wag

La
mba

da
 O

pe
nA

I

La
mba

da
 Stan

da
rd

Lo
giQ

A

MMLU
PI

QA
SciQ

Wino
gr

an
de

WSC27
3

0

10

20

30

40

50

Ac
cu

ra
cy

 (%
)

Model Performance Comparison
Llama
Our Model

ARC-C
ha

lle
ng

e

ARC-E
as

y

Hell
aS

wag

La
mba

da
 O

pe
nA

I

La
mba

da
 Stan

da
rd

Lo
giQ

A

MMLU
PI

QA
SciQ

Wino
gr

an
de

WSC27
3

4

2

0

2

4

D
iff

er
en

ce
 (%

)

Performance Difference (Our Model - Llama)

Figure 11: Benchmark score for zero-shot in Llama-1B configuration.

20

Published as a conference paper at ICLR 2025

ARC-C
ha

lle
ng

e

ARC-E
as

y

Hell
aS

wag

La
mba

da
 O

pe
nA

I

La
mba

da
 Stan

da
rd

Lo
giQ

A

MMLU
PI

QA
SciQ

Wino
gr

an
de

WSC27
3

0

10

20

30

40

50

Ac
cu

ra
cy

 (%
)

Model Performance Comparison
Llama
Our Model

ARC-C
ha

lle
ng

e

ARC-E
as

y

Hell
aS

wag

La
mba

da
 O

pe
nA

I

La
mba

da
 Stan

da
rd

Lo
giQ

A

MMLU
PI

QA
SciQ

Wino
gr

an
de

WSC27
3

4

2

0

2

4

D
iff

er
en

ce
 (%

)

Performance Difference (Our Model - Llama)

Figure 12: Benchmark score for five-shot in Llama-1B configuration.

Zero-shot Five-shot

Benchmark GPT Our Model GPT Our Model

ARC-Challenge 20.65 (1.18) 20.90 (1.19) 21.84 (1.21) 21.25 (1.20)
ARC-Easy 36.03 (0.99) 35.82 (0.98) 37.12 (0.99) 36.32 (0.99)
HellaSwag 25.53 (0.44) 25.61 (0.44) 25.40 (0.43) 25.52 (0.44)
Lambada OpenAI 37.24 (0.67) 38.39 (0.68) 27.79 (0.62) 27.83 (0.62)
Lambada Standard 29.30 (0.63) 30.37 (0.64) 23.05 (0.59) 24.82 (0.60)
LogiQA 21.35 (1.61) 21.35 (1.61) 20.74 (1.59) 21.81 (1.62)
MMLU 22.95 (0.35) 22.99 (0.35) 26.08 (0.37) 25.10 (0.36)
PIQA 56.26 (1.16) 56.96 (1.16) 55.82 (1.16) 56.69 (1.16)
SciQ 45.70 (1.58) 47.20 (1.58) 50.30 (1.58) 50.90 (1.58)
Winogrande 50.75 (1.41) 52.57 (1.40) 49.33 (1.41) 53.67 (1.40)
WSC273 55.31 (3.01) 53.11 (3.03) 50.92 (3.03) 53.11 (3.03)

Table 4: Performance comparison between GPT and our model in zero-shot and five-shot settings.

Zero-shot Five-shot

Benchmark Llama-1B Our Model Llama-1B Our Model

ARC-Challenge 22.27 (1.22) 22.27 (1.22) 21.76 (1.21) 22.44 (1.22)
ARC-Easy 29.67 (0.94) 31.10 (0.95) 30.01 (0.94) 31.44 (0.95)
HellaSwag 25.20 (0.43) 25.32 (0.43) 25.19 (0.43) 25.36 (0.43)
Lambada OpenAI 41.84 (0.69) 43.74 (0.69) 30.47 (0.64) 34.41 (0.66)
Lambada Standard 27.58 (0.62) 31.55 (0.65) 24.04 (0.60) 28.22 (0.63)
LogiQA 21.51 (1.61) 22.27 (1.63) 21.04 (1.60) 21.20 (1.60)
MMLU 22.93 (0.35) 22.98 (0.35) 26.43 (0.37) 24.72 (0.36)
PIQA 53.26 (1.16) 53.81 (1.16) 53.65 (1.16) 53.10 (1.16)
SciQ 31.70 (1.47) 33.20 (1.49) 34.20 (1.50) 34.80 (1.51)
Winogrande 50.51 (1.41) 49.64 (1.41) 51.38 (1.40) 49.33 (1.41)
WSC273 53.11 (3.03) 52.38 (3.03) 52.01 (3.03) 50.92 (3.03)

Table 5: Performance comparison between Llama and our model in zero-shot and five-shot settings.

