Comparisons with related works (Weakness 1 of Reviewer KAmk and Question of Reviewer rZoR)

Table 1: Comparison of the settings in related works.

Algorithm	Noise	Approximation	Timescale	Whittle index
Q-Whittle [3]	i.i.d.	Х	two-timescale	✓
Q-Whittle-LFA [57]	i.i.d.	linear	two-timescale	✓
Q-learning-LFA [6, 36, 63]	Markovian	linear	single-timescale	X
Q-learning-NFA [13, 15, 22, 58]	Markovian	neural network	single-timescale	X
TD-learning-LFA [47]	Markovian	linear	single-timescale	X
2TSA-IID [19, 21]	i.i.d.	X	two-timescale	X
2TSA-Markovian [20]	Markovian	X	two-timescale	X
Neural-Q-Whittle (this work)	Markovian	neural network	two-timescale	

Experiments with large state space (Weakness 3 of Reviewer rZoR)

Figure 1: We consider a queuing problem with a state space ranging from 0 to 50. The arrival rate of the packet $\lambda=30$ and the departure rate is state S and action A dependent as $\mu=vSA$ with v=20. We randomly sample the Whittle index for state s=40 as shown in this figure. Similar observations hold for Whittle indices for other states. This experiment shows similar results as the smaller-state case presented in supplementary materials of our paper.

2