C.8 ON TRAJECTORY SIMULATION

This simulation tries to replicate scenarios following the spectral dynamic of trained DIFFEQ-
FORMER: increasing the magnitude of eigenvalues with peak near the last layer.

We consider the attention-only model with one head,

21

Published as a conference paper at ICLR 2025

ẋi(t) =f(xi(t), x[n](t), t), t ∈ [0, T],

xi(0) =Xi, i = 1, . . . , n.

with

f(xi(t), x[n](t), t) =

n∑
j=1

exp

(
⟨Q(t)xi(t),K(t)xj(t)⟩√

d

)
V (t)xj(t),

The weights are randomly initialized at time 0 and time-dependent under the following dynamics:

Q(t) = K(t) =A0f(t) Ai,j
0 ∼ N (0, 1),

V (t) =V0f(t) V i,j
0 ∼ N (0, 1).

where f(t) controls the magnitude of the matrices over time. We test different configurations of
f(t) as polynomials including:

f0(t) =
1

2
, f3(t) =

1

2

(
t

T

)3

,

f1(t) =
1

2

t

T
, f4(t) =

1

2

(
t

T

)4

,

f2(t) =
1

2

(
t

T

)2

, f5(t) =
1

2

(
1− t

T

)2

.

In our simulation, we employed the following parameters: a time horizon T = 20 and an ODE
solver step size dt = 0.1, effectively resulting in 200 layers of attention. We generated a sequence
of length 40 with dimension 3, using uniform random sampling within the range [−2, 2].

Figure 13 illustrates the trajectories of ODEs given the inputs. We observe that dynamics character-
ized by functions increasing at rates exceeding linear tend not to form clusters. Moreover, we noted
that the output dispersion increases with the polynomial order of the function. For instance, when
f1 is defined as a linear function of t, the corresponding ODE trajectory exhibits incipient cluster
formation. In contrast, when f4 is represented by a fourth-order polynomial, its outputs demonstrate
greater scatter.

22

Published as a conference paper at ICLR 2025

f6(t) = 0.5

0 5 10 15 20
t

0.48

0.50

0.52

f(t
)

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0 2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

start
end
trajectory

f1(t) = 0.5t/20

0 5 10 15 20
t

0.0

0.2

0.4

f(t
)

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0 2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

start
end
trajectory

f2(t) = 0.5(t/20)2

0 5 10 15 20
t

0.0

0.2

0.4

f(t
)

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0 2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

start
end
trajectory

f3(t) = 0.5(t/20)3

0 5 10 15 20
t

0.0

0.2

0.4

f(t
)

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0 2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

start
end
trajectory

f4(t) = 0.5(t/20)4

0 5 10 15 20
t

0.0

0.2

0.4

f(t
)

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0 2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

start
end
trajectory

f5(t) = 0.5(1− t/20)2

0 5 10 15 20
t

0.0

0.2

0.4

f(t
)

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0 2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

start
end
trajectory

Figure 13: Trajectories of ODE dynamics for various settings of f(t).

23

Published as a conference paper at ICLR 2025

D ABLATION STUDY

Here we study our model when varying time-embedding dimension. Then we investigate an alter-
native architecture for time-dependent weights.

D.1 ON THE DIMENSION OF TIME EMBEDDINGS

0 5000 10000 15000 20000
Step

15

20

25

30

35

40

Va
l p

er
pl

ex
ity

48
96
144
GPT

Figure 14: Perplexity of DIF-
FEQFORMER with varying
demb.

In equation 6, demb denotes the dimensionality of the time em-
bedding used to derive the time-dependent weight W (t). This
hyperparameter directly influences the model’s parameter count,
with higher values potentially leading to increased model complex-
ity. Our investigation aims to assess the impact of varying demb
on model performance. Figure 14 illustrates the validation per-
plexity of DIFFEQFORMER across different demb values, bench-
marked against the GPT-large model. The results demonstrate a
positive correlation between increasing demb and improved perfor-
mance. For models trained on the OPENWEBTEXT dataset, rela-
tively high demb values 144 are necessary to achieve optimal perfor-
mance. Moreover, models with larger hidden dimensions require
correspondingly higher demb values. We posit that demb is related to
the concept of intrinsic dimension, as described by Li et al. (2018).
This connection stems from the fact that in equation 6, the time-
dependent weight W (t) results from projecting a low-dimensional vector of size demb.

Figure 15 shows the training throughput between two models. As demb increases, a slight decrease
in throughput is observed. However, the magnitude of this decrease is notably small, suggesting that
DIFFEQFORMER maintains competitive throughput even with higher-dimensional time embedding.
Despite DIFFEQFORMER having a significantly higher parameter count compared to the GPT model
(see Table 6) due to its time-dependent weights, this has a minimal impact on the overall throughput.
The additional computational cost is primarily incurred during the precomputation of the weights
prior to the forward pass. The forward pass itself has the same computational cost as that of the GPT
model. For the same reason, the GPU usage of DIFFEQFORMER can be similar to that of vanilla
transformers. We are able to train DIFFEQFORMER with a medium-sized architecture using two
NVIDIA A100 GPUs, despite having 1.8 billion parameters (demb = 144).

Inference time While learning the time-dependent weights (W (t)) in transformers requires both
forward and backward passes during training, this process becomes unnecessary during inference.
Since the training is complete, we can precompute W (t) for each layer and reuse the computed
weights when needed.

20 48 72 96 120 144

dembed

87

88

89

90

91

92

E
xa

m
pl

es
 p

er
 s

ec
on

d GPT2
Ours

Figure 15: Throughput comparison, measured in examples
per second, between GPT and DIFFEQFORMER for differ-
ent values of the time embedding dimension (demb).

demb Number of parameters
20 300M
48 650M
72 960M
96 1250M

120 1560M
144 1860M

Table 6: Parameter count of DIF-
FEQFORMER with medium-sized
architecture.

24

Published as a conference paper at ICLR 2025

GPU memory usage Figure 16 shows the peak GPU memory usage across different demb values
when training DIFFEQFORMER with GPT-medium architecture at batch size 256. While increasing
demb expands the model’s parameter count, it does not proportionally increase GPU memory usage
for multiplicative factors. This is because the time-dependent weights W (t) are computed once per
forward pass to generate the weights. Such generate weights then interact with transformer hidden
states across batches.

10 50 100 150
demb

110000

120000

130000

140000

150000

160000

Pe
ak

 G
PU

 M
em

or
y

(M
B

)

-16.4%

-4.2%

5.1%
8.6%GPT

Ours

Figure 16: Peak memory of GPU for different settings of demb. Note that
the GPU memory values are obtained after setting JAX environment variable
XLA PYTHON CLIENT ALLOCATOR=platform.

D.2 ALTERNATIVE DESIGN FOR TIME-DEPENDENT WEIGHTS

Figure 18 shows the performance between two designs of time-dependent weights: (i) our model
shares only Sinusoidal; (ii) alternative design shares both Sinusoidal and MLP blocks (see Fig-
ure 17). We observe the our model outperforms the alternative due to having non-linearity before
the projection block.

MLP Proj

Temporal
Embedding

MLP Proj

MLP Proj

MLP Proj

MLP Proj

Proj

Temporal
Embedding

Proj

Proj

Proj

MLP

Proj

Figure 17: Left: Our model’s time-dependent weights: sharing Sinusoidal component for all weights
Q(t),K(t), V (t),WFF

1 ,WFF (t)2(t). Right: An alternative architecture shares both Sinusoidal
and MLP block.

25

Published as a conference paper at ICLR 2025

0 10000 20000 30000 40000

Step

15

20

25

30

35

40

Va
l p

er
pl

ex
ity

GPT
Ours (share Sinusoidal)
share Sinusoidal + MLP

Figure 18

E SPECTRAL DYNAMICS

This section presents the spectral dynamics for each dataset and model setting, as described in the
main text.

E.1 ATTENTION BLOCKS

E.1.1 OPENWEBTEXT DATA

0 10 20
80

60

40

20

0

R
ea

l(
)

Head 0

0 10 20

10

0

10

Head 1

0 10 20

0

10

20

30
Head 2

0 10 20

30

20

10

0

10

20
Head 3

0 10 20

5

0

5

10

15

R
ea

l(
)

Head 4

0 10 20

5

0

5

10

15

20
Head 5

0 10 20

10

0

10

20
Head 6

0 10 20
10

0

10

20

30

Head 7

0 10 20

10

0

10

R
ea

l(
)

Head 8

0 10 20

10

0

10

20
Head 9

0 10 20
10

0

10

20

Head 10

0 10 20

10

0

10

20

Head 11

0 10 20

Layer

10

0

10

20

R
ea

l(
)

Head 12

0 10 20

Layer

5

0

5

10

15

Head 13

0 10 20

Layer

0

10

20

30

Head 14

0 10 20

Layer

20

0

20

40
Head 15

(a) QK pair

0 10 20
10

5

0

5

10

15

R
ea

l(
)

Head 0

0 10 20

0

5

10

15
Head 1

0 10 20

10

0

10

Head 2

0 10 20

10

0

10

Head 3

0 10 20

10

0

10

20

R
ea

l(
)

Head 4

0 10 20
10

0

10

Head 5

0 10 20

5

0

5

10

Head 6

0 10 20

10

5

0

5
Head 7

0 10 20
20

10

0

R
ea

l(
)

Head 8

0 10 20

5

0

5

10

Head 9

0 10 20

10

0

10

20

Head 10

0 10 20

0

10

20

30
Head 11

0 10 20

Layer

5

0

5

10

15

R
ea

l(
)

Head 12

0 10 20

Layer

0

5

10

15

20
Head 13

0 10 20

Layer

10

0

10

20

Head 14

0 10 20

Layer

5

0

5

10

15
Head 15

(b) OV pair

Figure 19: The spectral dynamics of the Query-Key (QK) and Output-Value (OV) pairs in the DIF-
FEQFORMER model trained on the OPENWEBTEXT dataset using a medium-sized architecture.

26

Published as a conference paper at ICLR 2025

0 5 10
5

0

5

R
ea

l(
)

Head 0

0 5 10

0

10

20
Head 1

0 5 10
5

0

5

10

15

20

Head 2

0 5 10

5

0

5

Head 3

0 5 10

5

0

5

10

R
ea

l(
)

Head 4

0 5 10

5

0

5

10

15

Head 5

0 5 10

0

10

20

Head 6

0 5 10
5

0

5

10
Head 7

0 5 10

Layer

0

5

10

R
ea

l(
)

Head 8

0 5 10

Layer

5

0

5

10
Head 9

0 5 10

Layer

5

0

5

10
Head 10

0 5 10

Layer

5

0

5

10

Head 11

(a) QK pair

0 5 10

0

5

10

R
ea

l(
)

Head 0

0 5 10

5

0

5

10

Head 1

0 5 10
7.5

5.0

2.5

0.0

2.5

5.0
Head 2

0 5 10

0

5

10

15

Head 3

0 5 10

0

5

10

15

R
ea

l(
)

Head 4

0 5 10

0

5

10

15

Head 5

0 5 10

0

5

10

Head 6

0 5 10

0

5

10

Head 7

0 5 10

Layer

0

5

10

R
ea

l(
)

Head 8

0 5 10

Layer

0

5

10

15
Head 9

0 5 10

Layer

0

5

10

15

Head 10

0 5 10

Layer

0

5

10

Head 11

(b) OV pair

Figure 20: The spectral dynamics of the Query-Key (QK) and Output-Value (OV) pairs in the DIF-
FEQFORMER model trained on the OPENWEBTEXT dataset using a small-sized architecture.

E.1.2 WIKITEXT103 DATA

0 10 20

5

0

5

R
ea

l(
)

Head 0

0 10 20

5

0

5

10
Head 1

0 10 20

5

0

5

10
Head 2

0 10 20
5

0

5

Head 3

0 10 20
5.0

2.5

0.0

2.5

5.0

7.5

R
ea

l(
)

Head 4

0 10 20

5

0

5

Head 5

0 10 20

5

0

5

10
Head 6

0 10 20
5

0

5

10
Head 7

0 10 20

5

0

5

10

R
ea

l(
)

Head 8

0 10 20

5

0

5

10
Head 9

0 10 20
5

0

5

Head 10

0 10 20

5

0

5

Head 11

0 10 20

Layer

5

0

5

R
ea

l(
)

Head 12

0 10 20

Layer

5

0

5

10
Head 13

0 10 20

Layer

5

0

5

Head 14

0 10 20

Layer

5

0

5

10

Head 15

(a) QK pair

0 10 20

6

4

2

0

2

R
ea

l(
)

Head 0

0 10 20

4

2

0

2

Head 1

0 10 20

6

4

2

0

2

Head 2

0 10 20

6

4

2

0

2
Head 3

0 10 20
6

4

2

0

2

R
ea

l(
)

Head 4

0 10 20
6

4

2

0

2

Head 5

0 10 20
8

6

4

2

0

2
Head 6

0 10 20

10

5

0

Head 7

0 10 20
4

2

0

2

4

R
ea

l(
)

Head 8

0 10 20
6

4

2

0

2
Head 9

0 10 20

6

4

2

0

2
Head 10

0 10 20
6

4

2

0

2
Head 11

0 10 20

Layer

4

2

0

2

R
ea

l(
)

Head 12

0 10 20

Layer

6

4

2

0

2

Head 13

0 10 20

Layer

4

2

0

2

Head 14

0 10 20

Layer

4

2

0

2

Head 15

(b) OV pair

Figure 21: The spectral dynamics of the Query-Key (QK) and Output-Value (OV) pairs in the DIF-
FEQFORMER model trained on the WIKITEXT103 dataset using a medium-sized architecture.

27

Published as a conference paper at ICLR 2025

0 5 10

5

0

5

10

R
ea

l(
)

Head 0

0 5 10

5

0

5

Head 1

0 5 10
10

5

0

5

10

Head 2

0 5 10

5

0

5

10

Head 3

0 5 10

5

0

5

10

R
ea

l(
)

Head 4

0 5 10

5.0

2.5

0.0

2.5

5.0

7.5
Head 5

0 5 10

5

0

5

10

Head 6

0 5 10
10

5

0

5

10
Head 7

0 5 10

Layer

5

0

5

10

15

20

R
ea

l(
)

Head 8

0 5 10

Layer

5

0

5

Head 9

0 5 10

Layer

5

0

5

10
Head 10

0 5 10

Layer

5

0

5

10
Head 11

(a) QK pair

0 5 10
6

4

2

0

2

R
ea

l(
)

Head 0

0 5 10
4

2

0

2

4

6
Head 1

0 5 10

5.0

2.5

0.0

2.5

5.0

Head 2

0 5 10

6

4

2

0

2

4
Head 3

0 5 10
7.5

5.0

2.5

0.0

2.5

R
ea

l(
)

Head 4

0 5 10

2.5

0.0

2.5

5.0

7.5
Head 5

0 5 10
5

0

5

10

Head 6

0 5 10

5

0

5

Head 7

0 5 10

Layer
5.0

2.5

0.0

2.5

5.0

7.5

R
ea

l(
)

Head 8

0 5 10

Layer

4

2

0

2

4

6
Head 9

0 5 10

Layer

2

0

2

4

6

Head 10

0 5 10

Layer
5.0

2.5

0.0

2.5

5.0

Head 11

(b) OV pair

Figure 22: The spectral dynamics of the Query-Key (QK) and Output-Value (OV) pairs in the DIF-
FEQFORMER model trained on the WIKITEXT103 dataset using a small-sized architecture.

E.1.3 VANILLA TRANSFORMER

0 10 20

0.5

0.0

0.5

1.0

1.5

2.0

R
ea

l(
)

Head 0

0 10 20
2

1

0

1

Head 1

0 10 20

1

0

1

2

Head 2

0 10 20
1

0

1

2

Head 3

0 10 20

0

1

2

3

R
ea

l(
)

Head 4

0 10 20
1

0

1

2

3
Head 5

0 10 20

0.5

0.0

0.5

1.0

Head 6

0 10 20
1

0

1

2

Head 7

0 10 20

0.5

0.0

0.5

1.0

1.5

R
ea

l(
)

Head 8

0 10 20
1.0

0.5

0.0

0.5

1.0

1.5

Head 9

0 10 20
1

0

1

2

Head 10

0 10 20

1

0

1

2
Head 11

0 10 20

Layer

1

0

1

2

R
ea

l(
)

Head 12

0 10 20

Layer
1.0

0.5

0.0

0.5

1.0

1.5
Head 13

0 10 20

Layer
1

0

1

2

3
Head 14

0 10 20

Layer
1

0

1

2

Head 15

(a) QK pair

0 10 20

0.5

0.0

0.5

1.0

1.5

R
ea

l(
)

Head 0

0 10 20
1.0

0.5

0.0

0.5

Head 1

0 10 20

1.0

0.5

0.0

0.5

Head 2

0 10 20

0.5

0.0

0.5

Head 3

0 10 20
1.0

0.5

0.0

0.5

1.0

R
ea

l(
)

Head 4

0 10 20
1.5

1.0

0.5

0.0

0.5

1.0

Head 5

0 10 20

1.0

0.5

0.0

0.5

1.0
Head 6

0 10 20

1

0

1

2
Head 7

0 10 20
1.0

0.5

0.0

0.5

1.0

R
ea

l(
)

Head 8

0 10 20

0.5

0.0

0.5

1.0
Head 9

0 10 20

0.5

0.0

0.5

1.0

Head 10

0 10 20

0.5

0.0

0.5

1.0
Head 11

0 10 20

Layer
1.0

0.5

0.0

0.5

1.0

1.5

R
ea

l(
)

Head 12

0 10 20

Layer
1.0

0.5

0.0

0.5

Head 13

0 10 20

Layer

3

2

1

0

Head 14

0 10 20

Layer
1.5

1.0

0.5

0.0

0.5

Head 15

(b) OV pair

Figure 23: The spectral dynamics of the Query-Key (QK) and Output-Value (OV) pairs in the vanilla
transformer model trained on the OPENWEBTEXT dataset using a medium-sized architecture.

28

Published as a conference paper at ICLR 2025

0.0 2.5 5.0 7.5 10.0

1

0

1

2

3

4

R
ea

l(
)

Head 0

0.0 2.5 5.0 7.5 10.0

0.5

0.0

0.5

1.0

1.5

2.0

Head 1

0.0 2.5 5.0 7.5 10.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0

Head 2

0.0 2.5 5.0 7.5 10.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
Head 3

0.0 2.5 5.0 7.5 10.0
1.0

0.5

0.0

0.5

1.0

1.5

R
ea

l(
)

Head 4

0.0 2.5 5.0 7.5 10.0

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Head 5

0.0 2.5 5.0 7.5 10.0

0.5

0.0

0.5

1.0

1.5

2.0
Head 6

0.0 2.5 5.0 7.5 10.0

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Head 7

0.0 2.5 5.0 7.5 10.0

Layer
1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
ea

l(
)

Head 8

0.0 2.5 5.0 7.5 10.0

Layer

1

0

1

2

3

Head 9

0.0 2.5 5.0 7.5 10.0

Layer

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Head 10

0.0 2.5 5.0 7.5 10.0

Layer
0.5

0.0

0.5

1.0

1.5

2.0

2.5
Head 11

(a) QK pair

0.0 2.5 5.0 7.5 10.0

0.50

0.25

0.00

0.25

0.50

0.75

1.00

R
ea

l(
)

Head 0

0.0 2.5 5.0 7.5 10.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Head 1

0.0 2.5 5.0 7.5 10.0

0.5

0.0

0.5

1.0

Head 2

0.0 2.5 5.0 7.5 10.0

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Head 3

0.0 2.5 5.0 7.5 10.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

R
ea

l(
)

Head 4

0.0 2.5 5.0 7.5 10.0

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Head 5

0.0 2.5 5.0 7.5 10.0

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Head 6

0.0 2.5 5.0 7.5 10.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Head 7

0.0 2.5 5.0 7.5 10.0

Layer

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

R
ea

l(
)

Head 8

0.0 2.5 5.0 7.5 10.0

Layer
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Head 9

0.0 2.5 5.0 7.5 10.0

Layer
0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8
Head 10

0.0 2.5 5.0 7.5 10.0

Layer

1.0

0.5

0.0

0.5

1.0

Head 11

(b) OV pair

Figure 24: The spectral dynamics of the Query-Key (QK) and Output-Value (OV) pairs in the vanilla
transformer model trained on the OPENWEBTEXT dataset using a small-sized architecture.

29

Published as a conference paper at ICLR 2025

F LYAPUNOV SENSITIVITY EXAMPLES

More examples for Lyapunov sensitivity can be found in the following figures.

(A)

(B)

Figure 25: The next word is its which is the possessive pronoun for BIGBANG. (A) This shows
that the obtained Lyapunov sensitivity can identify the main subject for possessive pronoun. (B)
Analysis of token relationships through attention matrices. While individual attention heads capture
specific aspects of token dependencies, the aggregated attention matrix across all heads does not
fully explain next-token predictions.

30

Published as a conference paper at ICLR 2025

(A)

(B)

Figure 26: The next word is North in North Korea. (A) We also can see that Lyapunov sensitivity
highlights the related words including “North”, “Korean”, “diplomatic” in this context. (B) Analysis
of token relationships through attention matrices. We observe the same behaviors as the previous
example.

31

Published as a conference paper at ICLR 2025

(A)

(B)

Figure 27: The next word is sleep. (A) The Lyapunov sensitivity can highlight the word “sleep”
which is the main topic of the paragraph and appears at the beginning of the sentence. In this case,
it may overestimate the sensitivity of the word “mammalian”. (B) Analysis of token relationships
through attention matrices. We observe the same behaviors as the previous example.

32

Published as a conference paper at ICLR 2025

(A)

(B)

Figure 28: The next word is match. (A) This is an interesting case where the output of Lyapunov
sensitivity highlights the word “match” in “five-match” and the word “after” which indicates the
order of the matches. (B) Analysis of token relationships through attention matrices. We observe
the same behaviors as the previous example.

33

Published as a conference paper at ICLR 2025

(A)

(B)

Figure 29: The next word is nets. (A) Lyapunov sensitivity gives a high value for the word “in”
which is a preposition and relevant to the next work “nets”. Another relevant word “fisherman“
is highlighted together with the object “pottery” in the nets. (B) Analysis of token relationships
through attention matrices. We observe the same behaviors as the previous example.

34

	Introduction
	Revisiting Transformer
	Related Work
	Time-dependent Weight Transformer
	Transformers through the lens of differential equations
	Representation of time-dependent weights

	Analyzing internal dynamics of transformers
	Analysis of attention mechanism
	Sensitivity analysis with Lyapunov exponents

	Experimental Results
	Language modeling
	Computational adaptability for fine-tune

	Conclusion
	Detail on time-dependent weights
	Further details on Lyapunov exponent
	Brief review on Lyapunov exponent
	Derivation of Jacobian term in computing Lyapunov exponent

	Experiments
	Wikitext Dataset
	OpenWebText Dataset
	Model specification
	Hyperparameter setting
	On Adam's 2 parameter
	Other baseline architectures
	Downstream task evaluation
	On trajectory simulation

	Ablation study
	On the dimension of time embeddings
	Alternative design for time-dependent weights

	Spectral dynamics
	Attention blocks
	OpenWebText data
	WikiText103 data
	Vanilla transformer

	Lyapunov sensitivity examples

